
 

 
Abstract—Due to the position tracking problem of linear 

stepping motor, a fuzzy controller is designed with observer and 
finite-time prescribed performance, which can improve the 
transient and steady-state performance of tracking error at 
finite time. Through the d-q state equations of linear stepping 
motor, the proposed control scheme is carried out by using 
backstepping method. To deal with the unmeasurable problem 
of motor states, an efficient observer is designed. In addition, it 
is not required to contain the known functions of motor state 
equations in the control law of the proposed scheme, which 
makes the control scheme more flexible. Based on Lyapunov 
stability analysis, it is proved that all the signals in the motor 
closed-loop system are uniformly ultimately bounded. Finally, 
the effectiveness of the proposed control scheme is verified by 
simulation. 
 

Index Terms—Linear stepping motor, Backstepping, 
Finite-time control, Prescribed performance, Fuzzy observer 
 

I. INTRODUCTION 

inear stepping motor (LSM) is widely used in various 
fields with high precision requirements. It has the 

advantages of simple structure, small mechanical loss and 
good environmental adaptability. Recently, the control 
methods of LSM have been paid more and more attentions 
[1-3]. LSM system is a high-order and multivariable 
nonlinear system, and its controller is also affected by the 
changes of motor parameters and other uncertain factors. In 
order to solve above problems, a recursive design method 
called backstepping can be adopted [4-10]. It has also been 
widely used in the research of motor control problems 
[11-15]. With the continuous in-depth study of intelligent 
algorithm, fuzzy control schemes [16-20] can effectively 
solve the uncertainty problem of the system, and provide a 
new approach for the realization of high-performance control. 
From the existing literatures, it is found that there is no 
research to consider the unmeasurable motor states and 
optimize the transient performance of the motor system 
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simultaneously. Therefore, a novel fuzzy observer-based 
controller is designed to estimate unmeasurable states of the 
LSM system, then a finite-time prescribed performance 
function is introduced to enhance the transient and 
steady-state performance of the LSM system. In addition, the 
proposed controller can ensure that the motor can track the 
trajectory of the reference signal. 

II. STATE EQUATION OF LINEAR STEPPING MOTOR 

Consider the following dynamic LSM model [14]: 
2

2

8
sin ,

2 2
sin cos ,

2
sin ,

2
cos ,

c e

e f a f b

a
a f a

b
b f b

d x dx
m B F x F

dt pdt

F k i x k i x
p p

di
L Ri k x x V

dt p

di
L Ri k x x V

dt p



 





  
    

 
              


       
  

    
 





      （1） 

where x denotes the mover position, m is the mover mass, B 
denotes the viscous friction coefficient, p is the pitch, Fc  is 
the cogging force constant, Fe is the electromagnetic thrust, kf 
= 2km/p and km is the back electromotive force constant, R is 
the winding resistance, L is the winding inductance, ia, ib, and 
Va and Vb are the winding currents and voltages, respectively. 
By transforming ia, ib, Va and Vb to id, iq, Vd and Vq, the d-q 
system model of LSM is given in the following form [14]: 
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where  1, 2,3, 4i
ix R i   are the state variables of motor 

and represent position, velocity, current id and iq, respectively. 
Vq and Vd are input voltages, and y is the output of LSM 
system. The relative coefficients and functions are given 
below: 
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For system (2), the control objective can be described as 
follows: when the motor states x2, x3 and x4 are unmeasurable, 
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an adaptive fuzzy tracking controller is designed based on 
observer to ensure that the motor position can follow the 
reference signal yd(t), and the tracking error can converge to a 
small neighborhood within tuning time, and all the signals of 
the motor closed-loop system are uniformly ultimately 
bounded. In order to achieve the proposed control objective, 
the following assumptions are needed: 

Assumption 1 [16]: For any 1 2, iX X R , there exists a set of 

iK  satisfying the following inequality: 

   1 2 1 2| | || ||, 1 4.i i if X f X K X X i            (4) 

Assumption 2: The reference signal  dy t  and its k-th order 

derivatives    k
dy t  are continuous and bounded. 

III. DESIGN OF FUZZY OBSERVER 

In this section, a fuzzy observer is designed firstly. The 
advantages of the fuzzy observer are described as follows: 1) 
the controller does not contain the known function of the state 
equation; 2) the system state can be estimated when the 
system states are unmeasurable. Hence, the design method is 
more flexible. In the aspect of error estimation, the fuzzy 
approximation plays a role in ensuring good observation 
effect. Because the states of the motor are unmeasurable, then 
the fuzzy observer design method can be used to estimate the 
state variables of the motor. Generally, fuzzy logic system 
can be expressed by the following formula: 
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where  1= , ,
T n

nx x x R , x R  and y R  are the input 

and output of fuzzy logic system, N  denotes the number of 

IF-THEN rules,  Z
i

iF
x  and  Z iG

x  are fuzzy 

membership functions related to fuzzy sets Z
iF  and ZG , and 

 max ZZ y R G
y y . Then, define the following function: 
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Hence, (6) can be expressed as follows: 

   Ty x x  .                               (7) 

where    1 1,..., ,...,
T TT

N Ny y     and    1=[ ,...,x x   

 ]T
N x . 

Lemma 1 [17]: If  f x  is a continuous function defined on 

a compact set Ω, then for any constant, (7) can be 
approximated by  f x , thus 
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x
f x x  


                        (8) 

where 0   is an approximation error. 

Define the estimated functions of  1 1 2,f x x , 

 2 2 3 4, ,f x x x  and  3 2 3,f x x  as    1 1 21 2 ,ˆ ˆ ˆf xf X x , 

   2 2 3 42 4 ˆ ˆ ˆˆ , ,=f x xX xf  and    3 2 33 3 ˆ ˆˆ = ,f xf xX , respectively. 

Then, system (2) can be transformed into the following form:  
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where    1 1 1 2 1 2
ˆ,F f x x f X   ,  2 2 2 3 4, ,F f x x x   

 2 4
ˆf X and    3 3 2 3 3 3

ˆ,F f x x f X   . Then, transform 

system (9) into the following matrix form:  
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Hurwitz matrix. If Q is a positive definite matrix and satisfies 
Q = QT, then there exists a positive definite matrix P = PT 
which satisfies the following condition: 
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According to Lemma 1, from (10), nonlinear function 

 ˆ
i jf X  in  ˆF X  can be approximated by 

   ˆ ˆ ˆ| , 1,2,3, 2,3,4.T
i j i i i jf X X i j             (12) 

Then, define the optimal vector θi
* of θi as 

   
ˆ

ˆ ˆ ˆarg min sup | ,
i i

i j

i i j i i j
X U

f X f X


 

 

    
  

          (13) 

where i  is a bounded compact set of θi. Similarly, Uj is a 

bounded compact set of ˆ
jX . In addition, the minimum 

approximation error can be defined by 

   ˆˆ ˆ | ,i i j i j if X f X                           (14) 

where *| | ( 1,2,3)i i i    and * 0i  . Then, the following 

fuzzy state observer is established to estimate the 
unmeasurable states: 
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Furthermore, (16) can be obtained. 
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where        1 2 2 4 3 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0, , ,
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T
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IV. DESIGN OF FINITE-TIME PRESCRIBED PERFORMANCE 

CONTROLLER 

The prescribed performance control method can 
effectively improve transient and steady-state performance of 
the nonlinear system. For the control problem of LSM, the 
following performance function is given as follows [8]: 
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where 0 1.25v   and 0
fTv   represent the initial and final 

values of the prescribed performance function, respectively, 
Tf  is the tuning time. [8] proved that the j-th order derivative 

of the function    jv t  is continuous and smooth. The 

tracking error of the motor position is defined as 

     0 1 de t x t y t  , and the performance function control 

design can make the tracking error converge into a preset 
region at finite time. In this paper, the backstepping method is 
adopted. Firstly, the following coordinate transformation is 
selected:  
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According to (30), choose the following coordinate 
transformation: 
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where 1z  and iz  are transformation errors and 1i   is the 
virtual control law. 

Step 1: 
From (31), the time-derivative of 1z  is 

 1 2 2ˆ .dz G x e y                            (32) 

Substituting 2 2 1ˆz x    into (32) produces 

 1 2 1 2 .dz G z e y                       (33) 

For the 1st subsystem in (30), choose the following 
Lyapunov function: 

2
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Substitute (33) into the derivative of V1 gives 

  1 1 1 1 2 1 2 .dV z z z G z e y                 (35) 

According to Young’s inequality, it yields 

2 2 2
1 2 1

1 1
.

2 2
z Ge z G e  ‖‖                        (36) 

Substitute (36) into (35), the following result holds. 

2
1 1 2 1 1 .

1 1

2 2dV z G z z G y e          
  

  ‖‖        (37) 

Design the virtual control 1  as 

1
1 1 ,

2 d

c G
z y

G G

       
 

                        (38) 

where, 1 0c   is a design parameter. Substituting 1  into (38) 
gives 

2 2
1 1 1 1 2

1
.

2
V c z e Gz z    ‖‖                    (39) 

Step 2： 

Choose the following Lyapunov function for the 2nd 
subsystem: 

2
2 1 2 1 1

1

1 1
,

2 2
TV V z

r
                           (40) 

where 1 0r   is a design parameter. 

Substitute 2x̂  in (30), 3 3 2x̂ z    and *
1 1 1     into 

the time-derivative of V2, it produces 

     

    
       

2 1 2 2 1 1
1

11 2 1 3 2 2 1 1 1 2 1 1
1

1 2 1 3 2 2 1 1 1 2
1

1 12 1 2 1 2 1 2 1
1

1
.

1ˆ

ˆ

1ˆ ˆ+ ,

T

TT

T

T T

V V z z
r

V z b z w e X
r

V z b z w e X

z X r z X
r

 

     

  

     

  

      

    

  

   

 





(41) 

where      
 

2
1 1 1

1 2 2 2 1 1 1
11

ˆ ˆ
ˆ

j
dj

j d

x e x w e y
y x y

  





  
    

  
  

 
 

2
1
1

1

j

j
j

v
v










 . 

Furthermore, it yields  

    
      

 
 

 
 

   

2 1 2 1 3 2 2 1 1 1 2

1 1
12 1 2 2 2 2 1 1

2 2
1 1

2 1 1
1 1

1 1 2 1 2 1
1

ˆ

ˆ ˆ ˆ
ˆ1

1 ˆ

T

T

j j
dj j

j jd

T

V V z b z w e X

z X x e x w e
y x

z y v
y v

r z X
r

  

 
 

 

  

 
 

    

  
       

  
     

 

 

 



        (42) 

According to Young’s inequality, it gives  

2
2 1 1 2 2 1 1

1 1ˆ( ) ,
2 2

T Tz X z                              (43) 

2
221 1

2 2 2

1 1
.

2 2
z e z e

y y

   
     

                 (44) 

Substitute (43) and (44) into (42), the following result 
holds. 

 

   

1
2

1 1 2

2

2 1 3 2 2 2

2 2
1 1 1 2 2

1 2 1

2

1

ˆ ,

1 1

2 2

|| ||

1 T

z b z z z
y

c z

V

z

z G e

r
r

z z D

X 






  
         

 

 

 





        (45) 

where 

 
    

 
 

 
 

1 1
1 1 2 2 1 1 2

1

2 2
1 1

1 1
1 1

2 2 1
ˆ ˆ= ˆ

.

T

j j
dj j

j jd

D X x w e x
yx

y

w

v
y v

e
 

 

 
 

 

 
  


 

 





 

            (46) 

Design the virtual control 2  and adaptive law 1  as 

follows: 
2

1
2 2 2 2 2 2 1

1

1 1 1

2 2
c z D z z Gz

b y




  
          

    (47) 

and 

1 1 2 1 2 1 1
ˆ( ) ,r z X                              (48) 

where 2 0c   and 1 0   are design parameters. 

   Substitute (47) and (48) into (45), from 1 1

T
    

    * * 2
1 1 1 11 1/ 2 || || /2
T T

         , it produces  

 
2

2 1
1 12 1 2 3 1 1

1 1

2
1

1

2 2

|| || ,

T T
j j

j

V c z b z z
r

e


   




  



 



  
         (49) 

where 
* 21

1 1
1

|| ||
2r


  . 

Step 3： 

Choose the following Lyapunov function for the 3rd 
subsystem: 

2
3 2 3 2 2 3 3

2 3

1 1 1
,

2 2 2
T TV V z

r r
                        (50) 

Substituting 3 3 2x̂ z    into the time-derivative of V3 

yields 

 

     
       
   

3 2 3 3 2 2 3 3
2 3

2 3 3 2 2 3 3
2 3

2

2

23 1 2 2 2 4 2 4

3 23 3 2 2 3 2 4 2
2

3 3 3

3

3
3

3

3 3

=

1

1
,

1 1

1 1
ˆ

ˆ ˆ

ˆ ˆ

ˆ

T

T

T

TT
q

T

T

T T

w e b V

r z
r

r z
r

z

V V z z
r r

V x
r r

V z X X

z X X

X



   

   

   



  



 





   

  



 

  

  







     

   











     (51) 

According to Young’s inequality, it produces 

   2
3 2 2 4 3 3 3 3 2 2 3 3

1 1ˆ ˆ( ) ,
2 2

T T T Tz X X z                    (52) 

2
222 2

3 2 3

1 1
.

2 2
z e z e

y y

   
     

                   (53) 

From (47), 2 is given as follows: 
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   

 
 

 
 

  

2 2
2 2 2 2 1 1

1

3 3
2 2 2

11 1
1 1 1

2
1 3 2 1 1 1 2

2

ˆ ˆ
ˆ

ˆ .
ˆ

j j
dj j

j jd

T

x e x w e
y x

y v
y v

b x w e X
x

 


  





 

 
 

 
   

 

  
  

 


  


 



            (54) 

Substitute (52), (53) and (54) into (51), 3V  can be 

obtained. 

   

   

   
   

2
2 1

1 1 1 11 2 3
1 1

2

2 2
1 3 2 3 3 3

2
2 2 3 3

2 2 3 2 4 2
2

3 3 3 2 3 3
3

3

1

2 2

1
|| ||

2

1 1 1
|| ||

2 2

ˆ

ˆ

2
1

1

T T

j j
j

q

T T

T

T

c z b z z
r

e z b V D z z
y

e

r z
r

r z

V

X
r

X

   




   

  

  




    

  
           

  

 

 









   (55) 

where 

 

    

 
 

 
 

2
3 3 1 2 2 4 2

2 2
1 3 2 1 1 1 2 2 1 1

2 1

3 3
2 2 2

1 1 1
1 11

ˆ

ˆ
ˆ ˆ

.

ˆ

ˆ

T

T

j j
dj j

j jd

D w e x
y

b x w e x w e
x x

y v
y v

X

X


 

 
 

  


  
 


  


 

    
 

  
  
  

 

 (56) 

Choose the following actual control law Vq: 
2

2
3 3 3 3 1 2 3

2

1 1
,

2qV c z D z b z z
b y

  
           

   (57) 

Then, select the following adaptive laws 2  and 3 : 

2 2 3 2 4 2 2

3 3 3 3 3 3 3

ˆ( ) ,

ˆ( ) ,

r z X

r z X

   

   

  


 




                       (58) 

where 1 0c  , 2 0   and 3 0   are design parameters. 
Substituting (57) and (58) into (55) yields  

   

 

   

3
1

1

3
2 32

2 32
1 2 3

3
2

1
1

3 3 3
2 2

2
1 1

1

1

1

3

1 3
|| ||

2 2

1 3
|| || ,

2 2 2

2

T T

j j
j

T
i i

j

T Tj
i i i ij j

j j jj

T
c z

r r

e

z e

V

c

r

r



   


  

    

 
 





  

   

  

     





  



(59) 

where 
* 2 * 232

2 1 2 3
2 3

|| || || ||
2 2r r

   


   .  

Step 4： 

For the 4th subsystem, design the following control voltage 
Vd: 

 4 1 3 3 3
2

1 ˆ( ) ,T
dV w e X

b
                       (60) 

then the state function 4 3 4ˆ ˆx b x   can be obtained. It can be 

seen that the state eventually tends to zero. Finally, 

combining the Lyapunov functions in the observer and the 
backstepping method gives 

0 3.V V V                                        (61) 

Therefore, the time-derivative of V is 

 

  

 

0 3

3
2

1

3 3
2

2
1

3

1

2

1

3
2

1

3
2

1

|| ||

3
|| ||

2 2 2

| ||

1

| ,

T
i iE

j

T Tj
i i i

j

i
j jj

i

j j

j j
j

T
i

j

V V V

e q

e
r

e b

c z

c z

 





  

  






 



 

 

    

  





  



 









  

          (62) 

where 
3

2E   , 
3

2 2
j

jr


    and 2b q   . 

Select the appropriate design parameters to make 0   
and 0  , and define 

  minmin 2 / , 2 , 2 , 1,2,3.i ia P c r i              (63) 

Then, (62) can be written as 

.V aV b                                    (64) 

Therefore, from (64), it is concluded that 

   00 ( ) 0 ,a t t b
V t V e

a
                          (65) 

where t0 is the initial time. Inequality (65) illustrates that all 
the signals of the LSM system are uniformly ultimately 

bounded. From (26), it can be seen that  1 tanh 1    and 

  0v t  , thus      tanhv t v t     v t is obtained. 

Furthermore, it yields that    0v t e t    v t , hence the 

constraint by (26) can realize that the tracking error  0e t of 

motor position can be limited in the range     ,v t v t . 

When the value of  v t  is decreased,  0e t  can be limited in 

    0 0:| | ,
fT fe t R e t v t T      at finite tuning time Tf. 

Therefore, the control objective is achieved. 

V. SIMULATION 

In this section, the performance of the proposed control 
method is verified by simulation. The motor parameters and 
controller parameters are shown in TABLE I, where 

1 2 3 1 2 3, , , , ,r r r     are the parameters of adaptive laws (47) 

and (57), 1 2 3 4, , ,w w w w  are the parameters of observer, 

1 2 3, ,c c c  denotes controller parameters in (38), (46) and (56), 

and 0 , ,
fT fv v T  are the parameters of prescribed performance 

function (25). By selecting appropriate parameters, the motor 
can follow the reference signal yd(t) = sin(t), and the tracking 
error converges to the predetermined region at finite time.  
The fuzzy membership function is selected as follows: 

   2ˆ 3
ˆ exp , 1, 2,3, 4,

4

1,2,3,4,5.

Z
i

i
iF

x Z
x i

Z


  
   
 
 



   (65) 

Based on above design method, the simulation results are 
shown in Fig. 1-4. Fig. 1 describes the motor position and 
reference motion trajectory. From Fig. 1, it shows that the 
controller achieves a good tracking effect. Fig. 2 shows that 
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the observer can estimate the position and velocity states of 
the electronic mover when the states are not measurable.  

 
TABLE I 

SELECTED PARAMETERS TABLE 

Motor Adaptive laws Observer 

m = 0.65 kg r1 = 1 w1 = 1 
B = 0.01 N/m/s r2 = 1 w2 = 240 

Fc = 2.4 N r3 = 1 w3 = 120 
p = 1.28 mm κ1 = 6 w4 = 10 
Kf = 27.83 N/A κ2 = 10  
R = 3 Ω κ3 = 10  
L = 0.5 mH   

Control Laws 
Prescribed 
Performance 
Function 

Initial state 

c1= 2 v0 = 1.25 x1(0) = 0.5 m
c2= 10 vTf = 0.25 x2(0) = 0 m/s
c3= 15 Tf  = 1 s x3(0) = 0 A 
  x4(0) = 0 A 

 

 

Fig. 1. Position tracking performance of linear stepping motor 

 

Fig. 2. Position and velocity estimations of linear stepping motor 
 

Fig. 3 shows the tracking error of the motor position. 
Under the action of the prescribed performance function, the 
tracking error can quickly converge to the preset boundary in 
about 1 s, which shows that the control method can improve 
the transient and steady-state performance of the motor 
tracking error at finite time. In addition, the proposed 
controller ensures that all the signals in the closed-loop are 
uniformly ultimately bounded, and it can realize the motor 
tracking control when the motor states are unmeasurable. 

Under this effect, the curves of input voltage Vq and Vd are 
shown in Fig. 4. From the simulation analysis, It is concluded 
that the proposed controller can effectively improve the 
system performance and realize the tracking control of LSM 
more flexibly. 

 

Fig. 3. Performance of tracking error 

 

Fig. 4. Input voltage Vq and Vd 

VI. CONCLUSION 

Due to the position tracking problem of linear stepping 
motor, an adaptive fuzzy tracking control scheme is designed 
in this paper. 

 1. Compared with the previous motor control methods, it 
can improve the transient and steady-state performance of the 
position tracking error at finite time.  

2. The proposed controller ensures that all the signals in 
the closed loop are uniformly ultimately bounded.  

3. The backstepping method and fuzzy observer are used to 
solve the problem when the motor states are not measurable. 
The controller does not contain the known function in the 
state equations, which makes the control design more 
flexible.  

4. The experimental results illustrate the feasibility and 
effectiveness of the control scheme. 
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