
 

  
Abstract—Milling force prediction of titanium alloy plays an 

important role in titanium alloy milling process. In the article, 
the milling process of titanium alloy materials is analyzed, and 
this material quality is affected directly by the milling force. 
Support vector machine (SVM) has shown prominent 
performance for many real-world problems. However, SVM 
computational complexity increases, as the number of samples 
increases. How to effectively apply it to massive datasets is still a 
serious challenge. Although there are some literatures on 
parameter optimization techniques of SVM regression, the 
performance of this model still needs to be further studied and 
improved. We present a new milling force predicting model, 
namely ACO&SVM, which integrate SVM regression with 
ACO algorithm to enhance the prediction accuracy of milling 
force for mill process of titanium alloy. The primary innovation 
feature of hybrid model is to apply the ACO to automatically 
determine parameters of SVM regression model. In addition, as 
being applied to discrete optimization, to solve continuous 
optimization problems, ACO algorithm needs to transform 
continuous variables into discrete ones by discretizing of 
continuous variables. The results have shown that proposed 
ACO&SVM model yields better prediction accuracy, and thus it 
can be widely applied to the fields of material processing 
optimization.    
 

Index Terms—Ant colony optimization, BP neural network, 
Support vector machine, Titanium alloy. 
 

I. INTRODUCTION 
n Titanium industries, optimizing process parameters is one 
of the most important production processes. The modern 

titanium enterprises begin to pay more attention to the 
innovation of theory and technology methods that reinforce to 
increase the titanium alloy factory efficiency and fully utilize 
their existing resources to ensure their strong position in the 
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international competition.  In this paper, we concentrate our 
attention on titanium alloy milling process.  In the titanium 
alloy milling process, a typical problem is how to optimize 
process parameters, which plays a significance role in the 
titanium alloy production. 

Titanium alloys have many advantages, such as very high 
strength features, elevated temperature resistance 
characteristics, and excellent abrasion resistance. They are 
used in chemical industry, medical treatment, aerospace, 
automobile and other fields [1]. Because, the titanium alloy 
material has the characteristics of low elastic modulus, low 
wear-resistant cutting tool, and high temperature in the 
cutting process, it is difficult to be machined.  So the research 
of titanium alloy machining, especially milling performance 
and optimizing process parameters, has a practical 
significance of improving the processing efficiency, cutting 
production costs and promoting the application of the  
materials.   

At present, the optimization of milling process parameters 
in titanium alloy is a significance research topic, which has 
been widely studied in recent times. Despite the application 
of parameters optimization has made great progress in 
titanium industries, researchers are still seeking to improve 
the performance and accuracy of models. André et al. [2] 
focused their research on taking cutting force and surface 
roughness and processing benefit as optimization objective, 
and they adopted the genetic algorithm (GA) to search milling 
parameters for optimization. Özel et al. [3] constructed a 
multi-dimensional model by the finite element approach. This 
model could be used to explore the influence of the different 
technological parameters on the surface roughness. Tansel [4] 
discussed the effects of feed rate, milling speed and depth on 
surface roughness of titanium alloy by combining genetic 
algorithm (GA) with neural network.  Liu et al. [5] adopted an 
optimization model, which combined the kriging 
interpolation with genetic algorithm for the titanium alloys 
turning, and the results indicate that the optimum parameter 
levels for different variables have been suggested. Wu et al. [6] 
designed a cutting force prediction model in milling process 
by increasing chip thickness. Experiment results showed that 
simulated results are consistent with measured results. 
Elmagrab et al. [7] explored confirmatory the influence of 
milling parameters on milling surface characteristics of 
titanium alloy materials. The results showed that feed rates 
had a greater effect on surface roughness. Although there are 
some literatures on optimizing process parameters in titanium 
industries, the optimization of process parameters remains to 
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be further studied to increase the titanium alloy production 
efficiency. 

Support vector machine (SVM) model was originally 
employed to solve pattern recognition and classification 
problems, and it is a widely used and effective machine 
learning algorithm. The SVM models have been successfully 
used to practical problems. With the discovery of a 
ε-insensitive function, the SVM model is conveniently 
expanded to help settle estimation problems of nonlinear 
regression, namely SVM regression. The SVM regression has 
been developed to solve many practical forecasting problems 
[8], such as engineering and software field forecasting [9], 
public traffic forecasting [10-11], electric load forecasting 
[12-13], adhesion strength of coating performance [14], and 
so on. However, it has also been observed that as the number 
of samples increases, SVM regression computational 
complexity increases.  How to effectively apply it to massive 
datasets is still a serious challenge. Moreover, the practical 
results show that prediction accuracy is poor due to the lack of 
knowledge of parameter choice in a SVM regression model. 
Nevertheless, the structured methods in selecting several 
parameters for a SVM regression model may not perform well. 
Although there are some literatures on parameter 
optimization techniques of SVM regression model, the 
accuracy of this model still needs to be further studied and 
improved. In our study, we proposed a new milling force 
prediction model. The main features of this paper are different 
from the above papers in the following points: First, the 
important idea of our paper is to integrate the construction 
solution characteristics of the ACO with the SVM regression, 
which leads to a novel model that we name ACO&SVM. 
Second, within the ACO&SVM model, we apply the ACO to 
automatically determine three parameters of SVM regression 
model. Moreover, as being applied to discrete optimization, 
to solve continuous optimization problems, ACO algorithm 
needs to transform continuous variables into discrete ones by 
discretizing of continuous variables. Finally, the results of 
experiment have proved that ACO&SVM model yields better 
prediction in the terms of the accuracy.  

   The paper is arranged as follows. Ant colony 
optimization is presented in Section 2. Support vector 
machine regression are introduced in Section 3. The proposed 
ACO&SVM forecasting is presented in Section 4. Section5 
describes experimental results that reveal the forecast 
performance. Section 6 presents the conclusions. 

II. ANT COLONY OPTIMIZATION  
Ant colony optimization (ACO) is an evolution method 

based on population evolution to get the best solution.  The 
main principle of the ACO is that artificial ants imitate ant 
foraging behavior as they search for food position and seek 
the shortest path from the nests to food locations. The ACO 
method [15] was first proposed in 1997, and it has been 
successfully adopted to solve traveling salesman problems 
[16]. Many researchers have tried to put forward new 
strategies to promote performance of basic ACO, which has 
been successfully applied to different practical problems 
[17-18]. Each metaheuristc has its own advantages and 
weakness.  Therefore, many researchers are trying to improve 

the search performance to achieve the efficient search. 
There are various versions of basic ACO algorithm. 

Applications of this algorithm have successfully covered 
many practical optimization fields. ACO algorithms mainly 
consist of two basic steps: constructing solutions and updating 
pheromone trail.  Ant k travels from node i to next adjacent 
node j by adopting the formula (1) as follows: 
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in which  τiu represents the trail strength of edge (i,u), and β 
denotes a parameter.  q denotes a variable, q∈[0,1], and q0 
represents a parameter value.  The visibility iuη  denotes the 
inverse of edge length between nodes (i, u). Mk represents the 
set of cities chosen by ant k, and the cities in the set will not be 
allowed to select again.  If the condition is met q≤q0, the ant 
moves the best route according to formula (1). If q>q0, an 
edge can be selected according to random variable Γ. The 
value of variable Γ depends on the probabilistic distribution 
as formula (2): 
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where k

ijp  denotes a probability and ant k uses this to 

determine to move routes.     
There are two types of the pheromone trail updating, 

including local and global updating. Local updating is 
implemented in constructing solutions, and global updating 
will be performed after constructing solution phase. Through 
the analysis of the ACO algorithm, it mainly depends on the 
positive feedback theory and random selection probability 
strategy. However, the positive feedback mechanism can 
make the pheromone intensity of the links. This way of 
pheromone updating enables solution search process prone to 
premature convergence. To overcome the weakness of the 
ACO algorithm, we adopt a deterministic selection and 
random selection probability in the search process by 
adjusting the parameters to change deterministic selection and 
random selection chances.     

III. SUPPORT VECTOR MACHINE REGRESSION  
Support vector machine (SVM) model is a very efficient 

supervised learning technique proposed by Vapnic et al. [19], 
and it has already been developed in many industries. The 
major application fields of SVM model should be parted into 
two categories: SVM classification and SVM regression. 
Support vector machines have first been adopted for 
classification purposes, but the theory was expanded easily to 
regression prediction.  In this article, we adopted the SVM 
regression model to predict the milling force. 

The SVM regression is an approximation method based on 
machine learning theory [20]. There is a linear function, 
which can describe nonlinear relations between input samples 

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_02

Volume 48, Issue 2: June 2021

 
______________________________________________________________________________________ 



 

and output samples.  Let T be a training set, i.e., T={(x1,y1), 
(x2,y2), …, (xn,yn)}, in which xi denotes an input variable,  yi 
denotes actual variable value,  and n represents the sample 
size in the training set.  Fig. 1 depicts the linear regression 
performed graphically by support vector machine.  With the 
help of using a nonlinear function φ(x), the input variable xi is 
first converted into a feature space with high-dimension,  and 
then a linear function can be generally defined as formula (3).    

 
bxwxf T += )()( φ                                                       (3) 

 
In the formula, f(x) is a forecast value, φ(x) denotes the 
nonlinear function, and w, b denote coefficients.   By adopting 
a penalty function in order to evaluate w and b values, the 
SVM regression minimizes the errors in total as follows: 
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In the SVM, our objective is to search for  f(x) function with 

at most ε deviation between yi and f(x) for all the training data. 
That is to say, it is concerned that the error is less than ε, but 
doesn’t allow any deviation greater than this. In a most 
common SVM, which is called ε–SVM regression (Fig. 1), 
the model adopts a loss function to evaluate quality of forecast 
model as follows: 
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in which yi refers to the target data.  Eq. (5) is adopted to 
search for an optimal hyperplane on the feature space with 
high-dimension separating the data set to two subsets.  The 
key point of SVM regression is to seek the optimal hyperplane 
to minimize the training error. Two variables ξi and ξi

* 
indicate the distance between the actual values and the 
relevant boundary ε  values, and they are applied to settle 
infeasible constraints problem. Training errors above ε are 
defined as ξi

*, while training errors below -ε are defined as ξi 
( Fig. 1). Only the points inside the threshold region will 
contribute to the prediction accuracy, whereas the points 

outside the threshold region contribute to the training error. 
The training vectors with non-zero multipliers should be 
named as support vectors. 

  By replacing Eq. (4) with Eq. (5), we can obtain a function, 
which is suitable for training set with a prediction error 
deviation less than ε.  The SVM regression mode is 
determined from form the estimation of w and b as follows: 
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Where w2 denotes a regularization rule term, which decides 
differences between the computational complexity and 
estimation accuracy of the SVM. A parameter C is regarded to 
control the amount of allowable deviation greater than 
parameter ε  is tolerated.  ε  denotes the insensitive loss 
function, which associates with the approximation precision 
of training set, and the value of parameter ε  identifies the set 
of the support vectors.  The dual of this problem may be 
solved by adopting convex programming techniques. 

For formula (6) denotes the constrained optimization 
problem, in most cases, this problem should be solved more 
easily by converting it into its dual formulation adopting 
Lagrange multiplies method.  The key principle is to build a 
Lagrange function based on the objective function and its 
constraints by using a dual variable set. By using Lagrange 
equation, thus, the dual problem can be obtained as formula 
(7), 
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Fig. 1.  Transformation process for a  SVM regression model. 

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_02

Volume 48, Issue 2: June 2021

 
______________________________________________________________________________________ 



 

where ∗
ii αα ,  refer to Lagrange multipliers. The multipliers 

should meet the equality condition αiαi
*=0.  After obtaining αi 

and αi
*, quadratic optimal problems are settled. The vector w 

can be obtained in formula (3) as follows, 
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The Lagrange multipliers are gained by settling a quadratic 
program. After transforming the above formula (3) into its 
dual problem as well as settling this dual problem, formula (3) 
turns into the explicit expression. Finally, for an input vector x, 
the output function of SVM regression mode is defined as 
formula (9), 
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In the formula, k(xi, x) is a kernel function, and this function 
can convert the input data into multidimensional feature space, 
and its value is defined as the scalar product of vectors xi and 
x.  The introduction of kernel function can enables SVM 
regression to easily find the solution for the non-linear 
regression problems. The SVM regression provides several 
different kernel functions, i.e., radial basis, polynomial, lineal 
and sigmoid functions.  In comparison with some other kernel 
functions, Gaussian radial basis function (RBF) has been 
shown to obtain better performance results than the 
polynomial function. Because of fewer parameters to be set, 
the Gaussian radial basis function is not only handier to 
execute, but also it performs well nonlinearly converting 
between the input and high-dimension spaces, and thus, it is 
appropriate to solve nonlinear problems.  Because of its 
flexibility in treating more complex parameters and its 

computational reliability, efficiency,  in this study, the data set 
presents obvious nonlinearity, so we choose the RBF kernel 
function,  

   0),||||
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In formula (10), δ  denotes Gaussian RBF width, and 

variables xi, x are input vectors of the training data and test 
data respectively. In summary, the SVM regression is similar 
in form to a neural network.  To approximate the given 

observations in a multiple dimensional space, the output 
represents the linear combination function of the intermediate 
nodes in another feature space, and each hidden node should 
correspond to one support vector.  As shown in Fig. 2, the 
entire SVM regression prediction structure includes input 
vector. 

IV. HYBRID  MODEL FOR PARAMETER OPTIMIZATION OF SVM  
 The accuracy of SVM model relies mainly on selection of 

the parameters, C, δ, and ε. These parameters must be chosen 
accurately, since they directly affect the feature space and 
algorithm complexity. However, there are few studies on 
structural methods for effective parameter selection. This 
study presents a new ACO&SVM model for optimizing 
parameters of SVM regression. In this ACO&SVM model, 
parameter values can be automatically adjusted by 
implementing the ACO algorithm. The ACO algorithm is well 
suited for seeking the global optimum in an intricate 
multidimensional search space.  To get a better performance 
of ACO&SVM model, several parameters should be tuned. In 
the ACO&SVM model, we apply the ACO to determine three 
parameters of SVM regression model. After getting optimal 
parameters, the SVM model is built to implement the 
prediction task. The overall framework design of the 
ACO&SVM process is described in Fig. 3.   

For the main idea of implementing the high prediction 
accuracy with the least test errors, in this paper, we have 
utilized the advantage of the ACO to seek the best parameter 
values for C, δ and ε in SVM model. Three parameters for 
SVM model may influence the prediction accuracy. 
Nevertheless, the structural techniques for determining 
efficient choice of parameters are very limited in literature. 
Three parameters, C, δ and ε, are continuous problems. The 
ACO algorithm was originally designed for discrete 
combinatorial optimization problem, and it should require 
some specified transforming strategy in continuous problems. 
In order to optimize these three parameters by ACO algorithm, 
C, δ and ε must be discretized.  In this work, to transform 
continuous parameters into discrete ones, we first mesh these 
parameters into N grids, and then compute the grid distance of 
each parameter. Each grid node represents a combination of 
three parameters, and it is equivalent to a city point of TSP.  In 
this research, the ACO algorithm is adjusted to choose three 
parameters for SVM model in discrete problems. A grid node 
X here is defined as X = {C, δ , ε }. Therefore, each grid node 
is defined to represent a combination of three parameters, C, δ  
and ε. The more grid nodes mean more ants participate in 
computation, which leads to computational complexity. But if 
the number of grids is quite larger, the convergent speed of 
algorithms is relatively slower. As above introduced in 
section 2, in ACO algorithm, artificial ants may construct 
solutions by considering pheromone trails. The general 
framework of the proposed ACO&SVM consists of state 
transition strategy, state updating rules and evaluating 
function. 

A. State transition strategy 
State transition strategy can make it possible for ants to 

explore grid nodes with three parameters combination by 

 
 
Fig. 2.  SVM regression prediction based on phase space reconstruction. 
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according to the pheromone trails. In an ACO algorithm, each 
ant is responsible for constructing a subset of solutions by 
adopting a probabilistic rule to travel from grid node i to 
adjacent grid node j in its neighborhood list. The transition 
strategy is defined as follows:   
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In the above formula, τj denotes the pheromone value of grid 
node j, Ωi refers to the neighborhood list of grid node i, i.e., 
the set of possible nodes ants can select on grid node i. ηj 
stands for the inverse proportion to the forecasting error at the 
node j. β denotes a parameter determining the relative weight 
of pheromone trail level.  

B. The updating rule 
When the ants are foraging for food, they deposit a 

pheromone trail on the grid nodes they have already moved. 
The grid point with higher pheromone trail has higher 
selection probability, and the pheromone trail strengthens 
relating to the grid nodes, which is more attractive to the next 
generation of ants. This updating mechanism of pheromone 
based on biological nature is easy to stagnate. The pheromone 
updating rules mainly include local updating and global 
updating, which are used to solve the trouble problems. The 
updating strategy is applicable to the subset of parameters that 
generate the minimum prediction errors in this iteration. 
According to this updating strategy, the pheromone quantity 
of the better parameters subset should increase. Therefore, the 
ant that can find the optimal solution can place pheromone 
trail on its selected parameter nodes. This selection, together 
with using state transition strategy, aims to make a clearer 
search direction, so that ants can search in neighborhoods of 
the optimal solution produced by the current generation of the 
algorithm. After ants select grid nodes and move to the grid 
nodes, local pheromone updating is executed according to 
formula (12). The global updating can not be executed until 
all ants have finished their search processes. The global 
updating rule is increased by using the updating rule 
according to formula (13),   

 
0)1( τττ jj ⋅+⋅−= ρρ                                                          (12) 

   
jjj τττ ∆⋅+⋅−= ξξ )1(                                                          (13) 

In formula (12), ρ is the local evaporation coefficient, 
ρ∈(0,1), and τ0 denotes the initial pheromone. In formula (13), 
ξ  denotes a parameter of global trail decay degree, ξ∈(0,1). 
τ∆ j is adopted to enhance the pheromone trail on the route of 

the current solution. τ∆ j =1/ L where L is a fitness function 
value in formula (14). The updating strategy helps to provide 
greater pheromone trail of the solutions that cause fewer test 
errors. That is, these parameter combinations with fewer test 
errors have more possibility to be traveled by the other ants in 
the future.  

C. Evaluating Function for parameter optimization 
As we all know, the prime objective of seeking the optimal 

combination of three parameters (C, δ , ε ) is to reach the 

better prediction accuracy according to the evaluation criteria. 
Thus, the core idea of the ACO is to choose appropriate 
combination of parameters (C, δ , ε ) to optimize the 
evaluation criteria as the fitness function. Here, in the 
optimization of model parameters, the mean absolute percent 
error (MAPE) can be defined as a fitness function to evaluate 
the predictive accuracy. The mean error is more suitable 
because it is independent from the data range. The smaller the 
MAPE value is, the more excellent the prediction result is to 
the measured values. The forecasting error can be defined 
according to formula (14), 
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in which n represents the number of testing dataset. yi and fi 
denote the actual and forecasting values, respectively.  

D. ACO&SVM model 
This paper designs a novel ACO&SVM model, which 

hybridizes SVM regression with ACO algorithm to enhance 
the prediction accuracy. In this ACO&SVM, for the purpose 
of parameter determination of the SVM is to minimize the 
forecast deviation, first, the range of the parameters should be 
determined.  In the proposed SVM model, cutting parameters 
were used as inputs and milling force as the output. Three 
parameters of SVM model are automatically changed by 
executing ACO algorithm. Next, the obtained best parameters 
are used to build prediction model, and this model performs 
the forecasting task after the training phase. Fig. 3 gives the 
framework of ACO&SVM model and also shows the process 
of parameter choice of SVM model according to the ACO.  In 
the article, we have developed a SVM regression model 
which mainly includes three stages. At first stage, we apply 
the ACO algorithm to search three optimal parameters for 
SVM model simultaneously to reach a better generalization 
performance. In the second stage, these optimal parameters 
can be applied to build a prediction model. Finally, the 
prediction model is used to forecast milling forces. The 
detailed process of the ACO&SVM model is illustrated as 
follows:  
Step 1: Data preparation. The samples are parted into training 

data set and test data set. Initialize the number of 
ants numant, the maximum number of iterations 
CNmax and terminal condition, i.e., predefined 
precision ϑ. Initialize the trails τ and three 
parameters: C, r, δ, and the non-sensitivity 
coefficient ε. 

Step 2:    A grid node X here is defined as X = {C, δ , ε}.  After 
that, compute the grid distance of each parameter, 
and divide the parameters into N grids. According 
to the actual problem, specify the boundary of m 
parameters ],[ upper

j
low
jj xxx ∈ , j=1, 2, …, m, in which 

m denotes the number of parameters for optimizing, 
m=3, i.e., three parameters C, δ, ε, respectively. 

low
jx  and upper

jx  denote the upper and lower bound for 

parameters. hj denotes the grid interval of each 
parameter, which is computed according to formula 
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(15). In the same grid interval hj, mesh parameters 
into N small grids.   Initialize pheromone trail on the 
grid points, and place randomly ants on the grids as 
the starting nodes of the ants. 

Nxxh upper
j

low
jj /)-(=                                              (15) 

Step 3:   Each ant travels from grid node i to adjacent grid 
node j in its neighborhood list Ωi according to the 
probabilistic distribution as formula (11).   Ωi is the 
set of possible nodes which ants can select on node 
i. The node j denotes a combination of three 
parameters, C, δ and ε.  Record three parameters C, 
δ  and ε values and calculate the forecasting error in 
the meantime. 

Step 4:   Evaluate forecasting errors. Input three parameter 
values, C, δ and ε , into the SVM model to train data 
and build predictive model. After training SVM 
model using C, δ and ε parameters, the algorithm 
estimates parameter combination nodes by 
computing fitness function. In this article, the mean 
absolute percent error (MAPE) can be adopted as a 
fitness function, which is formulated as formula 

(14).               
Step 5:   Perform local pheromone updating. After the ants 

select grid nodes and move to the grid nodes, the 
pheromone on the grid nodes is updated 
immediately according to formula (12). 

Step 6:     Repeat Steps 3-5 until all ants finish their choice of 
nodes, that is, the ants reach the predetermined 
number of movements. 

Step 7:   Record the grid node with the best mean squared 
error and update global pheromone trail according 
to formula (13). 

Step 8:    Check whether the condition iteration<CNmax is met, 
if iteration<CNmax, then go to step 3; or else, 
continue to the next step to diminish the grid 
interval. 

Step 9:    Seek and record the node subscript with the most 
pheromone trail quality, and then reduce grid 
interval distance of the parameter hj. 

Step 10:  Repeat Steps 2-9 until grid  distance hj is smaller 
than given value ϑ that denotes a termination 
condition. 

 
Fig. 3.  The flowchart of ACO&SVM model. 
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Step 11:   if the terminal criteria condition is met hj<ϑ, we can 
get the global optimum values of  (C, δ,ε). These 
optimum parameters will be brought into the 
training set to build a prediction model. The model 
should be adopted to predict milling forces in the 
test data, and then the algorithm goes to stop.    

V. COMPUTATIONAL RESULTS 
In the section, we demonstrated the accuracy of proposed 

ACO&SVM model for the milling force prediction problem. 
The proposed method was compared with various methods. 
Firstly, we validate performance of SVM model with different 
kernel function because distinct kernel functions can affect 
significantly the final prediction performance of SVM. 
Secondly, we compared ACO&SVM with basic SVM. 
Thirdly, ACO&SVM and the BP Neural Networks were used 
for comparison. Moreover, ACO&SVM can be compared 
with GA&SVM. Consequently, total four prediction 
approaches were investigated in this milling force forecasting 
problem. The details of comparison results are described as 
follows. 

A. Data set and preprocessing  
In this section, our proposed ACO&SVM model has been 

implemented in MATLAB environment.  It is very important 
to provide a wide range of experimental data sets in the 
establishment of intelligent prediction modeling for milling 
force. The accuracy of predictive models largely relies on the 

generality of the experimental data, so it is significant to 
collect enough data to develop the prediction model.  To 
assess the prediction performance of our model, the 
experimental dataset is obtained from the published literature 
[1, 21-22]. According to above description, the major 
parameters affecting milling force are summarized as milling 
depth, cutting speed and feeding speed. Table I gives the 
description of these parameters in detail.  In this experimental 
dataset, three parameters are adopted as input parameters and 
the milling force is used as the forecasting value through 
optimized SVM model. Table II lists experimental data of 
processing parameters and milling force. Fig.4 shows the 
actual values of milling force. There are 88 samples in the 
experimental data. To guarantee fair representation of data 
samples, these samples are randomly parted into training test 
sets, and they are arranged according to training set before the 
test set.  The first 75 are adopted as training data to train 
models and the remaining 13 as test set to estimate the 
predicting efficiency of models.    

TABLE  II 
Experimental data of processing parameters and milling force. 

No A f  v  F No A f  v  F No A f  v  F No A f  v  F 

1 0.6 0.05 65 86 23 1 0.06 60 300 45 0.6 0.02 120 76 67 0.6 0.2 80 302 

2 1.4 0.06 80 390 24 1 0.14 80 465 46 0.9 0.4 90 935 68 0.6 0.1 90 210 

3 0.5 0.3 50 340 25 0.6 0.4 50 649 47 0.5 0.6 50 554 69 0.5 0.6 70 582 

4 0.3 0.8 100 536 26 0.3 0.8 90 539 48 0.9 0.2 70 473 70 0.8 0.6 70 966 

5 1 0.02 70 143 27 0.6 0.4 90 646 49 1.4 0.02 120 189 71 0.3 0.2 80 160 

6 0.2 0.14 100 133 28 0.8 0.6 100 947 50 0.3 0.4 90 315 72 1 0.1 120 270 

7 0.2 0.1 120 129 29 0.5 0.6 60 560 51 0.8 0.6 80 955 73 1 0.1 100 275 

8 0.3 0.2 50 167 30 1.4 0.02 100 186 52 0.9 0.2 80 467 74 0.8 0.3 80 541 

9 0.8 0.3 70 536 31 0.2 0.14 80 137 53 0.2 0.14 120 131 75 1.4 0.1 120 426 

10 0.8 0.3 90 546 32 0.6 0.02 100 82 54 0.6 0.06 120 233 76 0.3 0.8 50 549 

11 0.8 0.6 50 971 33 1 0.02 100 120 55 0.3 0.8 70 528 77 0.5 0.6 100 621 

12 0.9 0.4 50 933 34 0.5 0.3 90 348 56 1.4 0.1 80 428 78 0.3 0.2 60 165 

13 1 0.06 100 268 35 0.6 0.4 70 615 57 0.9 0.4 60 930 79 0.2 0.1 90 135 

14 0.9 0.2 100 456 36 0.3 0.8 80 534 58 0.9 0.4 100 939 80 0.6 0.2 50 270 

15 0.3 0.8 70 528 37 0.3 0.2 70 163 59 1.4 0.1 100 434 81 0.6 0.2 70 284 

16 0.8 0.3 50 530 38 1 0.02 80 139 60 0.9 0.2 90 459 82 0.5 0.3 60 348 

17 1 0.14 120 479 39 0.5 0.3 80 354 61 0.6 0.06 100 224 83 0.9 0.2 80 467 

18 0.6 0.05 80 80 40 0.5 0.6 90 618 62 0.3 0.8 60 540 84 0.9 0.2 50 476 

19 0.3 0.2 90 156 41 0.5 0.6 80 614 63 1 0.06 120 260 85 0.5 0.3 70 350 

20 1.4 0.06 100 405 42 0.3 0.4 50 320 64 0.6 0.4 80 620 86 0.6 0.4 100 648 

21 0.6 0.2 90 318 43 0.3 0.4 70 306 65 1.4 0.1 60 415 87 0.3 0.4 80 310 

22 0.6 0.05 51 90 44 0.2 0.1 100 130 66 1 0.06 80 278 88 0.3 0.4 60 313 

 

TABLE I 
THE PARAMETERS RANGE  IN EXPERIMENTS. 

No. Factor Symbol Range 

1 Milling depth (mm) A 0.2–1.4 
2 Feeding speed (mm/r) f 0.1–0.9 
3 Cutting speed (m/min) v 50–120 
4 Milling force (N) F 0–1000 

mm = millimeter, m/min=meter per minute, N = Newton.   
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B. Parameter setting 
Because different kernels directly affect the predict 

performance of SVM model significantly, we validate 
performance of this model with four different Kernel 
functions.  To clearly verify the accuracy of the SVM model, 
four statistical parameters were used as evaluation criteria. 
These parameters consist of normalized root mean squared 
error (NRMSE), mean absolute percentage error (MAPE), 
relative error (Error), and coefficient of determination (R2), 
as defined in Table III. NRMSE, MAPE and R2 are adopted to 
estimate overall performance. The values of NRMSE and 
MAPE are smaller, and the predicted values are the closer to 
the actual values. The larger the parameter R2, the more stable 
the model is, that is, R2=1 indicates a perfect model, while 
R2=0 means an inaccurate mode. Moreover, Error represents 
percentage deviation of  the predicted value and actual milling 
forces.  

The performance of the SVM model with different kernel 
functions is presented in Table IV.  From this table, the 
performance of the SVM model with RBF kernel function 
enhances the accuracy as listed by the lowed NRMSE and 
MAPE. As each kernel function needs to optimize different 
parameters separately, a grid searching method was adopted 

to seek the best kernel function parameter δ, penalty 
parameter C and the non-sensitivity coefficient ε for the SVM. 
When training errors get smaller, modify three parameters, C, 
δ , and ε to compute the validation error. After that, three 
parameters can be determined as the most suitable parameters 
as shown in table V. From table IV, a comparison of different 
kernel functions shows that the SVM model with RBF kernel 
has the smaller NRMSE and MAPE, and it has the smaller 
NRMSE and MAPE, and it has the highest coefficient of 
determination in both training set and testing set. Therefore, 
the SVM model with RBF kernel can provide more accurate 

 
TABLE  III 

ERROR MEASURES FOR ACCURACY ASSESSMENT. 
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TABLE  IV 
PERFORMANCE OF  SVM MODEL WITH DIFFERENT KERNEL FUNCTION. 

Kernel function 
Data set Statistical 

parameters Linear Polynomial Sigmoid RBF 

MAPE (%) 27.56 13.756 27.459 10.045 

NRMSE 0.288 0.1348 0.2932 0.0604 
Training 
set 

R2 0.686 0.9310 0.6737 0.9861 

MAPE (%) 15.65 7.0645 15.264 7.2120 

NRMSE 0.202 0.1146 0.2014 0.0758 Testing 
 set 

R2 0.713 0.9084 0.7176 0.9600 

 

 
Fig. 4.  The actual values of milling force. 

 
TABLE  V 

PARAMETERS OF SVM MODEL WITH DIFFERENT KERNEL FUNCTION. 

Kernel function C δ ε 

Linear kernel 4.000 9.765e-4 0.001 

Polynomial kernel 128.000 5.650 0.01 

Sigmoid kernel 64.000 0.0313 0.001 

Radial basis function 
kernel (RBF) 12.000 1.000 0.05 

GA&SVM 4.000 0.500 0.01 

ACO&SVM 11.314 0.7071 0.01 
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predictions.  In ACO algorithm,  we set parameter values as 
follows: q0∈[0.60, 0.85], β∈[3, 4, 5],  ρ∈[0.35, 0.60], 
numant = 10. CNmax = 500.  

C. Forecasting results and analysis 
As we have discussed, the prediction accuracy of SVM 

model mainly depends on the three parameters, i.e., kernel 
function parameter δ, penalty parameter C, and the 
non-sensitivity coefficient ε. The main purpose of 
optimization parameters for the SVM model is to optimize the 
process sufficiently, which can search for a finite subset to 
obtain the best parameters with minimum generalization error.  
To enhance the performance of SVM model in milling force 
forecasting, we present a hybrid ACO&SVM model, in which 
we adopt ACO algorithm to determine the most suitable 
parameters of SVM model. We can find the best C, δ,  andε by 
updating the pheromone values continuously. After getting 
these parameters, the SVM model is built to implement the 
prediction task.  

Fig. 5 showed evolutionary process of the optimal 
parameters. Training samples were feeding into this proposed 
model, and the ACO algorithm was applied to search for three 
best parameters, i.e., C, δ , and ε  in the SVM regression 
model. The process searching for optimal parameters should 
be executed for 200 generations. In Fig. 5, the fitness (MAPE) 
value decreased as the generation number increased. In the 
whole searching process, the function value gradually 
converged until the optimal parameters with the fitness value 
9.1% were obtained at generation 150. Therefore, with the 
ACO algorithm, the best parameters in the SVM regression 
were obtained to be C=11.314, δ =0.707 and ε =0.01. These 
optimal parameters were used to build SVM regression 
prediction model. 

 Table VI showed the comparison between the grid search 
and ACO&SVM model. In the grid search, the penalty factor 
C was explored from 0 to 15 at an interval of 0.5, the kernel 
parameter δ  was from 0.5 to 10 at an interval of 0.05, and the 
loss function ε  was explored from 0.001 to 0.05 at an interval 
 

of 0.005. As shown in the table VI, the ACO&SVM has a 
better performance than the grid search in terms of MAPE, 
NRMSE and R2. Moreover, the ACO&SVM required a small 
amount of training time while the grid search took much time. 
Fig. 6 and Fig. 7 show the comparison between the predicted 
milling force of hybrid ACO&SVM model and the actual 
force of training data set and testing set separately. The 
predicted milling forces are in good consistent with actual 
milling forces on the whole. The forecasting results of models 
are illustrated in Table VII in which Actual value refers to 
gauged milling force, the SVM model to basic SVM, BP 
model to BPNN, GA&SVM model to combination of genetic 
algorithm and SVM, ACO&SVM to we proposed, and Error 
is percentage deviation of  predicted value and actual milling 
forces. Among the 13 samples, the Error value of 11 samples 
between 3 and 6.  The NRMSE value is found to be only 
0.0237 for all the cases tested, while The MAPE value is 
1.7175%. Therefore, we conclude that the ACO&SVM can 
possess strong self-learning ability and simultaneously 
obtains the excellent performance. 

To verify the forecasting accuracy compared with other 
algorithms, the milling force results of ACO&SVM model 
basic SVM and BP model are reported in Table VII.  Fig. 8  

 

 
TABLE  VI 

COMPARISONS OF PERFORMANCE BETWEEN GRID SEARCH AND ACO&SVM MODEL. 

Grid search  ACO&SVM 
No Data set and 

parameter MAPE (%) NRMSE R2  MAPE (%) NRMSE R2 

1 Training set 9.35 0.079 0.9702  3.4224 0.0257 0.9975 

2 Testing set 1.85 0.0255 0.9905  1.7175 0.0237 0.9961 

3 Time(s) 629.62  18.87 

3 C 10.55  11.314 

4 δ 0.6830  0.7071 

5 ε 0.01  0.01 

 
 

 
Fig. 5.  The convergence performance of ACO&SVM models. 
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Fig. 6.  The result comparison of ACO&SVM models and actual values in training set. 

gives the forecasting results of four models. For each model, 
the evaluation criteria NRMSE, MAPE and Error are adopted 
to compute the deviation between the actual and forecasting 
values, while coefficient of determination (R2) is used to 
evaluate overall performance. Table VII and Table  VIII show 
three types of comparisons. The first comparison is between 
basic SVM versus ACO&SVM model. The ACO&SVM is 
able to regulate automatically three parameters C, δ, and ε. 
But instead, basic SVM requires more manual manipulation. 
Compared with basic SVM, the ACO&SVM is consistent 
with actual values to obtain the minimum error. But, some 
forecasting values obtained from the basic SVM are 
inaccurate, which makes Error more than 10% for the test set. 
The MAPE value of ACO&SVM model is less than that of 

basic SVM, and the NRMSE value of the ACO&SVM is also 
less than basic SVM. The ACO&SVM has significant 
advantage over the SVM in terms of NRMSE, MAPE and 
Error. Therefore, the results have proven that the 
performance of ACO&SVM mode is more accurate than that 
of basic SVM. 

The second comparison is between the ACO&SVM and the 
BP. The BP is a common and effective verification method 
because it is the traditional approach for forecasting model in 
practical optimization problem. The actual values and 
predicted values of different algorithms are listed in Table VII. 
From Table VII and Fig. 8, it is easy to see that the BP can 
obtain the relatively large forecasting errors. A few 
forecasting values make Error more than 20%. This problem 

 
Fig. 7.  The result comparison of ACO&SVM models and actual values in testing set. 
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may be because that BP is subjected to the disadvantages of 
demand for a big training data. Compared with BP, the basic 
SVM has a better prediction performance. Moreover, the 
accuracy of ACO&SVM is much higher than basic SVM. It is 
obvious that the ACO&SVM model performs better than BP 
model. 

 The third comparison is between the ACO&SVM and 
GA&SVM model. GA&SVM model applies the genetic 
algorithm (GA) to determine three parameters of SVM 
regression model [23-24].  Because the selection strategy of 
GA is that only the best solution can evolve to the next 

generation, GA may be easy to falling to local optimum. The 
percentage deviation from milling forces is obtained to be less 
than 7% for all samples tested, NRMSE is 0.0384, and MAPE 
is 2.9774%. And for the training set, NRMSE is 0.040, and 
MAPE is 4.6%. Compared with GA&SVM model, 
ACO&SVM model has an excellent performance. Clearly, 
ACO&SVM model has lower NRMSE, MAPE and Error 
compared with basic SVM, BP, and GA&SVM models. The 
percentage deviation is found to be less than 6% for all the 
instances tested, NRMSE is only 0.0237, and MAPE is 
1.7175%. And for the training set, NRMSE is 0.257, and 

M
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Fig. 8.  The actual values of milling force and the forecasting values of four models. 

TABLE  VII 
COMPARISONS OF FORECASTING RESULTS AMONG BP,SVM,GA&SVM AND PROPOSED MODEL. 

BP  SVM            GA&SVM  ACO&SVM 

No Actual 
value (N) Forecasting 

value (N) Error(%)  
 

Forecasting  
value (N) Error(%)  

 
Forecasting  
value (N) Error(%)  

 
Forecasting  
value (N) Error(%) 

76 549 526.40  4.12   471.27 14.16  538.50  1.91  542.51 1.18 

77 621 575.85  7.27   633.42 2.00  636.82  2.55  628.97 1.28 

78 165 196.82  19.28   184.55 11.85  157.17  4.74  159.91 3.08 

79 135 95.47  29.28   119.14 11.75  127.49  5.57  134.72 0.21 

80 270 255.90  5.22   231.44 14.28  286.32  6.04   269.06 0.35 

81 284 307.40  8.24   249.60 12.11  279.28  1.66   276.28 2.72 

82 347.5 377.95  8.76   358.26 3.10  347.61  0.03   348.03 0.15 

83 467 465.35  0.35   458.14 1.90  469.69  0.58   462.50 0.96 

84 476 491.29  3.21   434.45 8.73  497.79  4.58   502.01 5.46 

85 350 398.14  13.76   358.47 2.42  349.88  0.03   360.03 2.87 

86 648 550.49  15.05   625.96 3.40  604.59  6.70   632.91 2.33 

87 310 334.87  8.02   311.16 0.37  304.36  1.82   311.71 0.55 

88 313 325.10  3.86   337.06 7.69  305.19  2.49   309.31 1.18 

88 313 325.10  3.86   337.06 7.69  305.19  2.49   309.31 1.18 
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MAPE is 3.4224%. Moreover, the ACO&SVM has larger R2 

compared with basic SVM and BP model. R2 is as high as 
0.9961 for the test set, and this means a better model. From 
the above analysis, it has been proven that proposed 
ACO&SVM model has much higher predicting accuracy than 
basic SVM, BP and GA&SVM model in forecasting of 
milling force.   

Aiming at the milling force prediction ACO&SVM model, 
we first adopted the ACO algorithm to optimize three 
parameters of SVM model. After then, use these optimal 
parameters (C, δ  andε) to construct the final SVM model.  
Finally, the well-trained model is adopted in order to predict 
the test data and calculate the prediction error values. The 
ACO&SVM model can increase the accuracy of forecasting 
milling force, and it can be analyzed conveniently on the 
physical phenomena in the process of tool wear and 
processing quality.  

VI. CONCLUSION 
In the paper, we have proposed an ACO&SVM model to 

predict milling force in titanium alloy milling process.  The  
ACO&SVM model hybridizing the solution construction 
characteristics of the ACO with the SVM based on supervised 
learning algorithm is applied to predict milling force so as to 
improve the efficiency of milling.  The experimental results 
have shown that this methodology is very efficient, and thus 
can be used in material processing fields. This study can offer 
a novel method for the material processing technology 
optimization, and it has good research and popularization 
values. In this research, the main limitation is that the 
instances are not large enough. Therefore, we will make 
further efforts to increase the performance of the ACO&SVM 
model in relatively large instances. For our future research, 
other optimization algorithms and strategies still have 
potentiality to be integrated into a SVM forecasting model. 

  

REFERENCES 
[1] G. Q. Xiang and T. Lu, "Prediction Analysis of Titanium Alloy Milling 

Force Based on Support Vector Machine," Machine Tool & 
Hydraulics, vol. 44, no.3, p.142-146, 2016.               

[2]  F. H. L. André,  N. L. Coppini, E. A. Baptista, et al. "Genetic 
Algorithm Applied to Investigate Cutting Process Parameters Influence 
on Workpiece Price Formation," Materials and Manufacturing 
Processes, vol.26, no.3,pp.550-557, 2011. 

[3] T. Özel, M. Sima,  A. K. Srivastava and B. Katanoglu,"  Investigations 
on the effects of multi-layered coated inserts in machining Ti–6Al–4V 
alloy with experiments and finite element simulations,"  CIRP Annals - 
Manufacturing Technology, vol. 59, no. 1, pp.77-82, 2010.     

[4] I. N. Tansel, S. Gülmez and M. Demetgul,"  Taguchi Method-GONNS 
integration," Expert Systems with Applications An International 
Journal, vol. 38, no.5, pp.4780-4789, 2011.    

[5] C. J. Liu, D. B. Tang, H. He and X.Q. Cheng,"  The Optimization for 
the Titanium Alloys Turning Based on the Kriging Interpolation and 
Genetic Algorithm," Mechanical Science and Technology for 
Aerospace Engineering, vol. 32, no.4, pp.469-474, 2013.    

[6] B. H. Wu, X. Yan, M. Luo and G. Gao, “Cutting force prediction for 
circular end milling process,” Chinese Journal of Aeronautics, vol. 26, 
no.4, pp.1057-1063, 2013 .   

[7] N. Elmagrabi, C. H. Che Hassan  and A. G. Jaharah, "High speed 
milling of Ti-6Al-4V using coated carbide tools ,"  European Journal 
of Scientific Research, vol.22, no.2,pp. 153 – 162, 2008.      

[8] M. Singla, D. Ghosh and K. K. Shukla. A survey of robust optimization 
based machine learning with special reference to support vector 
machines, International Journal of Machine Learning and 
Cybernetics, no.23, pp.1-27, 2019.  

[9] P.F. Pai and W.C. Hong, " Software reliability forecasting by support 
vector machines with simulated annealing algorithms," Journal of 
Systems and Software, vol.79, no.6, pp.747-755, 2006.    

[10] Y. Zhang and D. Xin," Dynamic Optimization Long Short-Term 
Memory Model Based on Data Preprocessing for Short-Term Traffic 
Flow Prediction,"  IEEE Access, vol.8, pp.91510-91520, 2020. 

[11] W. C. Hong, “Traffic flow forecasting by seasonal SVR with chaotic 
simulated annealing algorithm,”  Neurocomputing, vol.74, no.12, pp. 
2096-2107, 2011. 

[12]  P.F. Pai, and W.C. Hong, "Forecasting regional electric load based on 
recurrent support vector machines with genetic algorithms," Electric 
Power Systems Research,  no.74 , pp. 417-425, 2015. 

[13] A. Kavousi-Fard, H. Samet and F. Marzbani, " A new hybrid Modified 
Firefly Algorithm and Support Vector Regression model for accurate 
Short Term Load Forecasting,"  Expert Systems with Applications, no. 
41, pp. 6047-6056, 2014. 

[14] E. Hazir, T. Ozcan and K. Huseyin, " Prediction of Adhesion Strength 
Using Extreme Learning Machine and Support Vector Regression 
Optimized with Genetic Algorithm, "  Arabian Journal for Science 
and Engineering, no.4, pp.1-20, 2020. 

[15] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative 
learning approach to the traveling salesman problem,” IEEE 
Transactions on Evolutionary Computation, vol.1, no.1, pp.53-66, 
1997. 

[16] M. Dorigo, V. Maniezzo and A. Colorni, "Ant system: optimization by 
a colony of cooperating agents," IEEE Transactions on Systems, Man, 
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29-41, 1996. 

[17] W. Deng, J. Xu and H. Zhao, "An Improved Ant Colony Optimization 
Algorithm Based on Hybrid Strategies for Scheduling problem, "  IEEE 
Access, vol.7,no.1, pp. 20281-20292, 2019. 

[18] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques 
for the vehicle routing problem,” Advanced Engineering Information, 
vol. 18, no.1, pp.41-48, 2004. 

[19] V. N. Vapnik, " The nature of statistical learning theory,” New York: 
Springer, p.138, 2000. 

[20] V. Vapnik, S. Golowich and A. Smola, "Support vector machine for 
function approximation, regression estimation, and signal processing," 
Advances in Neural Information Processing Systems, vol. 9, pp. 
281-287, 1996.  

[21] C.J. Yin, "Titanium Cutting Force Prediction Model and Optimization 
of Processing Parameters," Master’s thesis, Tianjin University of 
Technology, 2014. 

[22] Y.L Wang，Y. H. ,Hu，J. B. Sun and T.Q. Wang, "Research on 
Cutting Force of High Speed Cutting Titanium Alloy Based on 

TABLE  VIII 
SUMMARY RESULTS OF VARIOUS MODELS. 

MAPE(%)  NRMSE                    R2  
No Models 

Training set Testing set  
 Training set Testing set  

 Training set Testing set  

1 BP 11.6633  9.7259   0.1008 0.0947  0.9614  0.9375  

2 SVM 10.0445  7.2120   0.0604 0.0758  0.9861  0.9600  

3 GA&SVM 4.60  2.9774   0.04 0.0384  0.9939   0.9803  

4 ACO&SVM 3.4224  1.7175  0.0257 0.0237  0.9975  0.9961  

 

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_02

Volume 48, Issue 2: June 2021

 
______________________________________________________________________________________ 



 

Orthogonal Experiment," Tool Engineering, vol.50, no.2, pp. 17-19, 
2016.      

[23] X. Q. Bian, B. Han, Z. M. Du, J. Jaubert, and M. J. Li, "Integrating 
support vector regression with genetic algorithm for CO2-oil minimum 
miscibility pressure (MMP) in pure and impure CO2 streams," Tool 
Fuel, vol.182, no.15, pp. 550-557, 2016.   

[24]  Q. H. Zheng, X. Y. Tian, M. Q. Yang,  H. Su, "The Email Author 
Identification System Based on Support Vector Machine (SVM) and 
Analytic Hierarchy Process (AHP), " IAENG  International Journal of 
Computer Science, vol.46, no.2, pp. 178-191,2019. 

 
 

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_02

Volume 48, Issue 2: June 2021

 
______________________________________________________________________________________ 




