

Abstract—The rapid detection of tree trunks is key to forest

automation, inventory, and monitoring, enabling the use of
tree-harvesting robots capable of navigation, tree counting, and
tree measurement. In this paper, we propose a method called
yolov3_trunk_model (Y3TM) to detect trunks rapidly using a
convolutional neural network (CNN) and transfer learning. We
use an enhanced yolov3 for object detection and an improved
prediction strategy using feature pyramid networks (FPNs) for
classification and boundary box determination of the tree
trunks. Experimental results showed that our Y3TM offers a
greatly improved recall rate of over 93% with a drastically
average detection time of 0.3 s.

Keywords—Convolutional neural network, transfer learning,
object detection, trunk, deep learning

I. INTRODUCTION
n recent years, the development of smart forestry has led to
more research into forestry information including

intelligent forestry monitoring (the number of standing trees,
deforestation rate, etc.), trunk diameter at breast height
(DBH), tree height, and forest growing stock. Tree trunks
detection is helpful for these studies. However, research into
tree image processing is still in the development stage. Chen
et al. extract structural parameters of single standing trees by
using trunk detection-aided mean shift clustering techniques
to conduct a forest information survey [1]. More broadly,
recognizing and locating tree trunks is the first critical
operation for agroforestry harvesting robots [2]. For example,
Kolb et al. use a tree trunk detection system for an
autonomous tree-felling robot [3]. Such robotic devices
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must be capable of identifying the position, size, and
orientation of trees in a forest [4]. Identifying and locating the
tree trunk [1] are also prerequisites for automated fertilization,
trunk injection, pesticide application, and touchless tree
measurement [5-6].
The majority of current research methods employed in trunk
detection are Laser Imaging Detection And Ranging
(LiDAR), the color space model, color space, and classifiers.
Bargoti et al. initially used point cloud LiDAR data to obtain
a rough estimation of trunk candidates [2]. These candidates
were then projected into the camera images, where pixel-wise
classification was used to update their likelihood of being a
trunk. A hidden semi-Markov model used contextual
information from an orchard to perform trunk detection. This
method is suitable for single trunk identification but cannot
recognize multiple trunks.
Trunk detection methods commonly use visual system
information to distinguish significant areas from complex
backgrounds. Guan et al. realized trunk detection by
constructing a visual saliency map in the Lab (CIELAB)
color space and using the hue component of HSV (hue,
saturation, value) to enhance color contrast [5]. However, the
differences in trunk color and texture across tree species and
the similar color between a trunk and the background make
detection effect using the color space difficult. To solve this
problem, Chen et al. combined color histograms with training
classifiers to improve trunk detection performance [1].
Chen’s method first used oriented gradient and support
vector machine histograms to train the initial trunk classifier.
It then extracted the grayscale histogram features of trunk and
non-trunk images to optimize the classifier. Finally, it
employed the Roberts Edge Detector to extract the trunk’s
gradient histogram features to improve identification
accuracy. Juman et al. combined the color space model with
depth information for trunk detection [7]. Pre-processing
used color space combination and segmentation to eliminate
the ground not covered by trees from the images and then fed
the resulting image into a cascade detector to identify the
locations of trunks in the image. Depth information was
obtained via a Microsoft KINECT sensor to further increase
the accuracy of the detector.
Differences make batch identification and location of trunks
difficult, such as tree species, environment, and the number
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and location of trees in each image. Therefore, we must
establish a method for quickly detecting trunks to reduce
manual labor and improve the efficiency of fertilization,
object picking, and non-contact DBH measurement by robots.
Similar to the introduction of deep learning in fields such as
medicine [8], we apply deep learning to improve forest
management and analysis. In recent years, convolutional
neural networks(CNNs) have made great strides in image
classification and recognition [9-11]. The application of
CNNs to object detection falls into two categories: two-stage
detection and single-stage detection. Two-stage object
detection combines a regional proposal with CNN
classification using R-CNN, SPP-NET, or Faster R-CNN
[12-14]. The detection accuracy is gradually promoted in this
method. In contrast, a single-stage object detection network
converts object detection into a regression problem and
utilizes detection methods such as yolov1-yolov3 and Single
Shot MultiBox Detector (SSD) [15-17]. The result is
significantly faster detection.
Researching articles on trunk detection inspection in recent
years, found that these methods are mainly adopted
traditional ways, and the efficiency and accuracy still need to
be improved. Target object detection based on CNNs can
help solve these problems. In natural environments, both
dense forests and sparse urban street trees, we propose a new
model for rapid tree trunk detection for intelligent monitoring
of forestry resources, forestry harvesting robots, and
computer vision-based tree measurement using a CNN and
transfer learning. We proposed our trunk detection model on
yolov3. We transfer the object detection knowledge acquired
from yolov3 on the Pascal VOC dataset to our Y3TM
(yolov3_trunk_model) through transfer learning. We
designed and optimized Y3TMs with different depth
convolutions and input sizes. The tree detection results can be
used for rapid counting in forest resource survey, and also
have reference value for navigation of forestry robot.

II. Experimental dataset

A. Original Trunk Dataset
We used image data from photographs taken in the natural

environment of Hangzhou, Zhejiang province, on the
southeast coast of China (119.72E, 30.23N), from October to
December 2018. The tree species included poplar, sequoia,
Chinese parasol, willow, and ginkgo. We used a mobile
phone camera with a resolution of 2448 × 3264 pixels to
collect a total of 812 original RGB images for the trunk
dataset. Multiple factors affected the training of the trunk
dataset. We considered the following factors: (1)
Illumination conditions: we took photographs under a variety
of lighting conditions, including direct sunlight,
back-lighting, and shade. (2) Tree species and age: we
selected trunks for different species and DBHs (0.1–0.7 m).
(3) Distance: we varied the shooting angle and distance
between 3 and 10 m.. (4) Occlusions: the trunks in our dataset
had different degrees of occlusion. (5) Other objects: the
collected dataset contained vertical objects similar to trunks,
such as streetlights and telephone poles, with each image
containing between 1 and 15 objects. In the forest, the two
common types of objects are similar to the vertical trunk.
Other, non-similar objects were not considered.

B. Trunk Dataset Augmentation
The original trunk dataset of 812 images collected in the

wild was insufficient to support the deep convolution
network in fully learning the object characteristics. To reduce
over- and under-fitting in the training stage and to improve
the detection performance, we applied operations such as
mirror-transformation, cropping, and rotation to the original
images. Thus, we augmented the trunk dataset to produce a
final dataset of 1198 images [18]. Trunks accounted for 90%
of the total images, with streetlights and telephone poles
making up the remaining 10%. We randomly selected 80%
of the images for training, with the remaining 20% used for
testing (see Fig. 1(a)). We have operated these images offline
and then fed all the images to the learning algorithm.

（a）

（b）
Fig. 1. (a) Data distribution and (b) labeled image as ground truth.

C. Dataset Labeling
Even those objects that are far away from the camera, we

manually marked all the trunks in the images to increase the
probability of detecting every trunk in each image. Since the
trunks have no standard boundaries, the markings were made
from the first branch down to the visible above-ground roots
(the white ash parts of the trunk were not marked to reduce
the influence of feature learning). The trunk dataset images
were marked according to the Pascal VOC2012 dataset
requirements by using the labeling tool and then divided into
the training and testing datasets. We labeled each of these
detection objects as the trunk, telephone pole, or streetlight
(see Fig. 1.(b)).
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III. METHOD

A. Transfer Learning
Some deep convolutional neural network models have

been fully trained on large datasets to learn the large number
of image features required for target detection, such as
ResNet, VGG, and Darknet. Using the transfer learning idea
[19], we applied feature knowledge to Y3TM. This
improvement not only shortened the training time but also
accelerated the convergence of the network. There are two
primary transfer learning methods. The first one adopts the
structure of the pre-trained model. All the weights are first
randomized and then trained according to datasets. The other
is parameter transfer, training a specific layer, and freezing
other layers. The weights of some layers at the beginning of
the model are kept unchanged, and then the subsequent layers
are retrained to obtain new weights. We selected the second
transfer learning method with fine-tuning parameters.

B. Model Structure
We have optimized the Y3TM to quickly identify whether
there are trunks in the image and then to locate them.
Therefore, from the perspective of increasing the recall rate
and decreasing detection time, we obtain a new convolutional
neural network by improving yolov3. The specific network
structure is shown in Fig. 2. And in Yolo v3, it further
adopted three feature graphs of different scales to detect
objects. Due to the multiple down-sampling, the sensitivity
field of the feature map was relatively large, so it was suitable
for detecting objects with large-scale in the image. After
several convolutional layers, the feature map was
down-sampled 16 times than the input image. It had a
medium-scale receptive field and was suitable for detecting
the medium-scale objects. After up-sampling, a feature map
that was down-sampling 8 times relative to the input image
was finally obtained. It had the smallest receptive field and
was suitable for detecting small-scale objects.

DBL

DBL
blockDarknet-53 DBL

DBL Upsam
ple

DBL
block

DBL

yolo

yolo

yolo

DBL Conv BN Leaky
relu

Fig. 2. Y3TM structure.
Note: RGB images of all sizes are acquired and set to Sa×Sb pixels in the
network structure. The Darknet-53 network is composed of a convolution
layer DBL and residual layer res. All convolutional strides are defaulted to (1,
1), and padding is the same or valid, while strides are (2, 2). DBL block =
DBL * m, where m is an integer (the DBL of the latter DBL of DBL_block
does not contain the BN and leaky ReLU layers). The figure is re-
drawn based on https://blog.csdn.net/leviopku/article/details/82660381 .

Y3TM uses the basic Darknet-53 algorithm in the feature
extraction layer and introduces a residual structure to prevent
gradient dispersion. The object detection strategy of the
feature interaction layer adopts the multiple-scale fusion
method to express the fine-grained features of a small object
at a greater distance from the camera lens in an image. Y3TM
performs tensor size transformation by increasing the step
size of the convolution kernel, eliminating pooling and fully
connected layers, and extracting image features by relying on
a large number of 1×1 and 3×3 convolution kernels. The main
differences between Y3TM and yolov3 are as follows.
(1) Modified input size. The high-resolution features of the
image obtained from downsampling the input size are more
refined and beneficial to the feature expression of the trunk
dataset. Considering the processing speed of the computer
and the generation of odd × odd grids, 480 × 480 pixels is set
as the input size (the source network input size is 416 × 416
pixels).
(2) DBL_block size. We selected the DBL_block according
to our requirements (e.g., efficiency and higher recall rate). It
is located in the feature interaction layer for predicting the
boundary box (see Fig. 2). Since there is no standard
boundary box for trunks, and we aim to identify all trunks in
an image, the DBL_block depth can be decreased or
increased as required. The DBL_block shown in Fig. 3 is
divided into three independent unequal convolution groups.
Each group adopts different convolution kernels to change
the depth of the network. Using 1×1 convolution kernel
compression parameters and a 3×3 convolution kernel to
increase the channel’s filters results in enhanced semantic
feature extraction.
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block3
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1×1

Conv
3×3
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3×3
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3×3

Conv
1×1

DBL

DBL
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Fig. 3. Different DBL_block.

(3)Network was fine-tuning. To speed Y3TM’s
convergence on the trunk dataset and obtain a better training
effect than yolov3, the model parameters of the source
network need to be fine-tuned. We modified the trunk dataset
parameter cls_num to 3, reflecting the 3 labels for the trunk,
streetlight, and telephone pole. We changed the number of
filters of the three yolo detection layers to 24 and reset all of
the super-parameters of the model.
(4)The Y3TM includes Y3TM_A, Y3TM_B and Y3TM_C.
Their differences that input size and DBL_block (TABLE I).

TABLE I
Difference detection models

Model DBL_block Input size

Y3TM_A DBL_block1 416×416
480×480

Y3TM_B DBL_block2 416×416
480×480

Y3TM_C DBL_block3 480×480
yolov3 416×416
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C. Object Bounding Box and Category Prediction
Y3TM object detection [20] predicts location by using the

shift of center point b (bx, by) of the prediction box on the
feature map relative to the upper-left coordinate (cx, cy) of the
grid, using the logistic function to constrain σ(tx) and σ(ty) to
within (0, 1). We first obtain nine prior anchor boxes by
k-means clustering (pw and ph are the width and height,
respectively, of the preset anchor boxes mapped to the feature
map) and then divide them into three scales corresponding to
each feature layer.We calculate the width and height (bw, bh) of
the prediction box indirectly using the scaling factors tw and th.
We normalize the anchor box size relative to the input image
size (Sa, Sb) and then calculate the normalized coordinates of b
(bx, by, bw, bh) as

.
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The confidence σ(to) reflects the accuracy of the object
location:

).,()()( objbIOUobjPto  (3)
where P(obj)∈{0,1} and IOU(b, obj) represent the

probability of detecting objects and the degree of coincidence
between the prediction box and the real box, respectively.
The location and confidence of the object ti are calculated

as ti = (tx, ty, tw, th, to). In the logistic regression, the priori boxes
are scored on the inside of the anchor boxes, with the best
selected for prediction. This reduces the amount of calculation
required.

D. Tree Trunk Dataset Training
Y3TM optimizes parameters using a multi-objective loss

function. When t jik=1,it indicates that the center point of the real
box gj of the jth target on one trunk image falls into the ith grid
and matches the anchor box of the kth predictor. Thus, the k
value of the ith grid is the predictor of the object j [21]. One of
the goals of model optimization is to make the prediction box
of predictor k closer to gj. The loss function L1 of the object is
expressed as
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In Eq. (4), M is the actual number of objects in the current
image; t i kx , t i ky , t i kw , and t i kh represent the predicted values of the
bounding box of the kth predictor of grid i; σ(t j *w ) and σ(t j *h )
represent the normalized offset of the center point of object j
relative to the coordinates of the upper-left corner of the grid i;
and σ(t j *w ) and σ(t j *h ) are the nonlinear scaling factors of the
anchor box of the kth predictor for gj.
Another model goal is to optimize the predictor’s to make

the co-nfidence close to 1. The loss function L2 for this goal is
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where ti ko represents the confidence of the prediction value of the
kth predictor of the ith grid.

The loss function L3 corresponding to the value of the
category predictor is

))|(1log())|(1(

))|(log())|((

*

*
3

objcPobjcP

objcPobjcPtL

ik
n

j
n

ik
n

j
n

M

j

j
ik




(6)

where P(c i kn |obj) is the prediction value probability, and P(c j *n
|obj) is the actual category probability.
Finally, the multi-target loss function L for Y3TM becomes

321})({ LLLtL i  (7)
where {ti} represents the set of all prediction values of the grid.

IV. RESULTS ANDDISCUSSIONS

A. Experimental Environment
We performed model training and testing using the

TensorFlow framework running on a system with an Intel
Xeon E-2134 CPU at 3.50 GHz, 16 GB RAM, and a graphics
with an Nvidia Quadro P1000 GPU and 4 GB of RAM. The
software environment consisted of CUDA Toolkit 9.0,
CUDNN v7.0; Python 3.5.2, TensorFlow-GPU 1.9.0; and the
Ubuntu 16.04 operating system. Both training and testing
models use GPU acceleration.

B. Results of Model Training
We used the gradient descent method with momentum [22]
to train the trunk detection network. Considering the
hardware performance and training time, we set the model
super-parameters as follows: batch size 32, momentum 0.9,
weight decay 0.0005, and learning rate 0.0001.After the 30th
epoch, the loss of each model stabilized. To evaluate
detection performance, we used the error rate, IOU, and
recall rate (IOU ≥ 0.3) as indicators [23].

TABLE II
The results obtained when training Y3TM and yolov3.

(A)Error rate
Error rate(%)

Model Input
size

Multi-scale prediction (%) Average
(%)Large Medium Small

Y3TM_A
416×416 3.48

(—)
4.76
(—)

5.91
(—) 4.42

480×480 3.27
(—)

4.64
(—)

5.52
(—) 4.27

Y3TM_B
416×416 3.24

(—)
4.84
(—)

5.71
(—) 4.39

480×480 3.09
(—)

4.72
(—)

5.24
(—) 4.25

Y3TM_C 480×480 3.38
(—)

5.39
(—)

7.62
(—) 4.87

yolov3 416×416 4.09
(—)

6.15
(—)

6.97
(—) 5.53

(B)Recall rate
Recall rate (IOU ≥ 0.3) (%)

Model Input
size

Multi-scale prediction (%) Averag
e (%)Large Medium Small

Y3TM
_A

416×416 87.78
(30.98)

96.89
(63.94)

82.31
(5.08) 93.32

480×480 88.24
(30.47)

97.93
(64.40)

81.67
(5.13) 94.14

Y3TM
_B

416×416 87.93
(30.79)

97.76
(64.38)

83.89
(4.83) 94.06

480×480 88.19
(30.34)

98.74
(64.83)

83.98
(4.83) 94.83

Y3TM
_C 480×480 88.20

(31.08)
98.50
(64.16)

85.13
(4.76) 94.66

yolov3 416×416 85.08
(32.16)

96.98
(62.94)

80.80
(4.90) 92.36
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(C)IOU
IOU (%)

Model Input
size

Multi-scale prediction (%) Average
(%)Large Medium Small

Y3TM_A
416×416 62.98

(—)
70.81
(—)

61.93
(—) 67.93

480×480 63.17
(—)

70.94
(—)

61.71
(—) 68.11

Y3TM_B
416×416 63.20

(—)
70.97
(—)

62.56
(—) 68.17

480×480 94.83 63.34
(—)

71.91
(—)

62.80
(—)

Y3TM_C 480×480 94.66 63.15
(—)

70.58
(—)

62.91
(—)

yolov3 416×416 92.36 62.82
(—)

69.40
(—)

61.84
(—)

Note: We say that the unsampled prediction is a small-scale prediction, the
first upsampling prediction is a medium-scale prediction, and the second
upsampling prediction is a large-scale prediction. The values in parentheses
represent the probability that the large-scale, medium-scale, and small-scale
objects are detected during the training process, and (—) represents that the
corresponding values are equal.
These four trunk detection models have high average recall

and low average error rates. The values in parentheses show
that the average probability of objects predicted at the
medium-scale prediction was about 64%, which greatly
affects the average recall rate. The average error rate of
large-scale prediction was better than that of the small- and
medium-scale prediction because of advanced features. The
comprehensive performance of the small-scale prediction
with no obvious feature was poor and had a probability of
only about 5%.
In comparing the models with identical network structures

and input sizes in TABLE II, we found that the performance
indicators of models with high resolution were improved by
different degrees. For example, compared with yolov3,
Y3TM achieved the highest average recall rate and IOU that
was better by 2.47% and 1.96%, respectively, indicating that
the Y3TM better identified small objects at a long distance
(see Fig. 4). Moreover, the average IOU of Y3TM_B was
1.96% higher than that of yolov3. As shown in Fig. 4, the
predicted boundary box deviations of Y3TM_B were smaller,
but close and small objects are missed.

yolov3

Y3TM_C
Fig. 4. Training results with different input sizes.

In the detection model with the same input size but different
DBL_block value, Y3TM_B had an additional 1×1 and 3×3
convolution kernel on each prediction scale compared to
Y3TM_A, deepening the network learning to obtain more
advanced features. TABLE II shows the relative performance
improvement of Y3TM_B over Y3TM_A. For the same
input size, yolov3 had some missing objects and had some
deviations in the fitting degree of the object prediction
boundary boxes (see Fig. 5). Y3TM_B obtained strong
features and, compared to Y3TM_A, showed slightly better
detection ability for occluded objects and small objects at a
distance.

yolov3 Y3TM_A (480×480) Y3TM_B (480×480)
Fig. 5. Training results with different input sizes.

To analyze the trunk detection ability of Y3TM during the
training process, we calculated the average recall rate for
different IOU thresholds. As shown in Fig. 6 (input size 480
× 480 pixels), when 0.3 ≤ IOU ≤ 0.6, the average recall rate
of Y3TM and yolov3 was high and gradually declined,
indicating that the model performance was adequate and
stable in this interval. When 0.6 < IOU ≤ 1, the detection
ability of the model decreased rapidly. The boundary boxes
were uncertain and resulted in small predicted IOU values.
Fig. 6 shows that the average recall rate of Y3TM_C was
higher than that of the Y3TM_A and Y3TM_B models,
which had equal detection performance.

Fig. 6.Average recall rate with different IOU thresholds.

C. Model Testing and Comparison
Using the same configuration as in the training environment,
we tested the remaining 20% of the trunk dataset using different
detection models. When multiple predictors of the network
predict the objects, the non-maximum suppression merging
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method is used to predict results [24]. TABLE III shows the
testing results of the different detection models with the same
super-parameters.

TABLE III
Comparative analysis of the detection ability of different models

Model Size
(pixels/MB)

Average
error rate
(%)

Average recall
rate

(IOU≥0.3) (%)

Time
(s)

Y3TM_A
416×416/191 5.67 90.21 0.30
480×480/204 5.04 91.17 0.41

Y3TM_B 416×416/276 5.43 92.65 0.63
480×480/301 4.98 93.13 0.68

Y3TM_C 480×480/354 5.36 93.60 0.87
yolov3 416×416/322 6.49 89.18 0.72

Tables II and III show that the comprehensive testing and
training performance of Y3TM are similar and stable,
indicating that our model had better generalization ability
than yolov3. Y3TM_A uses a simpler algorithm and had the
fastest detection time (0.30 s). The average error rate of
Y3TM_B was lowest among the models (4.98%) and was
1.51% lower than that of yolov3. Furthermore, the average
recall rate was significantly higher than yolov3’s. The
average recall rate of Y3TM_C was 4.42% higher than that
of yolov3, and the average error rate was 1.13% lower. The
testing results in Fig. 7 and TABLE III show that yolov3 had
the highest average error rate (there is the problem that the
telephone pole is mistakenly classified as a trunk), with
larger object boundary box deviations and the lowest average
recall rate among all models (the trunks at a distance are
missed). As shown in Fig. 7, Y3TM_C had the smallest
object boundary box deviations and better detection of small
targets at a distance than other models.

yolov3 Y3TM_A

Y3TM_B Y3TM_C
Fig.7. Testing results.
Note: The source image of Fig.7 (input size 480 × 480 pixels) is obtained by
augmenting the image presented in Fig.5.
To evaluate the detection performance of models, we also
compare the average recall rate of three types of detection
objects in the trunk dataset for different IOU thresholds and

input sizes as shown in Fig. 8. They (a1 and a2 ) shows the
IOU_Recall curve with its gentle overall change. This figure
better reflects the generalization ability of the models as
compared with Fig. 6. Fig. 8(b1 and b2) and (c1 and c2) show
the curves of the telephone pole and streetlight, respectively.
The average recall rate of these two objects was better than
that of the trunk under the same IOU value. By analyzing the
trunk dataset, we found that the numbers of these two objects
(telephone pole and streetlight) were relatively small, with a
high certainty assigned to the marked object boundary boxes
and with clear advanced features. For an IOU of 0.3, the
average recall rate of the trunk, telephone pole, and
streetlight for Y3TM_C (480 × 480 pixels) reached 93.60%,
98.61%, and 95.19%, respectively.

(a1)

(a2)
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(b1)

(b2)

(c1)

(c2)
Fig.8. Comparison of IOU_Recall on trunk dataset

V. CONCLUSIONSAND FUTURE WORKS

Image-based objects detection, the trunk objects with distance
from the camera in the image are small and difficult to detect. As
we all know, the Yolo v3 algorithm can improve prediction
accuracy while maintaining the speed advantage, especially
strengthen the ability to recognize small objects. So, addressing
the problems of traditional trunk detection methods, such as low
accuracy, instability, and slow speed, we have proposed a rapid
image detection method based on a convolutional neural
network and transfer learning. We have designed a new trunk
detection model called Y3TM to recognize multiple trunks in an
image rapidly and accurately.
To address limitations in our dataset, we adopted data
augmentation technology to improve the number and diversity
of training samples. Using this dataset, we found that transfer
learning-enabled faster convergence in our CNN. Customizing
detection models with different input sizes and depths allowed
us to better identify the object category and location in images
although even the shallow network achieved great detection
performance. Our Y3TM_C variant achieved a 93.60% average
recall rate while our Y3TM_B (480×480) lowered the average
error rate to 4.98%. Both variants had significantly shorter
average detection times than yolov3.
However, our Y3TM model performed less well with images
containing both near and distant objects. In the future, we plan to
enrich the trunk dataset further to make full use of multi-scale
features to establish establishing an end-to-end trunk detection
model with excellent performance.
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APPENDIX

yolov3 Y3TM_C
Fig. 4. Training results with different input sizes.

yolov3 Y3TM_A (480×480) Y3TM_B (480×480)
Fig. 5. Training results with different input sizes.

yolov3 Y3TM_A Y3TM_B Y3TM_C
Fig.7. Testing results.
Note: The source image of Fig.7 (input size 480 × 480 pixels) is obtained by augmenting the image presented in Fig.5.
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