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Abstract—An optimization algorithm can be defined as an
attempt to find solutions to a problem under limited con-
ditions. Heuristic algorithms are considered as special type
of optimization algorithms. They are suggested by inspiration
from nature. For instance, Genetic Algorithm (GA) has been
inspired by the mechanics of natural selection and natural
genetics. Venus flytrap optimization is a comparatively novel
algorithm for the heuristic algorithm family, which is based on
the natural behavior of the venus flytrap plant. The proposed
algorithm is called Venus Flytrap Optimization (VFO), for
solving the numerical optimization problems. Experimental
analysis is implemented on some benchmark functions to show
the performance of the proposed algorithm.

Index Terms—Venus Flytrap Optimization, Optimization Al-
gorithm, Genetic Algorithm, Venus Flytrap Plant, Heuristic
Algorithm, Benchmark Functions.

I. I NTRODUCTION

EVOLUTIONARY algorithm (EA) is a comprehensive
expression used to describe population-based random

search algorithms, which is in some sense imitative natural
behavior [1]. Nature-inspired algorithms are a branch of new
problem-solving methodologies and have expanded the field
for Artificial Intelligence (AL) [2]. Memorable agents of
such algorithms are Genetic Algorithm (GA) [3], Particle
Swarm Optimization (PSO) [4], Whale Optimization Algo-
rithm (WOA) [5], and Shuffled Frog Leaping Algorithm
(SFLA) [6].
Recently, Xin-She and Suash in 2009 proposed the Cuckoo
Search (CS) as a heuristic method for solving the optimiza-
tion problems [7]. This method was based on the oblige
brood parasitic behavior of the cuckoo in incorporation with
the levy flight behavior of birds and fruit flies. This method
was implemented in the different applications, authors in [8]
solved band selection problem by new method based on a
binary version of cuckoo search algorithm and applied on
hyperspectral image data. Bilal and David in [9] Hybridized
a mutation operator with cuckoo search algorithm and tested
them on benchmark functions.
Authors in 2015 approached social spider behavior to solve
global optimization problems. It was based on a strategy that
depends on the social spiders searching behavior as they used
their spider web vibrations to locate prey [10]. This algorithm
was applied in the various application, in [11] Emine and
Erkan applied binary social spider algorithm on continuous
optimization problem. Authors in [12] combined social spi-
der algorithm with the differential evolution algorithm.
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In 2015 Seyedali proposed a novel nature-inspired algorithm
called Ant Lion Optimizer (ALO) [13]. Ant Lion Opti-
mizer copied the behavior of ant lions in nature. Where,
it was based on research factors that represent a group of
spiders that move collectively according to the biological
behavior of the colony. This optimizer was implemented in
various applications, authors in [14] improved the antlion
optimization algorithm by modification random walk model
and tested by using benchmark function. In [15] Preetha and
Ashok implemented (ALO) algorithm in energy management
problem.
This paper proposes a new optimization algorithm based on
the venus flytrap plant movement. The movement of venus
flytrap plant is an important feature of venus behavior, which
is divided into three states the fully open state, the semi-
closed state, and the fully closed state.
The remainder of this paper is organized as follows: Section
II presents venus flytrap plant mechanism. Section III states
venus flytrap optimization algorithm. Benchmark Functions
are listed in Section IV. Section V presents the experimental
results and analysis. Finally, the conclusion is presented in
Section VI.

II. V ENUS FLYTRAP PLANT MECHANISM

Venus flytrap plant is a strange plant comprising of 5-7
leaves, each leaf is divided into upper and lower part. The
leaf appears as two trapezoid projections collects by a midrib
at the base. Every flap in the leaf contains 3 to 5 trigger
hairs, which are delicate to any movement as a trap. These
trigger hairs on the edges are like protrusions called cilia,
that intertwine when the trap is closed to prevent prey from
slipping away especially at the edges. Venus flytrap plant
movement can be divided into three characteristic states [16]:

1) The fully opened:
It happens in the absence of prey, which is identified
by a convex bending of the trap lobes. It is presented
in Figure 1(A).

2) The semi-closed:
It happens immediately after the trap activation, which
is identified by interlocking cilia that constrain large
prey but allow the small prey to escape. It is presented
in Figure 1(B, C).

3) The fully closed:
It happens after prolonged stimulation, which is iden-
tified by tight oppression and recurved bending of the
trap margins. It is presented in Figure 1(D).

The fast movement of water releases a highly elastic
energy and causes a rapid change in the curvature of the
lobes. Hence the impressive closing speed is essentially
because of the rapid water transportation. By focusing on
the mechanism for the venus flytrap plant, the movement
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TABLE I
BENCHMARK FUNCTIONS

Name Expression Range Min

Sphere f(z) =
∑n

i=1
(z2

i ) -100≤z≤100 f(z∗) = 0

Schwefel,s
f(z) =

∑n

i=1
(|zi|) +

∏n

i=1
(|zi|) -10≤z≤10 f(z∗) = 0

Problem2.22

Schwefel,s
f(z) =

∑n

i=1
(
∑i

j=1
(zi))

2 -100≤z≤100 f(z∗) = 0
Problem1.2

Generalized

f(z) =
∑n−1

i=1
[100(zi+1 − z2

i )2 + (zi − 1)2] -10≤z≤10 f(z∗) = 0Rosenbrock,s

Function

Generalized

f(z) = −
∑n

i=1
(zi sin(

√
|zi|)) -500≤z≤500 f(z∗) = −12569.5Schwefel,s

Problem2.26

Generalized

f(z) = 10 +
∑n

i=1
[z2

i − 10 cos(2Πzi)] -5.12≤z≤5.12 f(z∗) = 0Rastrigrin,s

Function

Ackley,s f(z) = −20exp(−0.2
√

1
n

∑n

i=1
z2
i )

-32.76≤z≤32.76 f(z∗) = 0
Function −exp

√
( 1

n

∑n

i=1
cos(2Πzi)) + 20 + exp

Generalized

f(z) = 1 + 1
4000

∑n

i=1
(zi)

2 −
∏n

i=1
cos( zi√

i
) -600≤z≤600 f(z∗) = 0Griewank

Function

TABLE II
THE PROPERTIES OF THEBENCHMARK FUNCTIONS

Name Function Property

Sphere F1 (Continuous, Differentiable, Separable, Scalable, Multimodal)

Schwefel,s
F2 (Continuous, Differentiable, Non-Separable, Scalable, Unimodal)

Problem2.22

Schwefel,s
F3 (Continuous, Differentiable, Non-Separable, Scalable, Unimodal)

Problem1.2

Generalized

F4 (Continuous, Differentiable, Non-Separable, Scalable, Unimodal)Rosenbrock,s

Function

Generalized

F5 (Continuous, Differentiable, Separable, Scalable, Multimodal)Schwefel,s

Problem2.26

Generalized

F6 (Continuous, Differentiable, Non-Separable, Scalable, Multimodal)Rastrigin,s

Function

Ackley,s
F7 (Continuous, Differentiable, Non-separable, Scalable, Multimodal)

Function

Generalized

F8 (Continuous, Differentiable, Non-Separable, Scalable, Multimodal)Griewank

Function

process can be along the lines of a macroscopic level as
follows [16]:

• The fast water movement, which can be modeled as
follows:

WC = WS −WCO +WT (1)

WhereWC is the water change rate,WS is the water
supply rate,WCO is the water consumption rate, and
WT is the water transport rate.

• Many plants have the ability to control the rates of
transpiration by controlling the opening of the stomatal
pores. This ability to keep aqueous tissue concentrations

relatively constant. So, the total water volume of the
lobe tissue is constant and can be normalized to 1 as
follows:

ZO + ZI = 1 (2)

WhereZO andZI are the volume of water in the outer
and the inner layer of the lobes respectively.

III. V ENUS FLYTRAP OPTIMIZATION ALGORITHM

Venus Flytrap Optimization (VFO) is a stochasticopti-
mization algorithm and simulating the venus flytrap plant
movement. In VFO, every solution is considered as state,
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TABLE III
THE GRAPHS FORBENCHMARK FUNCTIONS

Figure 1: The Venus Flytrap Plant Movement.

each state constitution according to the reaction for the
plant, and the combination of states constitutes the final
decision for the plant. VFO uses the fast water movement,
which can be described by water kinetics and can use a
two-dimension system of the ordinary differential. The
optimal state can be found using equations (3) and (4) as
follows:

Z∗O =
αZW

O

ZW
O − ZW

I

− ψZO (3)

Z∗I =
αZW

I

ZW
I − ZW

O

− ψZI (4)

Where αZW
O

ZW
O
−ZW

I

and αZW
I

ZW
I
−ZW

O

are the water supply rate
in the outer and the inner layer of the lobes respectively.
α and ψ are representing the water consumption rate and
the water supply rate respectively.f(zO) where zO =
[z1O, z2O, ..., zdO] and f(zI) where zI = [z1I , z2I , ..., zdI ]
are the objective minimization functions. The cooperative
coefficient isW . If W = 1, the dynamics of water can be
balanced at any state in the lineZO + ZI = 1. Then, find
f(zO) andf(zI) at each state. Iff(zI) < f(zO) then move

to next state, otherwise back to the previous state.
The states of VFO are, respectively:

• Open state
• Semi-close state
• Close state

Venus Flytrap Optimization Algorithm is summarized as
follows in Algorithm 1.

Algorithm 1 :Venus Flytrap Optimization Algorithm

Objective functions minimization f(zO), zO =
[z1O, z2O, ..., znO] and f(zI), zI = [z1I , z2I , ..., znI ],
n is the number of population,α define the water
consumption rate,ψ is the water supply rate,W is
the cooperative coefficient, t is the iteration, MaxIter is
maximum number of iteration, and d is the number of
dimension.
while (t ≤ MaxIter) do

Calculate fitness value for each state.
for (each population n)do

Find f(zO) andf(zI).
if ( f(zI)) < f(zO) then

Accept the next state.
end if
for (each dimension d)do

Calculate new solution by equation [(3, 4)]
end for

end for
end while

IV. B ENCHMARK FUNCTIONS

Benchmark functions are used to validate the general
performance of the optimization algorithm. In benchmark
functions, there are a wide range of test functions that de-
signed to emphasize various parts of the global optimization
algorithm [17]. This section describes some classical bench-
mark functions, which are Sphere,Schwefel,s Problem
2.22,Schwefel,s Problem 1.2, GeneralizedRosenbrock,s
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Function, GeneralizedSchwefel,s Problem 2.26, General-
ized Rastrigrin Function,Ackley,s Function, and General-
ized Griewank Function. These functions properties are either
Unimodal, Multimodal, Differentiable, Non-Differentiable,
Separable, Non-Separable, Scalable, or Non-Scalable [17],
[18]. The purpose of Table I is to provide the basic informa-
tion for each function. Where, Name is the name function,
Expression is the mathematical equation for function, Range
is the limits of variable z, and Min is the minimum value
of function. Table II shows the properties of each function,
where Function is the symbol for function and Property is
the properties of function. Table III includes the graphical
representation of each function.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm is applied over eight predefined
benchmark functions, which are defined in TABLE I, II,
and III with three different population sizes (30, 40, and
50). The experimental results are shown in TABLE IV.
Where, the best optimal value for each benchmark function
is inversely proportion with the number of the population.
For example, the GeneralizedRosenbrock,s function gives
best optimal value 0.793 at population number 50, 0.800 at
population number 40 and 0.892 at population number 30.
The experimental results graphical representation of each
benchmark function at different population size is illustrated
in Figures 2-25. Where,Sphere function (F1) is visualized
at population size (30, 40, and 50) in Figures (2-4)
respectively.Schwefel,s Problem 2.22 function (F2) is
visualized at population size (30, 40, and 50) in Figures
(5-7) respectively. While,Schwefel,s Problem 1.2 function
(F3) is visualized at population size (30, 40, and 50) in
Figures (8-10) respectively. The GeneralizedRosenbrock,s
Function (F4) is visualized at population size (30, 40,
and 50) in Figures (11-13) respectively. The Generalized
Schwefel,s Problem 2.26 function (F5) is visualized
at population size (30, 40, and 50) in Figures (14-16)
respectively. GeneralizedRastrigrin,s Function (F6) is
visualized at the same earlier population sizes in Figures
(17-19) respectively.Ackley,s Function (F7) is visualized
at population size (30, 40, and 50) in Figures (20-22)
respectively. Finally, Generalized Griewank Function (F8)
is visualized at population size (30, 40, and 50) in Figures
(23-25) respectively.
TABLE V presents the experimental results for all above
functions at population size 50 including the best solution,
mean solution, and worst solution for each the function. The
worst, the mean, and the best optimal values forSphere
function are 2.711, 2.574, and 2.356 respectively. The worst,
the mean, and the best optimal values forSchwefel,s
Problem 2.22 are -1.112, -1.376, and -1.753 respectively.
The worst value, the mean value, and the best optimal value
for Schwefel,s Problem 1.2 are -5.987, -7.117, and -7.838
respectively. The worst, the mean, and the best optimal
values for GeneralizedRosenbrock,s Function are 0.886,
0.787, and 0.776 respectively. The worst, the mean, and the
best optimal values forSchwefel,s Problem 1.2 are -5.987,
-7.117, and -7.838 respectively. The worst, the mean, and the
best optimal values for GeneralizedSchwefel,s Problem
2.26 are -452.453, -453.254, and -454.632 respectively. The
worst, the mean, and the best optimal values for Generalized

TABLE IV
EXPERIMENTAL RESULTS FOR ALL FUNCTIONS AT POPULATION SIZE30,

40, AND 50

Benchmark Number of Best Optimal

Function Population Value

Sphere

30 2.870

40 2.364

50 2.356

Schwefel,s 30 -1.2268

Problem 2.22
40 -1.5510

50 -1.753

Schwefel,s 30 -4.111

Problem 1.2
40 -6.647

50 -7.838

Generalized 30 1.141

Rosenbrock,s 40 0.799

Function 50 0.776

Generalized 30 -451.666

Schwefel,s 40 -452.841

Problem 2.26 50 -454.632

Generalized 30 402.921

Rastrigin,s 40 389.357

Function 50 304.446

Ackley,s 30 0.567

Function
40 0.113

50 0.062

Generalized 30 0.892

Griewank 40 0.800

Function 50 0.793

Rastrigrin,s Function are 305.943, 305.653, and 304.446
respectively. The worst, the mean, and the best optimal
values forAckley,s Function are 0.081, 0.078, and 0.062
respectively. The worst, the mean, and the best optimal
values for Generalized Griewank Function are 0.819, 0.809,
and 0.793 respectively.

Figures (26-33) show the number of failures at population
size 30, 40, and 50. In Figure 26, the number of failures
for Sphere function are 11, 18, and 22 respectively. In
Figure 27, the number of failures forSchwefel,s Problem
2.22 are 8, 11, and 11 respectively. In Figure 28, the
number of failures forSchwefel,s Problem 1.2 are 5, 7,
and 11 respectively. In Figure 29, the number of failures
for GeneralizedRosenbrock,s Function are 20, 29, and 29
respectively. In Figure 30, the number of failures for Gener-
alizedSchwefel,s Problem 2.26 are 4, 7, and 8 respectively.
In Figure 31, the number of failures for Generalized Gener-
alizedRastrigrin,s Function are 6, 9, and 15 respectively.
In Figure 32, the number of failures forAckley,s Function0
are 11, 16, and 19 respectively. In Figure 33, the number of
failures for Generalized Griewank Function are 5, 9, and 10
respectively. By the analyzing these experimental results, the
number of failures is directly proportion with the population
size. From all the experimental results, the properties of VFO
are continuous, differentiable, non-separable, scalable, and
unimodal.
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TABLE V
EXPERIMENTAL RESULTS FOR ALL FUNCTIONS AT POPULATION SIZE50

Benchmark Solution Solution

Function Value

Sphere

Worst 2.711

Mean 2.574

Best 2.356

Schwefel,s Worst -1.112

Problem 2.22
Mean -1.376

Best -1.753

Schwefel,s Worst -5.987

Problem 1.2
Mean -7.117

Best -7.838

Generalized Worst 0.886

Rosenbrock,s Mean 0.787

Function Best 0.776

Generalized Worst -452.453

Schwefel,s Mean -453.254

Problem 2.26 Best -454.632

Generalized Worst 305.943

Rastrigin,s Mean 305.653

Function Best 304.446

Ackley,s Worst 0.081

Function
Mean 0.078

Best 0.062

Generalized Worst 0.819

Griewank Mean 0.809

Function Best 0.793

Figure 2: F1 with Population 30.

Figure 3: F1 with Population 40.

Figure 4: F1 with Population 50.

Figure 5: F2 with Population 30.

Figure 6: F2 with Population 40.

Figure 7: F2 with Population 50.
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Figure 8: F3 with Population 30.

Figure 9: F3 with Population 40.

Figure 10: F3 with Population 50.

Figure 11: F4 with Population 30.

Figure 12: F4 with Population 40.

Figure 13: F4 with Population 50.

Figure 14: F5 with Population 30.

Figure 15: F5 with Population 40.
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Figure 16: F5 with Population 50.

Figure 17: F6 with Population 30.

VI. CONCLUSION

Venus Flytrap Optimization is a new optimization al-
gorithm, which proposed based on the behavior of venus
flytrap plant. In this paper, the algorithm, the performance,
and the hardiness of VFO are shown. Benchmark functions
play importance role in the evaluation of algorithms and
they are represented serious difficulties in obtaining a global
minimization. The experimental results for VFO with bench-
mark problems are quite competitive and show the relation
between the number of failures and the population size. From
experimental results, it was found that the objective function
is reached at a population size 50. Continuous, differentiable,
non-separable, scalable, and unimodal are been the properties
of VFO. In future work, will be made some improvements
and extensions to convergence, preserving, and improving
diversity. Also, deficiencies will be compensated by hy-
bridization with the Evolutionary Computing (EC) models.
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