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Abstract—The missing data imputation is a very significant

topic which captures considerable interest, given the importance

it has in many applications. This paper analyzes the use

of GAIN (Generative Adversarial Imputation Networks) to

address the problem of missing data in meteorological data sets.

A detailed description of the numerical method is given together

with a MATLAB implementation which will be available on

request.

Numerical tests are presented to validate the effectiveness of

this method; moreover, a comparison on a real dataset is done

with the commonly used ARMA method and GAIN turns out

to be more accurate.

Index Terms—Artificial Intelligence, Missing Data, Imputa-

tion, Neural Network, GAIN

I. INTRODUCTION

The services aimed at public safety, precision agriculture,

prevention and forecasting of geophysical risks, as well as

all services for monitoring the environment, are increas-

ingly using meteorological data. In turn, the availability

of meteorological data is also increasing sharply, thanks

to the dense networks of professional and private weather

stations, or to the remote sensing carried out by an in-

creasingly dense constellation of satellites, that monitor the

earth’s surface. These services typically use Decision Support

Systems (DSS) or systems that, following decisions made

automatically, perform actions in the real way. Undoubtedly,

the quality and reliability offered by these services is highly

dependent on the quality and quantity of the meteorological

data used as input. The presence of missing data is however a

problem that is almost always present in meteorological data

and affects their quality. This issue in the meteorological data

could be caused by different phenomena:

• natural factors, where one size prevents the recording

of another size (e.g. the presence of clouds in satellite
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images or the presence of strong wind which prevents

the recording of rain);

• malfunctions in the instrumentation;

• incorrect installation of the instrumentation;

• errors in the processing of the data by the entity;

• errors in acquisition systems that collect data from

different sources;

• data marked as invalid by the body that provides them.

The missing data problem is present also when one is inter-

ested in generating a complete map relating to a geographical

area, which reports the value of a meteorological quantity,

starting from a map in which only some observations of the

magnitude of interest are reported. The operation of attribut-

ing to missing data the value they would have assumed is

identified with the name of missing data imputation.

In this way it is possible to carry out the action of complet-

ing the series, for example temporal or spatial. This operation

eliminates values not attributable to the event but generated

outside the system considered. The data used to replace the

missing ones are arbitrary, since no one knows reality, and

are generated from models and/or collections of correct data

If the essential requirement of this operation is to generate

a value as close as possible to the presumed true value of

the missing data in order to improve the representation of

the event, then an increase in the quality of the operation

of these systems will be achieved. Furthermore, defining a

requirement related to the quality of this integration, more

or less directly, also defines a metric by which to measure

the validity of the method.

In this work we propose to use the Generative Adversar-

ial Imputation Networks (GAIN) method for missing data

imputation in meteorological datasets.

The paper is organized as follows: in Section II we briefly

review the state-of-the-art for the treatment of missing values.

Section III describes the characterization of missing values

and the mechanisms which can regulate their distribution.

The Generative Adversarial Network (GAN) is described in

Section IV before describing the GAIN method: Section V

addresses its mathematical description while Section VI deals

with the related algorithm. Then Section VII and Section VIII

describe the implementation issues and the parameter set-

tings, respectively. Numerical tests are presented in Section

IX: in particular, the performance of the GAIN method is

described to complete time series from a real dataset and its

results are compared with the performance of the commonly

used ARMA method. Conclusions are reported in Section X.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_05

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



II. SOME NOTES ON THE AVAILABLE LITERATURE

The first works related to missing data go back to the

1930s [1] while the first literature review concerning data

analysis with missing values dates back to 1966 [2]. Over

the years, since the early 1970s, several methods have been

proposed for imputing missing data and we just refer to the

extensive book by Little and Rubin [3] for a comprehensive

treatment and a rich list of references and to the recent

review by Silva and Zarate [4]. The simplest solution, often

referred to as missing data ignoring technique, could be

to remove records that contain missing values. It may be

satisfactory when missing data are few; however, since the

data dimension is clearly reduced, this can represent a serious

problem when dealing with scarce data, thus to possibly

reduce the statistical power. Secondly, ignoring data can

significantly reduce the model’s accuracy and bias the results.

Another possibility is to replace the missing values: this

procedure is called imputation. For example, the missing

value may be replaced with a plausible one, as for example

the mean for the cases that observe the variable. A possible

drawback of this strategy is the change in the distribution of

that variable, with possible consequences on the variance.

Several methods exist with the purpose of achieving a

model that is able to represent, in a generic way, the

characteristics of the data. Then, these models can be used as

inference mechanism to impute the desired values. Among

the approaches belonging to this class, we cite the likelihood

algorithms and the neural networks.

Regarding the former, in the case of complete data, quan-

tities such as the mean and linear regression coefficients

represent maximum likelihood estimates, based on maxi-

mizing the likelihood of the data. To define the likelihood

of the observed data is much more difficult when missing

data occur. In this case, in 1977 Dempster [5] proposed

the Expectation-Maximization (EM) algorithm, an iterative

method for the efficient estimation of incomplete data. The

EM algorithm represents a milestone in the treatment of

missing data. However, an approach of this kind is not able to

impute the individual missing values. The multiple imputa-

tion is an alternative approach which aims to obtain estimates

of the missing values; to this purpose, random draws are

simulated from the distribution of the missing variables given

the observed variables. For a thorough description we refer

to [3].

Nowadays, models based on Neural Networks (NNs) are

used in a large number of applications. In [6] authors use

an artificial NN model trained by a metaheuristic algorithm

such as artificial bee colony (ABC) in a bankruptcy pre-

diction problem. In [7] convolutional NNs (CNNs) with

faster-RCNNs architecture is proposed to detect SARS-CoV-

2 lesions in computer tomography images. Other interesting

applications can be found in [8] where NNs are used in

speech emotion recognition and in [9] where they are used

in hand gesture recognition. The first application of NNs to

impute missing values dates back to the beginning of 2000s

[10]. Networks are indeed well suited to deal with missing

data, due to their robustness and generalization capacity.

Many methods have been proposed in this direction, also in

combination with other approaches (see [4] and references

therein).

Among approaches based on NNs, the Generative Adver-

sarial Nets (GAN) is a well-established method proposed

in 2014 [11]. It is a deep-learning-based generative model

that consists in training a generative model as a supervised

learning problem with two sub-models: the generator model

is trained to generate new examples, while the discriminator

model tries to classify examples as either real (from the

domain) or fake (generated). So it is defined by two NNs

to train alternately.

In the context of meteorological applications, real time

processing is often required and particularly performing

methods are needed. For this reason we consider the use of

GAIN (Generative Adversarial Imputation Networks) which

is a specialization of the GAN framework. According to

studies in the literature, this method is more efficient than

traditional imputation methods [12]. We give a detailed

description of this method in Section V and Section VI, while

in Section IX we show its effectiveness by means of some

numerical tests.

III. CHARACTERIZATION OF THE MISSING DATA

The imputation process considerably benefits from a pre-

liminary knowledge of the characteristics of missing values.

Moreover, it is particularly useful to characterize from a

probabilistic point of view the mechanism by which the

missing data are realized, or the missing data mechanism.

The first to address this topic was Rubin in 1976 [13]. The

characterization of the missing data is mainly defined by the

pattern with which they occur in the dataset in conjunction

with the type of mechanism they are created with. These

characterizations are therefore used for the selection of the

most appropriate imputation algorithm. The theory relating

to the characterization of missing data and their imputation

is very extensive, in fact, there are numerous books that deal

with this problem from a purely statistical point of view [3],

[14].

A. Missing data patterns

The presence of missing data within the dataset can

manifest itself with different patterns [3]. These patterns can

be more or less carriers of information, therefore, it is useful

to observe their structure. Furthermore, the selection of the

missing data handling methods could be made in relation

to the type of pattern present in the dataset. Let D be a

dataset (a matrix) of dimensions n×k, where n are the rows,

i.e. the observations, and k are the variables of the sample

(observation) also called features. For the dataset D with

elements dij it is possible to associate a matrix M of equal

size, where the element mij will have value 0 if the element

dij is missing, while it will have value 1 if the element dij
is observed. We will call M the mask matrix. Through the

matrix M thus defined, it is possible to observe the pattern

with which the missing data are present within D.

B. Missing data mechanisms

We now discuss the mechanisms that regulate the presence

of missing data within a dataset, i.e. there is the problem of

understanding if the missing value is in some way linked

to the current value of that variable for that sample or if

it is in relationship with the value of other variables, or
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with neither of them. The mechanisms of missing data are

often crucial for the choice of the method used to impute

them, as some methods are designed by hypothesizing the

presence of a certain type of mechanism, or alternatively,

are based on hypotheses that are in conflict with the missing

mechanism present in the dataset. The missing data mecha-

nism was formalized by Rubin [13], who proposed to treat

the missing data indicators as random variables, therefore

with an associated probability distribution. According to this

analysis, missing data in a dataset D can be regulated by

three types of mechanisms: Missing Completely At Random

(MCAR), Missing At Random (MAR), Not MAR (NMAR

or even MNAR).

We speak of NMAR (also called non-skippable mech-

anism, unlike MCAR and MAR, indicated as skippable

mechanisms), if the missing mechanism depends on the value

that should have appeared in the dataset in place of the

missing symbol, in addition to the fact that there may also be

dependence on observed data. The adjective “non-skippable”

means that it is necessary to model the mechanism that

generates the missing data.

We talk about MCAR if the presence of missing data does

not depend on the values appearing in D, precisely, they do

not depend on the values observed in D, nor on the values

that are missing in D. This assumption does not mean that

the pattern itself is random, but rather that missingness does

not depend on the data values. Formally, this mechanism can

be written mathematically as

p(M |D;φ) = p(M |φ), for all D, φ

where p(M |D;φ) is the conditional probability and φ rep-

resents an unknown parameter. This means that the prob-

ability of having a structured configuration such as M is

conditioned by the values present in the dataset and by

an unknown parameter which precisely parameterizes the

probability distribution p. It is not necessary to specify

what type of probability distribution is p(M |D;φ), but it is

necessary to understand that M is a random variable that is

realized according to p(M |D;φ). It is precisely p(M |D;φ)
the “mechanism” of the missing data in D.

To give an example, we consider a collection of outdoor

temperature data organized by columns (weather stations)

and rows (time). The nature of these data is such that

we assume both a temporal and a geographic relationship

between them. If, for example, a complete row of data were

missing, reconstruction of this row with the computed values

would be much less accurate than if only some values for an

assigned time value t were missing and not all.

MAR is mentioned if the presence of missing data in

D depends on the elements in D. Let Dobs be the set of

observed elements of D and Dmiss be the set of missing

elements. In the presence of a MAR mechanism, the missing

values depend on those observed, formally

p(M |D;φ) = p(M |Dobs;φ) for all Dmiss, φ.

For example, with reference to the outdoor temperature

example, it is possible to identify and correct values above

and below the threshold due i.e. to sensor malfunctioning.

IV. GAN

Before analyzing the GAIN method we start from the

description of its precursor GAN in order to highlight the

basic concepts and then to stress the differences with respect

to GAIN. The GAN method, as originally proposed by

Goodfellow [11], is based on an adversarial process which si-

multaneously trains two models: a generator G that captures

the data distribution and a discriminator D that estimates

the probability that a sample came from the training data

rather than G. In this way an adversarial process comes into

play: the generator’s goal is to accurately impute missing

data, while the discriminator’s goal is to distinguish between

observed and imputed values.

For ease of presentation, we deal with the case of a single

sample since we are just interested in showing the main ideas

of the approach.

The generator G is a NN that models a transform function;

so it takes as input a simple random variable and must return,

once trained, a random variable that follows the targeted

distribution. Mathematically, it is a function that maps a

latent space into the data space. Given z a sample of the latent

space (namely, a noise signal), and x a sample of the data

space, the realization probabilities are denoted respectively

by pz(z) and pdata(x). G is a differentiable function with

parameters θg and implicitly defines a probability distribution

pg as the distribution of the samples G(z) obtained when

z ∼ pz .

The discriminator D is another NN which maps the data

space into a probability value, i.e. D(x) ∈ (0, 1) indicates

the probability that the sample x given as input to D is a

real champion; if x is real, then D should output a number

close to 1, while if x is synthetic, then D should output a

number close to 0. Also D depends on some parameters θd.

The discriminator must be able to indicate (through its

output) whether the sample submitted is taken from the

generative model of G indicated with pg(x) or from the

generative model of the real data pdata(x); therefore, during

the training D will be trained to recognize (indicating a

probability value) if a sample is extracted from pdata(x).
The generator instead, during the training, will try to make

pg(x) as similar as pdata(x).
The training process takes place alternately: initially D is

trained so that it learns more or less weakly to discriminate

the real samples from the synthetic ones; then it trains G, so

as to completely deceive D. At this point, one proceeds by

training D again, so that it can again correctly discriminate

the real samples from the synthetic ones, considering that

now the synthetic ones will be of better quality than the

previous ones, since G was trained and was able to make

pg(x) more like to pdata(x). This alternate training process

allows G and D to improve each other.

Nets G and D (i.e. the two competitive agents) are trained

through a minimax game, namely

min
G

max
D

V (D,G) (1)

with objective function

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

where 1 is the vector of all 1s and log is the element-wise

logarithm.
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The minimax game consists in having D with the aim

of maximizing the probability of correctly predicting which

elements in a sample are imputed and which instead are

observed, while G with the aim of minimizing the probability

that D makes the correct prediction.

G intends to minimize V , so it will try to maximize

D(G(z)) for each synthetic sample G(z) generated; in this

way D(G(z)) approaches the value 1, so that the logarithm

assumes a very small negative value for each synthetic sam-

ple (therefore the expectation will also assume the minimum

value, and V will be minimized). In order to do this, G can

only act on its weights θg.

Agent D, on the other hand, will try to maximize D(x),
that is, it will try to output values close to 1 in the presence

of real samples as input, so that the expectation at the

first addend of V is maximized; therefore, when it receives

synthetic samples G(z), the value D(G(z)) will be minimal,

and therefore the expectation of the second addend will

be maximum (therefore both the addends of V will be

maximized). In order to do this, D can only act on its weights

θd.

The minimax game (1) has a global optimum for pg =
pdata. The algorithm proposed by Goodfellow [11] is based

on a stochastic gradient descent method. So, at each itera-

tion of the training process, the weights of the generative

network are updated in order to increase the classification

error whereas the weights of the discriminative network are

updated to decrease this error.

V. GAIN METHOD: THE MATHEMATICAL DESCRIPTION

Recently, a variant of GAN, called Generative Adversial

Imputation Nets (GAIN), has been proposed by Yoon [12].

As in the GAN method, the key players are the generator G
and the discriminator D while an additional ingredient, the

hint H , is added.

In practice, the generator observes a real data vector,

with possibly missing data; it imputes these missing values

conditioned on what is actually observed and returns a

completed vector. The discriminator takes this completed

vector and tries to distinguish the observed components from

the imputed ones. At this point the hint enters the scene:

it reveals to the discriminator some information about the

missingness of the original sample. Essentially, it ensures

that G imputes data according to the true underlying data

distribution.

A positive feature of the GAIN method is that it manages

to work effectively even when complete data is unavailable

(instead of some generative models that require a complete

dataset in the training phase).

Yoon [12] gave theoretical results for the GAIN approach

under the hypothesis that the MCAR mechanism regulates

the missing data, that is, the missingness occurs entirely

at random. However, the effectiveness of this approach was

empirically showed also for the MAR and NMAR settings.

Figure 1 gives a graphic description of GAIN’s architec-

ture.

Let analyze the mathematical details of the GAIN method

in a general framework.

The starting point of our procedure is a data vector, that

we denote with X. To be precise, X = (X1, . . . , Xd) is a

random variable (continuous or binary) in a d-dimensional

Fig. 1. GAIN’s architecture

space X = X1× . . .×Xd and its probability distribution will

be denoted as pdata(X) = P (X).
In the following, given a random variable, we denote with

lower-case letters its realizations.

We associate to X the mask vector M, that is, a random

variable M = (M1, . . . ,Md) with values in {0, 1}d. In

practice, the 1’s in M indicate which components of X are

observed while the 0’s correspond to the missing values.

For each i ∈ {1, . . . , d} a new space is defined X̃i =
Xi∪{∗} where the symbol ∗ identifies an unobserved value.

In the space X̃ = (X̃1, . . . , X̃d) we define a new random

variable X̃ = (X̃1, . . . , X̃d) in the following way:

X̃i =

{
Xi, if Mi = 1,

∗, else.
(2)

The dataset is D ≡ {(x̃1,m1), . . . , (x̃n,mn)} made up

of n independent and identically distributed (i.i.d.) copies of

X̃, namely x̃
1, . . . , x̃n, with m

i denoting the realization of

M corresponding to x̃
i.

The goal of GAIN is to impute the missing values in each

x̃
i so as to replace all missing data in D; this corresponds to

generating samples according to P (X|X̃ = x̃
i), that is, the

conditional distribution of X given X̃ = x̃
i.

A. Generator

The generative network G takes as input the realizations

of X̃, the mask M and a random variable Z = (Z1, . . . , Zd)
which is a noise (exactly as in the GAN setting). Then it

produces as output the vector X̄ of imputed values. So,

G : X̃ × {0, 1}d × [0, 1]d → X .
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Hence, X̄ is the synthetic sample output of G in which

the missing data have been imputed, but also the values of

the observed variables are generated (therefore they could

differ from the observed values of the input sample). To get

the completed data vector X̂ one simply has to replace the

missing data of X̃ with the corresponding imputed values

present in X̄.

Formally,

X̄ = G(X̃,M, (1−M)⊙ Z) (3)

X̂ = M⊙ X̃+ (1−M)⊙ X̄ (4)

where ⊙ denotes element-wise multiplication.

B. Discriminator

As in the GAN framework, the discriminative network D
receives and analyzes the output of G. However, in a standard

GAN the discriminator must identify if an entire vector is real

or fake since the output of the generator is either completely

real or completely fake. In a GAIN framework, instead, the

output X̂ has some components that are real and some that

are fake. So the discriminator attempts to distinguish which

components are real (observed) or fake (imputed).

Therefore, the task of D is to predict the mask M of the

completed sample X̂ (note that the mask M is completely

observable, because given a sample of the dataset, it is

possible to establish which components are missing and

which are observed).

So, the output of D is a vector whose elements are

probabilities; precisely, the i-th component of this vector is

the probability that x̂i was observed.

C. Hint mechanism

As mentioned before, D needs a hint mechanism for G to

learn the probability distribution of the data. For this reason,

a random variable H is used which is dependent on M, so

that in H there is part of the information of M, in such a

way that D can partly know which of the components of the

sample X̂ are observed or missing.

So, with this perpetuated help during training, D will

gradually become more accurate in discriminating the com-

ponents observed from the imputed ones and, consequently,

G will have to improve its generative model, to put D in

difficulty.

Therefore, the random variable H has probability density

P (H|M = m), i.e. the probability of having a certain

realization of H is conditioned by the value of the mask

of the sample X̃. The definition of H can occur in different

ways, so as to be able to control the amount of information

present in M that is intended to be shown to D.

So, differently from the GAN method, D has now two

input, X̂ and H, while its output is a vector whose elements

are probabilities, precisely, the i-th component of D(X̂,H)
is the probability that x̂i is not missing (i.e. the probability

of being an observed value). Formally

D : X ×H → [0, 1]d

where H is the hint space where the hint variables H live.

D. Minimax formulation of the problem

GAIN, like all GANs, is a minimax game: we train D to

maximize the probability of correctly predicting M and we

train G to minimize the probability of D predicting M. Then

the objective function is

V (D,G) = E
X̂,M,H

[MT logD(X̂,H)

+ (1−M)T log(1−D(X̂,H))]
(5)

where dependence on G is through X̂ and the minimax

problem to solve is

min
G

max
D

V (D,G). (6)

The minimax game can be defined in a more explicit

notation through the loss function L : {0, 1}d × [0, 1]d → R

constructed as

L(a,b) =

d∑

i=1

[ai log(bi) + (1− ai) log(1− bi)].

Then the objective function (5) may be written as

min
G

max
D

V (D,G) = E[L(M, M̂)].

E. Theoretical analysis

Yoon [12] gave a theoretical analysis of the minimax

problem (6). In particular, they assume that M is independent

on X, i.e. the mechanism for the data is MCAR.

It is shown that if H does not provide “enough” informa-

tion about M, it is not possible to guarantee that G learns

the desired probability distribution.

Moreover, they give the explicit expression of the hint

H = (H1, . . . , Hd) which ensures that G learns to replicate

the desired probability distribution [12]. It is

H = B⊙M+ 0.5(1−B) (7)

where B = (B1, . . . , Bd) ∈ {0, 1}d is a random variable; it

is obtained by first sampling k from {1, . . . , d} uniformly at

random, where each value in this set has identical possibility

of be extracted, then defining

Bj =

{
1, if j 6= k

0, if j = k.

It results that Hi may only assume values 0, 0.5, 1; more-

over if Hi = 0 or Hi = 1, then Mi = Hi, while Hi = 0.5
does not give information on Mi.

Since the hint mechanism defined as (7) ensures that the

generator learns to replicate the desired distribution, we will

use it in our implementation of the GAIN algorithm.

VI. GAIN METHOD: THE ALGORITHM

In GAIN the minimax game is solved through an iterative

process where G and D are implemented as fully connected

NNs. The corresponding Matlab code, which will be used in

all subsequent experiments, will be available on request. The

training has been performed exploiting a custom loop within

the Matlab Deep Learning toolbox (R2020). The steps of

the loop are described in Algorithm 1.

To start, the size N of the mini-batches to be used is fixed.
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Algorithm 1 Pseudo-code GAIN Training

Set mini-batch dimension to N
epoch ← 1
while training loss has not converged OR epoch 6 maxNoEpoch do:

iteration ← 1
While iteration 6 fix ( No. Training Obs / N )
(1) Mini-batch selection

First Index ← 1 + (iteration− 1)×N
Last Index ← iteration×N

Draw N samples from { ( x̃(j), m(j) ) }LastIndex
j=FirstIndex

Draw N samples from { z(j) }LastIndex
j=FirstIndex

Draw N samples from { b(j) }LastIndex
j=FirstIndex

Draw N samples from { h(j) }LastIndex
j=FirstIndex

Draw N samples from { x(j) }LastIndex
j=FirstIndex

(2) Discriminator Optimization

InputGenerator ← Concatenate x̃(j) and m(j)
XGenerated ← G( InputGenerator )
InputDisc ← x̃(j) ⊙ m(j) + XGenerated ⊙ (1-m(j))
InputDisc ← Concatenate InputDisc and h(j)
DiscProbability ← D( InputDisc )
Compute Discriminator Loss
Compute Discriminator Gradients
Update Discriminator parameters through Adam solver
(3) Generator Optimization

Compute Generator Loss
Compute Generator Gradients
Update Generator parameters through Adam solver

iteration ← iteration + 1
epoch ← epoch + 1

end while

A. Definition of Layers

The generator has seven layers: the first one defines

the inputs. In practice, for each sample in the mini-batch

(x̃j ,mj) we draw N independent samples of Z and B, say

zj and bj , and compute x̂j and hj accordingly, by following

formulas (4) and (7) respectively. The other 6 layers are three

fully connected layers alternated with the rectified linear

activation function (or ReLU for short); this is a piecewise

linear function that will output the input directly if it is

positive otherwise it will output zero. It introduces non-

linearity in the system. The fully connected layers multiply

the outputs from the previous layer by a weight matrix and

then add a bias vector.

The structure of the discriminator is the same as that of the

generator. The only difference is the presence of an eighth

layer that applies the sigmoid function f(x) = 1/(1 + e−x)
to the outputs of the last ReLU activation layer. The discrimi-

nator has to predict a probability, therefore, since the sigmoid

function generates value between 0 and 1, it fits better this

need.

B. Loss Functions

Two loss functions are defined in the context of the

GAIN method, one to train the generator and one for the

discriminator; they are clearly different because different are

the scopes of the two networks. For D we recall that the

theoretical analysis by Yoon [12] ensures that we may focus

on the outputs of D corresponding to bi = 0 for each sample,

that is, those values not suggested by H. Therefore its loss

function is defined as

LD(m, m̂,b) =
∑

i:bi=0

[mi log(m̂i) + (1−mi) log(1− m̂i)]

(8)

and we train D according to

min
D

−

N∑

j=1

LD(mj , m̂j ,bj)

with m̂j = D(x̂j ,mj).

Even if the first step is to optimize D, we preliminarily

need the previsions of G since x̂ actually involves the output

G(x̃j ,mj , zj).

For the optimization of G the attention is on two fronts

since G outputs the entire data vector (so both mi = 0 and

mi = 1): for the missing components the goal is to impute

the missing values in such a way to fool D. On the other

hand, when mi = 1, the observed components must be close

to the actually observed data. For these reasons, the loss

function for G combines two different functions: the first

part is

LG(m, m̂,b) = −
∑

i:bi=0

(1−mi) log(m̂i). (9)

It is evident that

LD,LG : {0, 1}d × [0, 1]d × {0, 1}d → R.

The loss function (9) applies to the missing components

(namely, those with mi = 0) and it is smaller when m̂i is

closer to 1. So LG is smaller when D falsely categorizes

an imputed value as observed. To work on the observed

components another loss function is defined, that is LM :
R

d × R
d → R such that

LM (x,x′) =

d∑

i=1

miLM (xi, x
′

i) (10)

where LM changes expression if xi is a continuous or binary

random variable, namely

LM (xi, x
′

i) =

{
(x′

i − xi)
2 if xi is continuous

−xi log(x
′

i) if xi is binary.

LM is minimized when the value assigned to the observed

data is close to the real observed value.

To train G we need to solve the problem

min
G

N∑

j=1

LG(m(j), m̂(j),b(j)) + αLM (x̃(j), x̂(j))

where the parameter α is a hyperparameter used to control

the training process on G.

For the stochastic optimization the Adaptive Moment

Estimation (Adam) Solver [15] has been considered while

for the weights initializations of both G and D the Xavier

method [16] has been used.

VII. IMPLEMENTATION ISSUES

We now describe the specific features we used in the

implementation of Algorithm 1.
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A. Dataset Building and Understanding

Numerical evaluations were performed on a dataset of

temperatures collected from meteorological stations in Apu-

lia (southern Italy). They come from 255 stations and all

data belong to 2019. The data were taken from the DarkSky

website (https://darksky.net/dev/docs); it is a web service that

provides weather data for any desired location.

From each station we have extracted as many consecutive

sequences of 16 values as possible. The choice of a sequence

length of 16 values has two reasons: first of all to improve the

computational efficiency. Secondly, it is a trade-off research

where the data distribution must be respected while the

length of the sequence could not be too large, since the

number of weights in the neural networks would increase

as well. In other words, small sequences mean less weights

and thus less parameters to estimate. However, considering

different rows as independent, the underlying data distribu-

tion could not be seen with few values per each line of the

dataset. If you look at a plot with 10 values, you can have a

better understanding of the phenomenon compared to a plot

with 3 values. However if the number of points is 1 billion,

a great part of the information is lost anyway because you

cannot look at all points at once. The rationale behind the

choice of the sequence length of 16 values is the same. Each

sequence had to respect few rules: the absence of missing

data and a regular time step between the observations of the

sequences. In other words all observations have the same

temporal distance. The result is a dataset of 75,980 sequences

for a total of 1,215,680 temperatures. The training phase of

GAIN has been done on the 80% of the complete dataset,

while for the test phase the remaining 20% has been used.

VIII. PARAMETER SETTINGS

The generation of the Mask depends on a custom parame-

ter which defines the percentage of missing values introduced

in the dataset. For our numerical tests this parameter has been

varied between 0.05 and 0.8. It is fundamental to underline

that the generation of the Mask, and thus the introduction of

the missing data in the dataset, should represent a completely

random process. Therefore, the overall ratio between the

number of missing values and the total number of data must

respect the setted value. However, there are no constraints

between different rows of the training set. In other words,

the number of missing values between different rows of the

dataset could be different. This should help the NN to better

associate the presence of a zero in the mask with the presence

of a missing value in the sequence. The same process applies

to the Hint mechanism.

All parameters used in the numerical tests of Section IX

are summarized in Table I. In particular, the parameters of

Adam Solver [15] are set by default.

A. To measure the accuracy

In every artificial intelligence algorithm it is essential to

identify the right way to measure the performance of the

algorithm itself. In this specific case, the distance between the

output of the Generator and the real data is of interest. The

score function should take into consideration only the values

that the NNs saw as missing during the training. Indeed,

in a real scenario, no one would discard the real data, but

TABLE I
SUMMARY OF THE ALGORITHM PARAMETERS

Parameter Values

Mini-Batch size 256
Missing (%) 5, 10, 20, 30, 40, 50, 60, 70, 80
Hint Information (%) 90
Loss parameter α 10
Test Size / Tot observations (%) 20
Max. no. epoch 30
Max. no. iterations 237

only trying to compute the missing ones. In other words, the

Generator score function must evaluate the error between the

imputed values and the real data that were replaced by the

noise. For this reason the Generator Score is defined as

mean
(
(1−M)⊙X− (1−M)⊙ X̄

)2

mean (1−M)
(11)

where the squared error is computed only for the values

where (1−M) = 1, according to (11).

To assess the quality of the GAIN method we make use

of the Root Mean Square Error (RMSE) defined as

RMSE =

√√√√ 1

n

n∑

i=1

e2i

where e1, . . . , en are samples of the model error we want to

quantify. With respect to the commonly used Mean Absolute

Error (MAE), the RMSE turns out to be more reliable

when the error follows a normal distribution [17], as we are

assuming here.

IX. NUMERICAL TESTS

We present two kinds of numerical tests: in the first one,

to test the effectiveness of GAIN, we work on a complete

dataset, that is, a dataset with no missing data, and we

artificially remove some of the observed data. In the second

example we consider a dataset with missing values and we

impute them by using GAIN.

A. Testing GAIN on a complete dataset

The algorithm has been tested introducing different levels

of missing values. They were introduced through the gen-

eration of the Mask, and their percentage has been varied

in order to show the effectiveness of the numerical method

under different conditions. The results are summarized in

Table II and are visible in Fig. 2.

TABLE II
ROOT MEAN SQUARED ERROR FOR DIFFERENT LEVELS OF MISSING

VALUES

% missing data RMSE train ◦C RMSE test ◦C

5 1.1500 1.1170
10 1.0203 1.0132
20 1.0972 1.1010
30 1.1017 1.1312
40 1.1655 1.1764
50 1.3242 1.3270
60 1.4703 1.4696
70 2.8976 2.9205
80 2.7256 2.7511
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Fig. 2. The RMSE (in ◦C) as the percentage of Missing Values changes,
measured with respect to the test set (continuous line) and the training set
(dotted line). From the graphic point of view, the curves can be practically
superimposed in pairs.

As expected the number of missing values and the error are

strictly related, while the first increases the second follows.

Generally speaking, the errors are very close to 1◦C in

the range 5-30% of missing data. This is a very common

situation in data science researches, especially those related

to climate investigation. These numbers confirm the power

of the GAIN method in this context. As the percentage of

missing values severely increases, say up to the 80%, the

error almost increases to 3.5◦C. Moreover, another funda-

mental quality we may observe is the very similar behavior

of the two curves, the one corresponding to the test set and

the other for the training set. This resemblance shows that

GAIN does not overfit the data and is able to keep its specific

features.

We run the same test by considering the Auto-Regressive-

Moving-Average (ARMA) method: it was first introduced in

1951 by Peter Whittle and is still largely used for the mod-

eling of time series. We follow the built-in implementation

by Matlab.

TABLE III
ROOT MEAN SQUARED ERROR OF ARMA FOR DIFFERENT LEVELS OF

MISSING VALUES

% missing data RMSE train ◦C RMSE test ◦C

5 2.001 2.259
10 1.984 2.290
20 1.989 2.313
30 2.021 2.364
40 2.187 2.573
50 2.417 2.760
60 2.399 2.776
70 2.739 2.921
80 2.736 3.100

Interestingly, unlike GAIN, for the ARMA method the

differences between the training and the test phases are quite

large as shown in Table III. This feature is evident also from

Figure 3, where the curves for the RMSE are sensibly distant.

This issue may suggest the superiority of GAIN over ARMA

in this kind of applications.

In the following plots we refer to the “Epoch” number;

however, it is important to stress that each epoch contains an

internal iterative process which, in our example, consists of

237 iterations.

It could be of interest to visualize the trend of the score
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 °
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Training RMSE

Test RMSE

Training RMSE

Fig. 3. The RMSE (in ◦C) for ARMA as the percentage of Missing
Values changes, measured with respect to the test set (continuous line) and
the training set (dotted line).

during the training, as the percentage of the missing values

changes. In Fig.4 - Fig. 6 we report this comparison. While

the number of epochs increases, the score decreases: the

descent is very rapid when the 20% of data are missing

(Fig. 4) while it is smoother when the 40% are missing

(Fig. 6). Remember that the score is an error index, therefore

the smaller it is, the better. During the training, the score is

calculated over normalized values, therefore it is not a true

error index and it is not comparable with the values in Table

II.

0 5 10 15 20 25 30

Epoch

10
-3

10
-2

10
-1

G
e

n
e

ra
to

r 
S

co
re

Fig. 4. The Generator Score (11) as the Number of epochs varies with the
20% of missing values.
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Fig. 5. The Generator Score (11) as the Number of epochs varies with the
30% of missing values.

As regard the loss functions calculated during the training,

their trend is represented in Fig 7 which refers to the training
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Fig. 6. The Generator Score (11) as the Number of epochs varies with the
40% of missing values.

of the NNs with the 20% of missing values. Both the

Generator Loss and the Discriminator Loss functions are

monotonically decreasing and they stagnate as the epochs

increase. However, the Generator Loss quickly reaches its

minimum while the Discriminator Loss has a smoother

descent and remains on larger values.
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Fig. 7. Loss Functions’ trend as the training proceeds (in the case of 20%
of missing values).

Generally speaking, every artificial intelligence model is

evaluated comparing its score on the test set and on the

training set. This helps to refuse those models who are

affected by over-fitting. However, it is also true that models

trained with vectors full of missing values are rare. Among

these rare cases is GAIN. This peculiarity could be visualized

through the next four Figures 8-11, each of them referring

to a particular level of missing values. In each picture there

are four plots. They represent the RMSE evaluated for the

training and test sets and on the real and missing values. The

error associated to the missing values measures the distance

between the original data, that the generator has never seen,

and the imputed value after the generator’s training. The error

associated to the real data measures the distance between the

imputed values and all the data that the generator has seen

during the training process. It is interesting to notice that in

all cases the curves for the test set and the training set almost

coincide, meaning that the imputed values well recover the

dataset features. Moreover, the errors with respect to the

missing values and the real values are very close, although

the former is always larger, as expected for what explained

before.

Fig. 8. RMSE evaluated for the training and the test set with respect to the
real and missing values (in the case of 10% of missing values). From the
graphic point of view, the curves can be practically superimposed in pairs.

Fig. 9. RMSE evaluated for the training and the test set with respect to the
real and missing values (in the case of 20% of missing values). From the
graphic point of view, the curves can be practically superimposed in pairs.

Fig. 10. RMSE evaluated for the training and the test set with respect to
the real and missing values (in the case of 30% of missing values). From
the graphic point of view, the curves can be practically superimposed in
pairs.

B. Imputing missing values

We now test the trained network to impute real missing

values. The aim of this test is to evaluate the ability of GAIN

to reproduce data in a real research scenario. In the previous

test a dataset without any missing value has been used.

However, originally, it came from a bigger dataset with some

missing values. The original dataset, as stated above, stored

temperature data of the Italian region Puglia over 2019. All

missing values were identified and isolated. Each missing

value was preceded and followed by a total number of 15
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Fig. 11. RMSE evaluated for the training and the test set with respect to
the real and missing values (in the case of 40% of missing values). From
the graphic point of view, the curves can be practically superimposed in
pairs.

values. These were the predecessors and the successors of

the missing values in the original signal. If the missing value

was far enough from the beginning and from the tail of the

sequence, it was centered, with 8 value on the left and 7 on

the right. Otherwise, a sufficient number of values before or

after the missing value was selected to fulfill the requirement

of 16 values as input to the generator (see Section VI-A).

In this way a matrix of 3145 rows and 16 columns has

been manually created. To better visualize the result of this

preparation process, see Table IV. The imputation of the

missing values required few more steps. First of all, the

Mask M, the Noise Z and the Hint H matrices have been

created using the processes introduced above and then X̃
has been obtained trough formula (2). The values have been

then scaled. The Min and Max values for the operation came

from the old training set used to train the Generator. The

normalized values of X̃ and M have been concatenated to

obtain the 32-columns matrix usable as input for G. Through

the forward function in Matlab Deep Learning toolbox, it

was possible to get the imputed values. The whole imputed

values for the samples in Table IV are summarized in Table

V. Of course, no one would use imputed values instead of

real ones, therefore they have been combined through the

formula for X̄ (3).

The final result is summarized in Table VI.

TABLE IV
FEW SAMPLES OF ORIGINAL SEQUENCES EXTRACTED IN PRESENCE OF

MISSING VALUES

Sequences with missing values

19.0 20.0 23.6 24.7 25.5 26.3 26.9 26.7 0.0 28.2 28.8 28.8 27.5 27.3 22.6 19.9

19.1 19.1 22.8 24.0 25.0 25.8 26.5 26.2 0.0 27.8 28.4 28.4 27.2 27.1 22.0 19.3

17.0 18.2 22.2 23.6 24.7 25.5 26.2 25.9 0.0 27.4 28.2 28.2 28.0 26.7 21.6 18.9

20.5 20.2 23.1 24.0 25.1 25.7 26.3 26.0 0.0 27.9 28.0 28.2 28.0 26.7 23.3 20.6

17.1 18.2 19.5 20.8 21.9 22.9 23.6 24.3 0.0 25.4 25.8 26.0 26.0 25.9 17.6 17.4

2.9 2.4 1.9 1.3 0.9 0.5 0.3 0.1 0.0 0.0 0.0 0.1 0.1 -0.1 0.2 0.4

3.0 2.6 2.1 1.5 1.1 0.7 0.5 0.3 0.2 0.3 0.3 0.4 0.4 0.0 0.3 0.5

Finally, we give a graphic representation of the imputation

results: Figure 12 shows the temperature data in the original

sequence, while Fig. 13 shows the temperature after the

GAIN imputation. We may appreciate that the latter plot

seems to be generally consistent. In an imminent work we

aim to better analyze this case, with an extensive statistical

analysis of the results’ consistency.

TABLE V
IMPUTED SEQUENCES FROM THE SAMPLES IN TABLE IV

Sequences with missing values

19.1 20.5 22.2 24.3 25.6 26.9 27.9 28.2 28.4 28.4 28.0 27.5 26.7 25.8 24.8 24.1

18.5 19.9 21.6 23.7 25.0 26.4 27.4 27.7 27.9 28.0 27.5 27.0 26.2 25.4 24.4 23.7

17.2 18.8 20.6 23.0 24.4 26.0 27.1 27.6 27.9 28.0 27.5 27.0 26.2 25.3 24.2 23.4

19.7 20.9 22.3 24.1 25.2 26.3 27.2 27.5 27.7 27.8 27.6 27.2 26.7 26.1 25.3 24.7

16.2 17.5 19.1 21.1 22.4 23.8 24.7 25.1 25.3 25.4 25.0 24.5 23.8 23.0 22.0 21.3

0.8 0.6 -0.2 0.9 0.8 0.5 0.3 0.0 2.1 0.4 0.2 0.6 -0.1 1.7 0.4 0.9

1.9 1.3 0.8 0.3 0.3 0.0 0.0 -0.5 0.7 -0.1 0.4 0.7 0.6 1.9 1.9 1.9

TABLE VI
TRUE VALUES COMBINED WITH IMPUTED ONES IN MISSING VALUES

POSITIONS

Sequences with missing values

19.0 20.0 23.6 24.7 25.5 26.3 26.9 26.7 28.4 28.2 28.8 28.8 27.5 27.3 22.6 19.9

19.1 19.1 22.8 24.0 25.0 25.8 26.5 26.2 27.9 27.8 28.4 28.4 27.2 27.1 22.0 19.3

17.0 18.2 22.2 23.6 24.7 25.5 26.2 25.9 27.9 27.4 28.2 28.2 28.0 26.7 21.6 18.9

20.5 20.2 23.1 24.0 25.1 25.7 26.3 26.0 27.7 27.9 28.0 28.2 28.0 26.7 23.3 20.6

17.1 18.2 19.5 20.8 21.9 22.9 23.6 24.3 25.3 25.4 25.8 26.0 26.0 25.9 17.6 17.4

2.9 2.4 1.9 1.3 0.9 0.5 0.3 0.1 0.0 0.4 0.0 0.1 0.1 -0.1 0.2 0.4

3.0 2.6 2.1 1.5 1.1 0.7 0.5 0.3 0.2 0.3 0.3 0.4 0.4 1.9 0.3 0.5

X. CONCLUSIONS

In this work authors propose a method based on neural

network to face the problem of missing data imputation for

environmental data series. In particular, the Generative Ad-

versarial Imputation Networks (GAIN) have been used. This

method can be considered as a specialization of the GAN

framework. It is a deep-learning-based generative model

that consists in training a generative model as a supervised

learning problem with two sub-models: the generator model

is trained to generate new examples, while the discriminator

model tries to classify examples as either real (from the

domain) or fake (generated). To carry out a more compre-

hensive evaluation of the proposed method, the obtained

results have been compared with those obtained using an

ARMA model. ARMA is a well known method that is often

used in many applications. The obtained results show that

the performance obtained using GAIN in terms of RMSE

are better than those obtained using ARMA. On the other

hand, increasing the percentage of missing values, the RMSE

increases more slowly using the ARMA model than using

GAIN. Furthermore, it should be highlighted the very small

difference between the performance obtained using GAIN on

training set and on test set. This difference grows up using

ARMA model. This means that the neural networks have

Fig. 12. Temperature in the original sequence (with missing data).
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Fig. 13. Temperature after the GAIN imputation.

“learned” the model underlying the time series data and that

they are able to generalize its behavior.

REFERENCES

[1] F. Allan and J. Wishart, “A method of estimating the yield of a missing
plot in field experimental work,” The Journal of Agricultural Science,
vol. 20, no. 3, pp. 399–406, 1930.

[2] A. A. Afifi and R. M. Elashoff, “Missing observations in multivari-
ate statistics I. Review of the Literature,” Journal of the American
Statistical Association, vol. 61, no. 315, pp. 595–604, 1966.

[3] R. J. Little and D. B. Rubin, Statistical analysis with missing data.
John Wiley & Sons, 2019, vol. 793.

[4] L. Silva and L. Zarate, “A brief review of the main approaches for
treatment of missing data,” Intelligent Data Analysis, vol. 18, pp.
1177–1198, 01 2014.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–
22, 1977.

[6] S. Marso and M. EL Merouani, “Bankruptcy prediction using hy-
brid neural networks with artificial bee colony.” Engineering Letters,
vol. 28, no. 4, pp. 1191–1200, 2020.

[7] S. Nurmaini, A. E. Tondas, R. U. Partan, M. N. Rachmatullah,
A. Darmawahyuni, F. Firdaus, B. Tutuko, R. Hidayat, and A. I.
Sapitri, “Automated detection of covid-19 infected lesion on computed
tomography images using faster-rcnns.” Engineering Letters, vol. 28,
no. 4, pp. 1295–1301, 2020.

[8] K. Zheng, Z. Xia, Y. Zhang, X. Xu, and Y. Fu, “Speech emotion recog-
nition based on multi-level residual convolutional neural networks.”
Engineering Letters, vol. 28, no. 2, pp. 559–565, 2020.

[9] L. Jie, Y. Mingqiang, L. Yupeng, W. Yanyan, Z. Qinghe, and W. De-
qiang, “Dynamic hand gesture recognition using multi-direction 3d
convolutional neural networks,” Engineering Letters, vol. 27, no. 3,
pp. 490–500, 2019.

[10] W. Wei and Y. Tang, “A generic neural network approach for filling
missing data in data mining,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, vol. 1, pp. 862–867,
Nov. 2003.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2014, pp. 2672–2680.

[12] J. Yoon, J. Jordon, and M. van der Schaar, “GAIN: missing data impu-
tation using generative adversarial nets,” CoRR, vol. abs/1806.02920,
2018.

[13] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3,
pp. 581–592, 1976.

[14] J. K. Kim and J. Shao, Statistical methods for handling incomplete
data. CRC press, 2013.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[17] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or
mean absolute error (MAE)?–Arguments against avoiding RMSE in
the literature,” Geoscientific model development, vol. 7, no. 3, pp.
1247–1250, 2014.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_05

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 


	Introduction
	Some notes on the available literature
	Characterization of the missing data
	Missing data patterns
	Missing data mechanisms

	GAN
	GAIN method: the mathematical description
	Generator
	Discriminator
	Hint mechanism
	Minimax formulation of the problem
	Theoretical analysis

	GAIN method: the algorithm
	Definition of Layers
	Loss Functions

	Implementation issues
	Dataset Building and Understanding

	Parameter Settings
	To measure the accuracy

	Numerical Tests
	Testing GAIN on a complete dataset
	Imputing missing values

	Conclusions
	References



