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Automatic Image Annotation Using Improved
Wasserstein Generative Adversarial Networks
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Abstract—In an image annotation model based on deep
learning, the number of neurons in its output layer is pro-
portional to the vocabulary of the annotation, i.e., the model
structure changes with a change in the vocabulary, thereby
reducing the accuracy of image annotation. To solve this
problem, in this study a new annotation model combining the
improved Wasserstein generative adversarial network (GAN)
and word2vec was proposed. First, the tagged vocabulary
was mapped to a fixed multidimensional word vector by
word2vec. Second, a neural network model (GAN-IW) was
constructed by using the generated confrontation network. It
was observed that the number of neurons in the output layer
was equal to the dimension of the multidimensional word
vector and no longer relevant to the vocabulary. Finally,
the model was tested for the Corel 5K and IAPRTC-12
image annotation datasets. Compared to the convolutional
neural network regression method, the model accuracy, the
recall rate, and the F1 value increased by 16%, 6%, and
9%, respectively, when the model was tested on the Corel
5K dataset. Compared to the two-pass K-nearest neighbor
models, our model accuracy, recall rate, and F1 value were
increased by 8%, 6%, and 4%, respectively, when the model
was tested on the TAPRTC-12 dataset. The experimental
results showed that the GAN-IW model can solve the problem
of change in the number of output neurons with a change in
the vocabulary and the number of labels annotated with each
image is adaptive, making the results of model annotation
more in line with the actual image annotation.

Index Terms—Automatic image annotation, Generative
adversarial networks, Improved Wasserstein, Machine learn-
ing.

I. Introduction

ITH the rapid increase in the volume of image

data, manually marking of images has become a
cumbersome and undesirable task. For effective man-
agement and retrieval of images, we should move to
automatic marking of the image content, thus enabling
more efficient use of the abundant image information.
At present, the main annotation method involves con-
structing an image annotation model through machine
learning. By learning the potential connection between
the image and its corresponding annotation, a keyword
describing the content is added to the unknown image
to realize its annotation.

The image annotation model based on machine learn-
ing is roughly divided into three categories: the gener-
ation model, the nearest neighbor model, and the dis-
criminant model. The generation model first extracts the
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image features and then calculates the joint probability of
the image features and the image tags. Finally, the model
calculates the probability of each tag according to the
characteristics of the test images and determines the tags
corresponding to the images. Representative methods
are: Cross Media Relevance Model (CMRM) [1], Multiple
Bernoulli Relevance Model (MBRM) and Sparse Kernel
Learning Continuous Relevance Model (SKL-CRM)[2] .

The nearest neighbor model first finds a plurality
of images similar to the predicted image based on
some distance based on the image features and then
determines the annotation of the predicted image based
on the annotation of similar images. Representative
methods are: 2PKNN (Two-Pass K-Nearest Neighbor)
model [4], JEC (Joint Equal Contribution) model[3],
and TagProp_ ML (Tag Propagation Metric Learning)
model [5]. The discriminant model considers the image
label as a classification of the image; therefore, image
annotation can be regarded as a multi-classification of
the image and the label of the image is determined by
the classification result of the image. The representative
methods are: PAMIR (Passive-Aggressive Model for
Image Retrieval) model [7], CBSA (Content-Based Soft
Annotation) model[6], and ASVM-MIL (Asymmetrical
Support Vector Machine-Based MIL Algorithm) model
[8]. In recent years, deep learning has achieved good
results from image classification. Therefore, the method
of deep learning has gradually been applied to image
annotation tasks. For example, in 2018, Li et al. [9] pro-
posed combining the depth convolutional neural network
(CNN) and the CNN-ensemble of classifier chains model
of the integrated classifier chain. SSN-GAN was proposed
by Gang et al. [24] to obtain colorful anime images with
higher visual quality.

Compared with the traditional annotation methods,
these models have achieved good results and significantly
improved performance in image annotation. However,
these deep learning annotation models have a common
drawback, i.e., the number of model output layer neurons
(or classifiers) is proportional to the vocabulary of
annotation. This leads to two problems: 1) With the
increase in the vocabulary of the dataset label, there
is a proportional increase in the number of neurons in
the output layer. When the vocabulary of the dataset is
small, it has almost no effect on the model; however, in
case of a dataset with a larger vocabulary, the number
of neurons in the output layer of the model becomes
very large, for example, in the Open Images dataset, the
number of neurons exceeds 20,000. Thus, a large number
of neurons in the output layer makes the designing of a
reasonable neural network structure difficult and leads
to a sudden increase in the number of model parameters,
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increasing the difficulty of model training and the size
of the model weight file, which is not conducive to
the actual model application; 2) Even when only a
certain vocabulary is added or deleted, the vocabulary
of the label changes as the number of output neurons
of the model is proportional to the vocabulary, thereby
requiring the model network structure to be modified.
However, adding vocabulary of practical applications is
almost inevitable, which will modify the model structure
frequently, thus resulting in poor model stability.

To eliminate this problem, this study combines
the generative adversarial networks (GANs) [10] with
word2vec that is modeled on natural language processing
to construct GAN-ITW—a new image annotation model.
The main steps for constructing the GAN-IW model are
as follows: First, word2vec is used to convert the label
into a multidimensional space vector of a fixed dimension,
which is freely selected. The number of neurons in the
model output layer will only be related to the dimen-
sion of the multidimensional vector. Relate to the tag
vocabulary. In addition, when the vocabulary changes a
little, instead of modifying the model structure, only the
word vector conversion table of word2vec needs to be
modified. Subsequently, the annotation model no longer
outputs images corresponding to all annotations at once
but uses the GAN network to output a multidimensional
spatial vector corresponding to one candidate annotation
at a time. Through the perturbation of random noise
in the GAN network, the GAN network can output
a multidimensional spatial vector corresponding to the
image and different candidate annotations, each time.
Lastly, the final labels of the image are filtered according
to the multiple outputs of the model.

II. Wasserstein GAN

The core idea of the generating confrontation network
is derived from the Nash Equilibrium of Game Theory.
The model is shown in figurel. It consists mainly of a
generator (G) and a discriminator (D). The generator
is generated by random noise generation. False data is
distributed over the dataset; therefore, the discriminator
needs to distinguish whether the data input from the
generator is derived from the generator or the dataset.

For any random vector z ~ P,, WANG et al.[11]
designed to learn generator network G(z), minimized the
Wasserstein distance between the resulting distributed
Pg.

Hence, for the generated sample G(z) and the actual
distribution P, under the observation data point z,
the minimized Wasserstein distance is mingW (P,,Pg).
Wasserstein distance W (PP,,Pg) proved to be a more
reasonable cost function than other popular distribution
differences and distances . Jensen-Shannon differences
implied in GANJ10], for learning the distribution of low-
dimensional manifold support. Due to the impact of the
Wasserstein distance on the Kantorovich-Rubinstein du-
ality [12], the Wasserstein GAN (WGAN) value function
is written as

minmazBenp, [D(G(2))] = Beve, [D(z)] (1)

*
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Fig. 1. GAN model

where @ is a collection of 1-Lipschitz functions. Similar
to GAN, D is a "discriminator”. It tries to distinguish
actual data from the data created by the generator. It
could use any network architecture appropriate to the
type of data it’s classifying. Arjovsky et al.[15] specifies
this function family @ through the neural network and
uses the weight limit to enforce the Lipschitz continuity.

GAN training requires alternating optimization of gen-
erators and discriminators. When optimizing generators,
the objective function is minimized; thus, the generated
data G(z) is closer to the data set. The output of the
discriminator D(G(%)) is closer to 1, i.e., the discrimi-
nator cannot distinguish the generated data G(z) from
the real data x. When optimizing the discriminators, the
objective function is maximized; thus, D(G(z)) is close
to 0, while D(x)is close to 1. Therefore, the discriminator
judges, as accurately as possible, whether the input
data is from the actual data x of the data set or from
the data G(z) generated by the generator. Optimizing
the generator and discriminator multiple times improves
their performance. Finally, the performance of the gener-
ator and the discriminator reaches the Nash equilibrium;
thus, the data distribution generated by the generator
approximates the distribution of the original data set.

Gulrajani and others have improved WGAN’s training.
They illustrate the dangers of weight cut through more
specific examples and propose another way to impose
Lipschitz continuity. Lipschitz continuity is the central
condition of the Picard-Lindel6f theorem which guaran-
tees the existence and uniqueness of the solution to an
initial value problem. A special type of Lipschitz con-
tinuity, called contraction, is used in the Banach fixed-
point theorem. Gulrajani discovered the differentiable
discriminator is 1-Lipschitz D(), When and only when
the norm of its gradient is up to 1 anywhere. Therefore,
gradient penalty is introduced.

GP|&:= E; [(|vaD(2)

l, = 1)?] (2)

However, unlike the weight limit, the term is never
used to punish any place by a limited number of training
iterations. Therefore, the gradient penalty, GP works
just on the sampling point . In general, the number of
sampled points is limited. Thus, no significant part of
the support domain is examined at all. especially, think
about the observed data points and its basic manifolds
that support the actual distribution of P,.. In the first
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place of the training phase, the resulting samples G(2)
and & can be kept away from the manifold. Until the
build model Pg becomes close enough to the real P,., if
it can, it does not enforce Lipschitz continuity on the
manifold.

Therefore, we recommended that WGAN training
could be improved by setting additional Lipschitz con-
tinuity conditions on the manifold of the actual data
z P,.

Previous approaches have focused on one particular
data point at a time. Our approach is different, based
on the most basic definition of 1-Lipschitz continuity,
which is defined as follows: for a function f(x),if x1,x2 in
any of its defined domains, there exists L > 0 such that
|f(x1)-f(x2)| L|x1-x2|. There exists a real number L such
that for each pair of points on the function f (x), the
absolute value of the slope of the line connecting them
is not greater than this real number L. This allows us
to set the rule on a pair of data points plotted near the
stream shape. It is worth mentioning that we perturb
each actual data point x twice. To limit the difference
between the discriminator’s response to the perturbed
data points x” and x”, we use the Lipschitz constant.

A new consistent regular CT" was used to force the
Lipschitz continuity of the data manifold and its neigh-
bouring region to essentially supplement and improve
the gradient penalty GP for improving WGAN training.
Therefore, the novel loss function to update the weight
of a discriminator is defined as follows:

L=FE, p, [D(G(z))] — E,p, [D(x)] + M GP 3)
)\QCT|$/Z1/

We borrowed 1 = 10 from Gulrajani et al.[16], and

irrespective on which dataset, all of our experiments used

2 = 2. Consistency regular CT is used in the following
form.

&t

maz(0,d(D(z"), D(z"))+

Tl 01-d(D_(«/),D (&)~ 'y Y

z' z" = EJCNPT

The value of M  between 0.2 and 0 will produce
roughly the same result in our experiment. After losing
the hidden layer of the discriminator, D(z’) is the
calculation result of the discriminator for a given x.
First, we pass the "virtual” data point x’ through a
clean discriminator. Then through the penultimate layer
D_ (+) of the discriminator, that is, d(D_ (z'), D__(z")),
the performance is slightly improved.

Set d represents the 15 metric on the input space used
in our study. If there is a real number constant M > 0,
the discriminator D : x — y is Lipschitz continuous, for
all 1,29 € z,

d(D(x1), D(x2)) < M - dxy, 22) (5)

A. word2vec

The text data should be converted to numerals since
a neural network cannot directly process the text data.
A traditional method is to convert the text data into a
one-hot word vector, i.e., the word vector dimension is

equal to the vocabulary, and all words correspond to a
certain dimension of the vector. If the word exists, the
corresponding dimension takes a value of 1; otherwise, it
takes a value of 0. For example, in a 5-dimensional word
vector, a cat may be represented as [0 0 0 1 0 0], and a
dog as [0 1 0 0 0 0]. The one-hot representation method
is a high-dimensional sparse method. The word vector
dimension is directly proportional to the vocabulary.
This method is computationally inefficient, and each
dimension is orthogonal to the other and cannot reflect
the semantic relationship between words.

In 2013, Google developed a new word vector gener-
ation tool word2vec, which can map words with mul-
tidimensional space vectors. For example, a cat may
be expressed as [0.1, 0.25, 0.3, 0.01, 0.9, 0.6]. At
present, word2vec is widely utilized in Natural Language
Processing (NLP) missions. The core of word2vec are
vocabularies with same or similar context, which may
have similar semantics. According to the lexical context,
each vocabulary in the text corpus is mapped to a
corresponding unified N-dimensional vector in the vo-
cabulary space. The vocabularies with similar semantics
are similar in position in the space. For example, the
spatial distance between the corresponding word vectors
of cat and kitten is smaller than the spatial distance
between cat and iPhone, thus reflecting the relationship
between vocabularies and avoiding the disadvantage of
the one-hot word vector.

IIT. Model design of our method

A. Model structure

The model structure used in our study is shown in
figure2. The overall framework of the model adopted
the conditional generative adversarial network (CGAN)
architecture, and the input image size was unified
with (299, 299, 3). The N-dimensional feature vector
corresponding to the image was used as a condition,
and the corresponding M-dimensional word vector was
labeled as real data. Based on the condition and 100-
dimensional random noise, the generator outputs the M-
dimensional vector as the generated data. We used the
Inception-ResNetV2[18] model for convolutional neural
network (CNN) feature extraction and pre-training on
the ImageNet dataset. After removing the final classifier
layer, the migration learning method was applied to the
model. The word2vec function was implemented using
the Word2Vec module of the Gensim library, and the
generated word vector dimensions were unified to 500
dimensions. Both the generator and the discriminator
used a fully connected layer. The eigenvectors and the
random noise were respectively mapped to different
dimensions and then spliced. After repeated operations,
the map was mapped to the output fully connected
layer and the number of output connected-layer neurons
was equal to the word vector dimension. Our method
used the Improved WGAN model to train the GAN,
and the discriminator output layer removed the sigmoid
activation layer.
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Fig. 2. our Model

B. Loss function

The uneven distribution of the vocabulary is a common
problem of image annotation. Some annotations such
as cafe and butterfly appear only twice in the Corel5K
dataset, while water, sky, and tree appear more than 800
times. The frequency of appearance of different words
with annotations is different. Hence, if they are not pro-
cessed, the model easily ignores the influence of the low
frequency label, resulting in a decrease in the accuracy
of the low frequency vocabulary labeling Zhulinli2017.
Therefore, for the unbalanced label distribution problem,
the model optimized the loss function, multiplying the
loss of different labels by a balance coefficient; thus,
the label with low-word frequency had greater weight
loss. The L2 regularization reduced the model over-
commitment. Therefore, the revised loss is:

LD = Ew,ymlP’mﬁy [ZOQ .D(y|£[')] -
E.p. [log D(K +1|G(2))] — (6)
EZNPV,- [109(1 - D(K + 1|1’))] + ACT‘%’,%”

where K is the count of categories of interest and
the K + 1 neuron is retained for using the Wasserstein
distance between WGAN to compare the resulting sam-
ple with the actual data. The first three terms are the
same as Salimans[17]. The final consistency is calculated
after exiting the application of the discriminator. The
fourth term is Consistency regular CT. According to
Equation 4, the consistency regular term can generate
a temporal self-integration scheme, which further aids
semi-supervised learning. For more information on this
topic, see Laine [13].

Lg = || Bane.(D_(G(2)) = Eone, (D_(2)|l; ()

C. Label sort

Since the model outputs a candidate annotation word
vector corresponding to one image at a time, the anno-
tation ordering method of our study adopted the image-
appearance order. Firstly, the image was N predicted by
the trained model to obtain N word vectors. Secondly,
for each word vector, the probability of corresponding M
candidate words and their tag words was obtained by the
Word2Vec model. Finally, the probability corresponding
to the annotated word was used as the number of

occurrences of the annotated word, and the number
of occurrences of all the candidate annotated words
was counted. Then, the candidate annotation whose
occurrence number was greater than the threshold was
filtered by the threshold as the final annotation of the
image.

IV. Experiment
A. Dataset

The datasets for this experiment are common datasets
for image annotation: Corel 5K and TAPRTC-12
datasets. The Corel 5K dataset—the standard dataset
for image experiments—is a collection of 5,000 images
by Corel, which is commonly used in scientific image
experiments such as image classification and retrieval.
The IAPRTC-12 dataset was originally used for cross-
language retrieval tasks. Each image has its descriptions
in English, German, and Spanish. Researchers used
natural language processing techniques to extract the
common nouns in the graphic description as image tags.
The TAPRTC-12 dataset is also used as a common
dataset for image annotation tasks. The detailed statis-
tics for the Corel 5K and TAPRTC-12 datasets are as
shown in Table I.

TABLE I
Dataset information

Corel 5k TAPRTC-12
Number of pictures 5000 19627
Number of tags 260 291
Test /training 500/4500 1962/17665
Average number of tags 3.4 5.7

B. Evaluation Method

The evaluation method used in the experiment cal-
culates the accuracy (P) and the recall rate (R) and
the F'1 values for each label in the dataset. Suppose
a related image of the test set is N and the relevant
image predicted by the model is N;. The predicted
number of related images is Ns, then the accuracy
is P = N3/N;y, and the recall rate R = No/N and
F1=2xPxR/(P+R).

C. Labeling Results and Analysis

1) Influence of Different Thresholds on Image Label-
ing: Different labeling thresholds have a great impact
on the final labeling performance of this model. In order
to explore the relationship between different thresholds
and labeling performance, this paper tests the labeling
performance of models with different thresholds. Figures
3 and 4 show the relationship between the accuracy,
recall rate, F'1 value, and threshold of the model labeling.
During the test, the number of model predictions is 128.
Each candidate is selected to be the closest to the output
vector. All candidate labels are counted. The number of
occurrences greater than the threshold value is selected
as the final label of the image.

It can be seen from figures 3 and 4 that the accuracy
P of the label decreases first and then decreases with
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the threshold and that the recall rate R decreases as the
threshold increases. The value of F'1 decreases substan-
tially from the threshold and then decreases. The reason
for this phenomenon being the model can learn the
mapping relationship between image features and label
vectors. By training the model, it has a certain ability to
label. For the prediction results of most tags, the correct
prediction corresponds. The number of occurrences is
generally higher. When the threshold is particularly
small, the general occurrence of the label corresponding
to the threshold is greater than the threshold, the
predicted result of the label is not substantially filtered
by the threshold, and the labeling accuracy P and the
recall rate R are unchanged. When the threshold is
increased to a certain value, the partial error prediction
is gradually filtered. The correct prediction is basically
unaffected because of the large number of occurrences,
the accuracy rate P rises, and the recall rate R is
basically unchanged. The threshold continues to increase,
and the correct prediction begins to be filtered; however,
as the correct prediction situation is mostly concentrated
on the higher occurrences, the increase in the threshold
value has a greater impact on the correct prediction,
which is filtered faster than the error. The predicted
part eventually reduces the labeling accuracy P and the
recall rate R until the correct prediction is completely
filtered by the threshold and P and R are both zero.

The change in the F'1 value is determined by the

TABLE II
Comparison of results from multiple methods

Dataset TAPRIC-12 Corel 5K
atase P RIF [P R [F
2PKNN-ML | 53% | 32 | 40 | 41 | 46 | 43

SKL-CRM 51 32 | 39 | 39 | 46 | 42
KSVM-VT 47 29 | 36 | 32 | 42 | 44

NN-CNN 54 32 | 41 | 42 | 45 | 44
CNN-R 49 31 | 38 | 32 | 41 | 37
ADA 42 30 | 35 | 32 | 40 | 36
RF-opt 43 31 | 37 | 30 | 40 | 35
2PKNN 48 32 139 | 38 | 39 | 40
Our 56 38 | 43 | 46 | 47 | 46

change in the accuracy P and the recall rate R. The
performance of the model varies from the threshold. In
order to compare with other model labeling performance
and the actual labeling effect of the model, it is necessary
to determine the optimal threshold of the model. Since
the F'1 value can take both P and R, the F'1 value is
used as the reference for selecting the optimal threshold
of the model, and the threshold with the largest F'1
value is selected as the optimal threshold of the model.
Since the optimal thresholds for different dataset models
are different due to the differences between different
datasets, for the Corel 5K and TAPRTC-12 datasets,
the model selects 80 and 60, respectively, as the optimal
thresholds for the model in the case of model predictions
of 130.

2) Performance comparison of different annotation
methods: This study compares the GAN-IW model with
other classical annotations to verify the validity of the
proposed model. The methods involved here include the
traditional model methods, RF-opt (Random Forest-
Optmize) [19], 2PKNN [4], 2PKNN-ML (2PKNN-Metric
Learning) [4], SKL-CRM [2], KSVM-VT [20] and meth-
ods using deep convolutional neural networks NN-CNN
(NearestNeighbor-CNN) [21], CNN-R (CNNRegression)
[22], ADA (Attribute Discrimination Annotation) [23].
Table 2 shows the comparison of the performance of the
GAN-IW model with other models on the Corel 5K and
TAPRTC-12 datasets.

It can be seen from table II that the performance
of the GAN-IW model is much better than that of
the traditional method on the Corel 5K dataset. The
recall rate of the proposed model is higher than that of
the RF-opt method by 7%. The accuracy and the F'1
value are 16% and 11% higher than that of the RF-opt
method. In the method using the convolution model, the
recall rate is 2% higher than the NN-CNN method. Both
accuracy and F'1 values are higher. On the TAPRTC-
12 dataset, the model also performed well, with higher
accuracy, recall rate and F'1 values. The performance
metric data onto the integrated GAN-IW model on the
Corel 5K and TAPRTC-12 datasets can be concluded.
Compared with other methods, the GAN-IW model has
better performance than CNN methods. At the same
time, both the model accuracy and the F'1 value have
been greatly improved and the best results have been
achieved. The comprehensive performance of the model
is significantly improved compared with other models.
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Original Our
Images annotation | annotation
water water
bridge bridge
lighthouse | lighthouse
railroad railroad
people people
waves waves
oahu oahu
meadow meadow
horses horses
mare mare
city city
buildings | buildings
light light
street street
sky sky
sand sand
elephant | elephant
desert desert
people people
buildings |  buildings
crafts stone

Fig. 5. Actual annotation results of our method

3) Actual annotation results of our method: The
actual results of the model automatic labeling are shown
in Figure 5. The unified prediction number of the model
is one batch size, i.e., 128 times. The threshold selected
when testing the Corel 5K dataset is 80. The label with
the number of occurrences greater than the threshold is
selected as the final label of the graph.

The following conclusion can be drawn from figures
5 and 6: First, unlike most annotation models, the
number of annotations per image is different or not
fixed. In a real image annotation scenario, the number
of image annotations will usually be various for different
pictures. When trained, the GAN-IW model can learn
the mapping relationship between the image features and
the label vector. Each time a new image is predicted,
the model outputs a certain feature on the basis of the
visual features of the predicted picture. The matching
label vector. For a semantically simple image, the image
visual feature only contains the features corresponding to
a certain tag. Therefore, the vector output of the model
is close to the tag so that the corresponding number
of occurrences of the tag is higher, and the number of
occurrences of other tags is less than The threshold are

filtered out and the model finally has a small number
of labels. The visual features of complex images are also
usually complex, and these visual features may contain
multiple labels. To extract these feature labels, we use
a random noise interference method so that each label
in multiple labels has a high probability of becoming a
model. All the output labels are tested several times, and
we find that most of the labels appear pretty often. We
set a threshold value based on empirical values and add
the labels with occurrences greater than the threshold
value to the model, making the model have a large
number of labels. For example, the flag in the last image
of figure 6 is not in the original annotation but appears
in the dataset with hotel and tree. Therefore, the flag is
added as one of the final outputs and is still associated
with the image content.

Second, some annotations do not conform to the origi-
nal annotations but may be consistent with or related to
the semantics of the test images. Some annotations such
as people, buildings, and stone have a higher frequency of
co-occurrence in the dataset. Therefore, when these an-
notations are vectorized using Word2vector, the distance
between their corresponding multidimensional vectors is
very close. As a result, the closest label words correspond-
ing to the output vector often appear together and the
probability of correspondence between the annotation
words is very small. Hence, some of the annotations
are not the original annotations. However, the number
of occurrences of the final statistics is still large and
is determined as one of the image annotations. These
annotations often appear together in the dataset, thereby
proving the deep connection between them. Therefore, in
the new test image, the labels often appearing together
with the original annotation still have a high probability
of being related to the test image. For example, the
stone in the last image of figure 5 is not in the original
annotation but appears in the dataset with people and
building. Therefore, the stone is used as one of the final
outputs and is still associated with the image content.

V. Conclusion

In summary, this study aimed at solving the issue
of change in the model structure with a change in
the vocabulary, which reduces the accuracy of image
annotation. In this study, a new annotation model, i.e.,
GAN-IW, based on the generated confrontation network
and word vector model, on the Corel 5K and TAPRTC-12
datasets was proposed. The experimental results showed
that the accuracy rate P, recall rate R, and F1 of
the GAN-IW model significantly improved compared
with other models, thereby proving that the model can
be better applied to the image labeling task and the
labeling result was more in line with the actual labeling
situation. However, the following aspects are worthy of
further improvement and research in this model: 1) The
training result of the word vector lacks a good evaluation
criterion. 2) The network model of the generator and
the discriminator needs further optimization. 3) Better
features need to be selected. Extract model and label to
balance factors.
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Original Our
Images annotation | annotation
mountain moyntain
jet jet
plane plane
mountain| mountain
people people
road road
people people
town town
street street
horses horses
people people
buildings | buildings
street street
sidewalk | sidewalk
tree tree
hotel hotel
maui maui
flag

Fig. 6. Actual annotation results of our method
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