TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

The Exception Handling in Automatic Translation
of Goto from PROMELA Model to Java Program

Suprapto, Member, [AENG

Abstract—A structured programming language does not or
should not have an unconditional jump goto statement. Any
program that contains a goto is not structured. There had
been a serious discussion over the years whether or not goto
statements should be eliminated or kept, and there was one
of the most discussed papers that spoke for the elimination of
goto statements. However, there were still some that spoke for
keeping the goto statements, even only for certain cases. The
modeling language PROMELA is one of some languages that
contain goto — the language creator agreed to keep goto.

This study proposes an automatic translation of goto that
appears in a PROMELA model into Java program using
exception handling in Java. The automatic translation is part
of the translator from PROMELA model into Java program
done in the previous study. There are at least two reasons
why used exception handling: (1) it is able to bring program’s
execution path jumping from one part of program to another.
This jump can be addressed to the specified target by exploiting
type of exception being captured. (2) it can be assigned with a
value - usually as a message about the exception. So that, by
assigning different value will distinguish one goto from others
in case there were more than one gotos in the same block of
codes. At the end, a program was written to show the automatic
translation works properly. However, because of the behavior
of goto itself and limitations of exception handling in Java, the
automatic translation developed in this study has not handled
all types of goto patterns appeared in PROMELA model.

The result of this study were the automatic translation
correspond to three types of goto pattern in a PROMELA
model, and a procedure to determine the right type of goto
pattern correspond to the automatic translation. The testing
was conducted by running the program of automatic translation
written in Java using 30 cases (PROMELA model containing
the goto pattern), 10 for each. In accordance with the testing,
the automatic translation worked properly for all cases.

Index Terms—Goto, label, exception handling, PROMELA,
Java, appearance, translation.

I. INTRODUCTION

HE unconditional jump statement (goto) is the most

powerful control statement, it means that all control
structures can be built by using only goto statement and one-
way selector. The use of goto means that any statement in a
program can potentially be executed immediately after any
other statements, and frequently jeopardize both readability
and maintainability [11]. However, the benefits of using
it sometimes outweigh the dangers, almost all ”standard”
programming languages include it [20] [21].

Even though PROMELA is one of languages that include
goto, however, goto is not really statement [7]. Goto is
normally not executed, it is only used by the parser to deter-
mine the target control state for the immediately preceding

Manuscript received August 31, 2020; revised July 10, 2021.

Suprapto is a lecturer and researcher of Computer Science and Electronics
Department, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281. e-
mail: sprapto@ugm.ac.id.

statement. The target state is identified by the label name and
must be unique within the surrounding proctype declaration
or never claim [22] [4].

Java programming language does not have an explicit goto
statements. Keywords such as break, continue, exit, and
return are restricted forms of goto. The break is a keyword
used to “’break” out of the innermost switch, for, while, or do
while statement body. It can also be used in a label form to
jump out of outer nested loop or switch statement. Similarly,
the keyword continue can be used only inside loops (i.e., for,
while, and do while). It causes the execution to skip over
the remaining steps of the loop body in the current iteration
(but then continue the loop if its condition is satisfied). All
of these keywords attempt to minimize harm of readability
than goto by restricting the potential target of the branching.
However, Java has an exception handling that can be used
to implement goto statements [23] [16] [2] [19] [12].

A project proposed to add some new jump statements to
C++ made available an explicit-specifier for switch state-
ment. The new jump statements were break label, continue
label (same as Java), goto case constant — expression
and goto default (same as C#). An explicit switch statement
(same as C#) caused each case block to have its own block
scope, and to never flow off the end. That is, each case block
must be explicitly exited. The implicit fall through semantic
between two consecutive case blocks could be expressed in
an explicit switch using a goto case statement instead [3].

The handling of FORTRAN goto statements has been a
difficult problem because of Java’s lack of goto statement
[15]. According to [18], Java’s labeled break, and continue
statements could be used to translate certain types of FOR-
TRAN gotos. The technique has been using for these gotos
was to generate “placeholders” in the Java source code. The
placeholders were method calls which specified the target of
the goto statements.

In [7] was discussed a strategy of how the goto statements
should be translated into Java code(s) in case they occurred
in a model of PROMELA. The strategy was encapsulating a
switch statements inside a while statement. There were four
cases of goto statement’s appearances observed and solved
by this approach. The first case was goto statement appears
in one option of selection if..fi and label comes before goto,
the second was similar to the first case except label was in
atomic construct, the third was one in which both label and
goto appear in the same do..od construct and label comes
after goto, and the last one was like the third except label
appears in the outside of repetition do..od.

The association between some constructs in PROMELA
and some in Java had been defined, and its correctness
had already been proven, except for goto statement [24].
In PROMELA, the goto construct could be any where in
a model. Therefore, the translation of goto that appears in

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

a model PROMELA to a Java program require a special
handling and treatment.

Most mainstream or modern programming languages, such
as Java and C#, typically provide features that handle excep-
tions. They typically involve constructs to throw and handle
error signals, and separate error-handling code from regular
source code and aim to assist in the practice of software
comprehension and maintenance [8] [13]. The policy of
exception handling of a system consists of design rules
set that specify its exception handling behavior (i.e., how
exceptions should be handled and thrown in a system). Such
policy is usually undocumented and implicitly defined by
the system architect [26] [12]. Previous studies on exception
handling stated the suboptimal practices of the flows and
prevalence of their anti-patterns. In addition, some studies do
not agree that exception handling can make the programming
languages simple and promote the introduction of subtle bugs
in programs [8] [17]. Although the majority of exception
handling anti-patterns are not significant in the models, but
they can provide a significantly explanation about power to
the probability of post-release defects. This paper presents
the study of exception handling usage in Java to reduce the
complexity of flows in program as a result of translation from
PROMELA model that contain goto. The result of this study
is an automatic translation of goto in PROMELA model into
Java program.

II. DISCUSSION

There are some difficulties found in translating goto that
occurres in a model of PROMELA into a Java program,
because Java does not support goto’s mechanism directly.
Fortunately, Java has an exception handling mechanism’s
that can be used to translate goto occurring in a PROMELA
model. Even so, there were still some occurrences of goto
in a model impossible or could not even be translated into
Java program. This was because the exception’s behavior
that only bring an execution path out of a code block, while
goto is able to jump either into a code block or out of it. For
more detail, the following are some factors that determine the
translatability of goto’s construct.

A. Position level of goto and label

The difference of position level (or depth) between goto
and label may cause goto in a PROMELA model could not
be translated into a Java program using exception handling.
In accordance with the exception’s behavior, if the jump
occurs from a position level into another of code block with
one or more levels deeper, goto could not be translated
automatically. Otherwise, the translation can be carried out.
An example of jump in the same level is shown in Listing 1.

Listing 1: An example of jump in the same level

swap :

a=a+b>b;
b=a—b;
a=a—>b;
log ! a, b;

goto swap;

It is seen from Listing 1, the position of label swap has
the same level as goto, in other word they are parallel. While
an example in Listing 2 shows the case where an occurrance
of goto and label are in different level. Because the label
swap appears inside atomic, and goto is outside atomic.

Listing 2: An example of jump into the inner level, atomic
code block

atomic {
flag = false;
swap:
a=a+ b;
b =a— b;
a=a—b;
}
log ! a, b;

goto swap;

The label swap appears in the position one level deeper
than the goto does. In this example the atomic construct
consists of four statements, and block of label starts from the
second statement: a = a + b;. Since the label is inside the
atomic construct, and the goto is parallel with it, so that the
direction of execution is from outside to inside. Because of
the limitations, exception handling in Java can’t simulate it.
Therefore, this appearance pattern of goto can’t be translated.

B. Occurrence Order of goto and label

A relative position of goto to label also influences the
pattern or structure of goto’s translation result. If goto comes
before label, there would be a block of codes (i.e., ones in
between goto and label) skipped or ignored. Otherwise, if
goto comes after label, it would be repeated. An example
of the pattern in which label come before goto is shown in
Listing 1. While Listing 3 shows an example of one in which
label come after goto.

Listing 3: A case where label comes after goto

goto next;

a=a+ b;
b =a— b;
a=a—b;
log ! a, b;
next:

The example in Listing 3 shows the case where label next
come after goto, and both goto and label have the same level
of position.

C. The appearance of goto or label in some constructs

In PROMELA, both goto and label might appear any
where in a model, either as independent appearance or ap-
pears in other constructs. If goto or label arises in a construct
with special behavior such as, if..fi, do..od, atomic, and
unless, the translation of goto must consider the execution
flow of corresponding construct. This is done in order to
maintain the behavior of construct, so that, their semantics
are preserved. For example, if a jump goes from inside an
atomic construct to outside, the lock was applied to variable
and process must have released first to allow other processes

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

become active again. Listing 4 shows an example of the
pattern where a jump leave from inside an atomic code
block.

Listing 4: A case where the execution’s flow jumped out of
the inner level, atomic code block

atomic {
log ! a, b;
if
flag —> goto next;
Iflag —> skip;

fi;
a=a+b;
b=a—- b;
a=a—>b;
}

next:

log ! a, b;

In this example, goto is inside if..fi construct, while the
if..fi is inside atomic construct. Since label next is outside
the atomic, it means that jump goes to not only outside of
if..fi but also the construct containing it. In other word, the
jump goes to outer level of code block.

D. Number of goto respect to label

It is obvious that the number of goto’s address to label
will influence the translation. In practice, one label could
be addressed by more than one goto’s. However, this form
(or structure) will cause some difficulties in translation, and
even impossible in the automatic one. For this reason, the
study only cover the case where one label is associated with
at most one goto. An example is shown in Listing 5.

Listing 5: One label one goto

a;i(;mic{
log ! a, b;
if

flag —> goto swap;
!flag —> goto next;

fi;

swap:
a=a+ b;
b =a— b;
a=a—b;
}

next:

log ! a, b;

In Listing 5, there are two gotos, both are inside if..fi
construct, and this if..fi is inside atomic. The associate label,
however, has different position level. Label swap inside
atomic has the same level as the associate goto, while next
is outside atomic.

On the other hand, Listing 6 shows an example of the
form in which one label is addressed by two goto. The
first is inside if..fi that is in atomic, and the second is
outside the atomic. Because the label swap is inside the
atomic, the flow of the first goto goes out, while the flow
of the second goto goes in, and this is not possible to be
performed automatically. Therefore, it will not be covered in
this automatic translation.

Listing 6: One label two goto

atomic{

log ! a, b;

if
flag —> goto swap;
Iflag — skip;

fi;
swap:
a=a+ b;
b =a— b;
a = a b;
}
goto swap;
log ! a, b;
statement_1; statement_1;
golo Labell; goto Labell;
statement_2; statement_2;
goto Label2; —— label2: «——
statement_3; statement_3;
Labell: Labell: «—— —1—
statement_4; statement_4;
Label2: <«—m— goto Label2;
statement 5; statement 5;
- (a) - (b)

statement_1; statement_1;

Labell: «— Labell:
statement_2; statement_2;
goto Label2; ——— Label2:|

statement_3;
goto Label1;
statement_4;
Label2: <———
statement_5; (c)

statement_3;
goto labell;

statement_4;
goto Label2;
statement_5; (d)

Fig. 1: The four classes of untranslatable goto patterns.

E. Structure of goto and label pair

Any number of goto and label pairs can appear anywhere
in any model of PROMELA. However, the structure of
their appearances also influence the possibility of translation.
Only a certain number of structures would be automatically
translated. The parallel appearances of pairs of goto and
label are structures that usually easy to translate. On the
other hand, two or more pairs that cross each other are
ones that impossible or could not be automatically translated
using exception handling. The pattern is then called by
untranslatable. It is indicated by the occurrences of more
than one pairs of either goto and label or label and goto
in the same model, and their flows cross each other or their
scopes intersect each other. By the scope means a block of
codes between label and goto or vice versa. Based on the
order of goto or label occurrences, the structures could be
classified into four: (a) both goto come before the label with
the same order of associate goto, (b) in the first pair, goto
come before the label and in the second pair label come
before goto, but the label of the first pair come after the label
of the second pair, (c) in the first pair, label come before the
goto and in the second pair goto come before label, but the
goto of the first pair come after the goto of the second pair,
and (d) both gotos come after labels with the same order
of associate label. Fig. 1 (a), (b), (c) and (d) shows the four

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

classes of structures that cannot be automatically translated
- then they are refered as untranslatable.

As an illustration for Fig. 1, Listing 7 shows the case
where flows of two pairs of goto and label cross each other.

Listing 7: One label one goto cross each other

atomic{

log ! a, b;

if
flag —> goto swap;
!flag —> skip;

fi;

next:
a=a+ b;
b =a— b;
a = a b;
}

swap:

log ! a, b;

goto next;

It is seen from Listing 7 the pattern has two kinds of
codes block, first is one that will be skipped; i.e., it consists
ofa=a+0b;b=a—0>b; and a = a — b, and second is one
that will be repeated; i.e., it consists of a = a+b; b = a — b;
a = a —b; and log ! a,b;. Moreover, these two blocks are
overlapped. So that, in accordance with the scheme in Fig. 1
this pattern of goto is untranslatable.

F. Automatic Translation of goto

The automatic translation of goto that appears in a
PROMELA model into a Java program using exception
handling requires a derived class exception with type of
GotoException. An object created from class GotoExcep-
tion is then thrown when find goto. It could be carried out
also using the existing class of exception, but it must be
distinguishable from exception created or required by pro-
gram. To make sure that goto is captured at the appropriate
place, the stored message in exception at goto should be
the name of label addressed by goto. Because when there
are some pairs of gotos, the place to capture the first goto
might not be right. If it does, exception would be thrown
again in order to be captured at the wrong place. Hence, the
exception handling in Java can’t cover all cases of goto
occurrence in PROMELA model.

There are only three patterns of goto that is possible to
be translated automatically using exception handling. They
are then refered as Type1, Type2 and Type3 respectively.

1. Label comes before Goto

In Type1 pattern, if goto is unconditional jump, the block
of codes (i.e., all statements are in between goto and label)
would be repeatedly executed. On the other hand, they will be
executed if the condition of goto is satisfied. Moreover, when
position level of label and goto are equal, the translation is
straight forward.

The translation will still work, even their level of positions
are different, as long as the position level of goto is deeper
than the one of label. For instance, goto appear inside the
block code of statement_k - it means the position level of
goto is deeper than the one of label, an automatic translation

Labe:statemefnt 1

statement k

statement km

solo Label

statement s

Fig. 2: The translatable structure of different position level
between label and goto

can be performed. The illustration of this situation is shown
in Fig. 2.

In real case, when goto is in any statement such as, an
option of if..fi or do..od, atomic, and unless constructs, the
schemes will be formulated as in Fig. 3.

1 statement_l;

2 labelA: p-anchor
statement 2; pPossible loop sequences
41 stmt with goto: ycontrol

5 77 statement 37

6

Fig. 3: label comes before goto, and goto appears in any
other statements

statement 1;

boolean labelA true;
while (labelR){
try |
labelA = false;

»anchor

i
] statement 2; _,pOSSibIe Ioop
i sequences
|
i

stmt_with_gotd;
} catch (GotoException ex)
if (ex.getMessage().equals("labelA")) {
14 labelR = true ——»control

} else { throw ex; }

St atemer,t_&

Fig. 4: Translation of structure where label come before goto
and the level of label is outer than goto

In this structure of occurrance, goto causes a loop. labelA
is called anchor since it becomes starting point in which
the loop happens. stmt_with_goto can be any statement
with goto, such as goto in if.fi or if.fi by itself, and it
is called control since it can change path of program’s
execution when gpto is executed. In Fig. 3, it change the
execution path that is supposed to line 5 from line 4, but to

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

line 2 instead, and creates the loop. Additionally, it also has
function as scope delimiter of loop. So that, the next state-
ment (statement_3 in line 5) is not part of loop sequence.
possible_loop_sequences (i.e., the statements insides dottet-
line box) is a group of statements that will be repeated
whenever goto is called. As shown in Fig. 3, it begin at
statement after label until control. Therefore, it will be
automatically translated in Java program as seen in Fig. 4.

It is straight forward that lines 1, 8 and 19 are translation
of line 1, 3 and 5 in Fig. 3 respectively. An anchor labelA
(line 2 in Fig. 4) is translated into these parts:

e a boolean variable labelA, since Java does not have
label. So that, a variable is used to substitute as well as
an identifier of label or anchor.

« while(labelA), as it is explained earlier, an anchor
functions as indicator of the beginning of loop, and it
is translated into loop statement.

o labelA = false, used to indicate that the label has been
passed. This assignment also used to make sure that
loop will not happen without goto’s calling. try does
not have any function, it only to meet the syntax of
try..catch.

Statement stmit_with_goto is not translated, since it could
be sequence such as, goto in if..fi. On the other hand, if
stmt_with_goto is a single statement, it would be translated
as in Listing 8. As mentioned previously, stmt_with_goto
had two functions: moves execution path (control) and limits
scope of looping. As a control, it was translated into throw
new GotoException(’labelA”). So that, if there is a goto
inside stmt_with_goto, throw would produce exception that
will change execution path as control (or goto) functioning.
The execution will move to section of catch and change the
value of [abel A into true - label A = true. The existence of
variable label A in catch is used also as identifier of the label,
so that, goto will not be captured by wrong catch in case
there are more than one label in the model. Additionally,
because catch is an end part of loop, it will guarantee
executing the loop. catch(...) is a part of translation of
stmt_with_goto that functions to limit scope of looping. If
there is no goto inside stmi_with_goto, catch would not
be executed, and label A = true was not executed. Hence, it
become end of loop or loop’s sequence.

Listing 8: Translation template of goto pattern where label
come before goto and the level of label is outer than the
level of goto

statement_1 ;

boolean labelA;
while (labelA)
try {
labelA = false;
statement_2 ;
throw new GotoException(”labelA™);
} catch (GotoException ex){
if (ex.getMessage ().equals(”labelA”))
{ labelA = true; }
else { throw ex }

}

statement_3

The translation result in Listing 8 only satisfy for goto
pattern in which the position level of label must be either
the same as or at least one level outer than the position level
of goto, otherwise there is no automatic translation. The goto
pattern in which the position level of label was at least one
level inner than the position level of goto is shown in Fig. 5.

statement i

Labe1: statement im

statement m

statement k

goto Label

Fig. 5: An untranslatable goto pattern where position level
of label was one level inner than its goto

In addition, if goto is inside the constructs whose special
behavior, such as, atomic, unless, etc., translation requires
a special handling to avoid behavior changes of the corre-
sponding construct. For those of the pattern in which goto is
inside atomic and label is outside, the lock must be released
from atomic right before throwing an exception to allow
other processes back to run. The substitute of goto labelA;
is shown in Listing 9.

Listing 9: An additional releaselLock()

statement_1 ;

boolean labelA ;
while (labelA)
try{
labelA = false;
statement_2 ;

releaseLock ();
// allowing other processes bact to run
throw new GotoException(”labelA”);
} catch (GotoException ex){
if (ex.getMessage ().equals(”labelA”))
{ labelA = true; }
else { throw ex }

}

statement_3

In order to make the concept clearer, the following are
some examples that illustrate the usage of translation pattern
shown in Listing 8.

Example II.1.

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

This example shows the codes fragment in a PROMELA
model where both label labelOne and goto are in the same
level, as in Listing 10.

Listing 10: The code fragment in PROMELA containing a
pair of label-goto

bool b;
labelOne:
int a = 4;
a += 5;
goto labelOne;

3;
true;

a
b

In accordance with the translation pattern in Listing 8, the
result (i.e., a Java program) is shown in Listing 11.

Listing 11: Java translation of the pattern where label come
before goto

PromelaBool b;
boolean labelOne = true;
while (labelOne) {
try {
labelOne = false;
Promelalnt a = new Promelalnt (4);
a.assign(a.getValue ()+5);
throw new GotoException(”labelOne”);
} catch ( GotoException x ) {
if (x.getMessage ().equals(”labelOne”))
labelOne = true;
else throw x; }
}
a.assign(3);
b.assign(1);

that Since this automatic translation is part of translator
from PROMELA model into Java program, any variable used
in PROMELA models is translated into objects in Java [25].
For instance, bool b in PROMELA model is translated into
PromelaBool b istead of using boolean b, etc.

Notice that, not only the translation of goto, but also for
statement. For instance, PromelaBool b; is a translation
result for bool b; in PROMELA model. Instead of using
boolean in Java, a defined data type PromelaBool used as
a translation of bool in PROMELA, since the values between
bool in PROMELA and boolean in Java is not exactly the
same. This also applies to some other data types, such as
int, bit, unsigned, etc. [25]. However, the statement such
as boolean labelOne = true; is a new boolean variable
declared and initialized in Java, that is why does not use
PromelaBool.

Example I1.2.

It is different than one in Example II.1, the occurrence
levels of goto and label are different (i.e., goto is nested in
if..fi construct, see Listing 12). The position level of label
is outer than one of goto, this pattern is translatable. For
the shake of simplicity, however, the if..fi construct used in
this example has only one sequence which is a < 100 —
goto labelOne;. Besides, the goto has a condition, then goto
would be executed if a < 100 is satisfied.

Listing 12: Java translation of pattern where label came
before goto

bool b;
labelOne :
int a = 4;
a += 5;
if
a < 100 — goto labelOne;
fi
a
b

3;
true;

In accordance with the translation pattern in Listing 8, the
result of translation is shown in Listing 2?.

Listing 13: Java translation result where label is outer than
goto

PromelaBool b;
boolean labelOne =
while (labelOne) {
try {
labelOne = false;
Promelalnt a = new Promelalnt(4);
a.assign(a.getValue()+5);
boolean if_flag = false;
while (if_flag) {
Promelalnt choice =
header.lock ();
if ((a.getValue() < 100) == true)

true;

—1;

choice = 1;

switch ( choice ) {
case 1:
if_flag = true;
throw new GotoException(”labelOne”);
if (x.getMessage ().equals(”labelOne”))
labelOne=true;
break;

} catch (GotoException x) {
labelOne = true;
}
}

a.assign(3);
b.assign (1);

2. Label comes after Goto

This section discusses the Type2 pattern of goto which
is one where label come after goto. With this order of
occurrence, there is a block of codes skipped. Similar to the
previous case, the simplest structure of this case is when the
position level of label and goto are the same. The scheme
for this pattern is shown in Fig. 1 (b).

On the other hand, if the position level of goto is one or
more levels inner than its label, it would be translatable. The
illustration of this situation is shown in Fig. 6.

The general pattern of scheme in Fig. 6 is shown in
Listing 14, where each statement_l, statement_2, and
statement_3 can be a single statement or a block of
statements.

Listing 14: Goto pattern where label comes after goto

statement_1 ;

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

goto labelA;
statement_2 ;

labelA :
statement_3 ;

statement 1

goto Label

statement

statement k

Labe1: statement s

Fig. 6: Goto pattern in which label come after goto

This pattern is even simpler than the previous one, since
the execution flow is only one-way down. It is like an
ordinary sequential statements. Therefore, the pattern in
Listing 14 is easily translated into Java program by using
exception handling. The result of translation is shown in
Listing 15.

Listing 15: Translation template of goto pattern in which
label comes after goto and the level of label is outer than
the level of goto

statement_1 ;
try{
throw new GotoException(”labelA”);
statement_2 ;
} catch(GotoException ex){
if (ex.getMessage ().equals(”labelA™)
{ } else {throw ex}

statement_3;

Similar to the previous form, the translation template
in Listing 15 only satisfies to the goto pattern where the
position level of label is one outer than that of goto. Hence,
the pattern whose scheme is shown in Fig. 7 does not work.

When goto is inside the special behavior construct such
as atomic, the translation template is similar with one of
the previous patterns. The only different is the lock must
be released from atomic before throwing an exception to
allow other processes back to run. Therefore, the translation
template will look like one in Listing 16.

Listing 16: Translation template of goto pattern in which
label comes after goto, and goto is inside atomic while
label is outside

statement_1 ;
try{

golo Label

statement k

! statemetnt ki i

!

Labe 1: statement km

statement_s

Fig. 7. Goto pattern where the position level of label is
deeper than one of goto

releaseLock ();
throw new GotoException(”labelA”);
statement_2 ;
} catch(GotoException ex){
if (ex.getMessage ().equals(”labelA™)

else {throw ex}

}

statement_3 ;

The following are some examples of the goto pattern in
which label comes after goto, the level of label is outer than
goto or goto is inside atomic.

Example I1.3.

In this example goto is inside atomic construct, while
label is outside. So that, it is translatable. The codes fragment
is shown in Listing 17.

Listing 17: An example of goto pattern where the level of
label is inner than the level of goto

int a;

atomic {
b += 4;
a += b;

goto labelThree;
b =235;

}
labelThree:
a = 25;

In accordance with the translation template in Listing 15
and Listing 9, the translation result is shown in Listing 18.

Listing 18: Translation result of goto pattern where label
comes after goto and the level of label is outer than the
level of goto

Promelalnt a = new Promelalnt ();
// int a;
try {
int stmt_number;
while (stmt_number <= 4) { // atomic
header.lock ();
switch (stmt_number) {
case 1

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

if (!true) break;
b.assign(b.getValue ()+4);
stmt_number++;
case 2 :
if (!true) break;
a.assign(a.getValue()+b.getValue ());
// a+=b;

// b+=4;

stmt_number++;
case 3 :
if (!true) break;
releaseLock ();
throw new GotoException(”labelThree”);
// goto labelThree;
stmt_number++;
case 4
if (!true) break;
b.assign(5); // b = 5;
stmt_number++;
}

}
} catch (GotoException x) {
// labelThree:
if (x.getMessage ().equals
(”labelThree”)) {}
else throw x;
// a =

a.assign(25); 25;

Notice that the translation tempalte in Listing 16 does not
apply for every pattern where goto is inside a construct with
special behavior. For example, it does not apply when pairs
of goto-label is inside the unless construct. Especially when
goto is in the main sequence of unless and label is in the
escape sequence.

3. goto in unless main sequence and label in unless
escape sequence

This section presents the Type3 of goto pattern. Suppose
there are m statements in the main sequence, and there are
n in the escape sequence. The goto appears in between
main_stmt_(1 — 1) and main_stmt_i for some i, 2 < j <
m, while label does in between escape_stmt_(j — 1) and
escape_stmt_j for some j, 2 < j < n. The schema of
appearance is depicted in Listing 19.

Listing 19: The pattern in which goto is inside unless
construct

{ main_stmt_1;

main_stmt_ (i —1);
goto labelx;
main_stmt_i;

main_stmt_m ;
} unless { escape_stmt_1;

escape_stmt_(j —1);
labelx :
escape_stmt_j;

escape_stmt_n;

}

Based on the control flow of unless construct, goto
will be executed only if while executing the first ¢ —
1 statements in the main sequence, the first state-
ment in the escape sequence is not executable. Once

goto is executed, all statements in the main block
after goto - main_stmt_i,...,main_stmit_m, and all
statements in the escape block before the label -
escape_stmt_1, ... escape_stmt_(j — 1) will be skipped.
In Java, this pattern has translation template as in Listing 20.
The tologic is a function used to convert the statement into
logic value (true, false).

Listing 20: The translation template of the pattern in which
goto is inside unless construct

try {

if (tologic(escape_stmt_1))
throw new unlessException ();
main_stmt_1;

if (tologic(escape_stmt_1))
throw new unlessException ();
main_stmt_{i—1};
if (tologic(escape_stmt_1))
throw new unlessException ();
throw new GotoException(”labelx”);
if (tologic(escape_stmt_1))
throw new unlessException ();
main_stmt_i;

if (tologic(escape_stmt_1))
throw new unlessException ();
main_stmt_m;

} catch(unlessException x) {
escape_stmt_1;

escape_stmt_(j —1);
escape_stmt_j;

escape_stmt_n;

catch (GotoException g) {
escape_stmt_j;

escape_stmt_n;

}

Example I1.4 gives an illustration of simple case in List-
ing 19.

Example 11.4.

As in example II.3, this goto also comes before label.
However, it appears in unless construct. The codes fragment
is shown in Listing 21.

Listing 21: The translation template of the pattern in which
goto is inside unless construct

a=4; b += 3;
goto labelX;
} unless {a ==
labelX :
b=7,}a=

12;

30;

In accordance with the translation template in Listing 20,
the number of statements in main sequence is two and
goto come in the main sequence after the last statement. The
label come in the escape sequence ater the first statement.
Then the translation result of PROMELA codes fragment in
Listing 21 is shown in Listing 22 (i.e., Java program).

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

Listing 22: The translation result of the pattern in which goto
is inside unless construct

try {
if (a.getValue() == 12)
throw new unlessException ();
a.assign(4);
if (a.getValue() == 12)
throw new unlessException ();
b.assign(b.getValue() + 3);
if (a.getValue() == 12)
throw new unlessException ();
throw new GotoException(”labelx”);
} catch (unlessException u) {
while ( (a.getValue() == 12)
== false { }
b.assign(7); // b = 7;
} catch(GotoException g)
if (g.getMessage.Equals(”labelX”)){
a.ssign(5); }
else throw g
a.assign(30);

Subsequently, in order to obtain the accurate result of
translation, it is required a procedure to select (or determine)
template correctly. The following subsection presents a pro-
cedure that will guide in selecting the right type of goto
statement.

G. Procedure of Type Selection

This procedure is part of DFS process in the translation
of PROMELA model [25]. It was specifically designed to
select the right type of translation. It guides to select the
right type of goto statement. The selection is made based
on the occurrance pattern of goto statement in PROMELA
model. The procedure is shown in Listing 23.

Listing 23: Procedure for determining type of goto statement

Procedure Type Selection

Read statement
If statement contain goto

1 Check the entire statement afterward
2 If find label
2.1 Type2

Else if statement is label
1 Check the entire statement afterward
2 If find statement containing goto

Typel
Else if statement is unless

Check the entire action
If contain goto
Check guard
If find label
1 Type3

AL PLLLWPODNRDNODND=
[\
—_—

[N SN SR

.1
.2
2.

A statement contains goto if and only if either in its action
or guard there is a statement with type of goto. While Type1
is the form of goto in which goto statement come before
label, Type2 is the form of goto in which label come before
goto statement, and Type3 is the form of goto in which goto
statement is in action of an unless, and label is in the guard
of the same unless. Among these three, they might have
nested each other, such as Type1l is inside Type2 or vice
versa, Typel and Type2 are parallely inside Type3, Type1
is inside Type2 and Type2 is inside Type3, etc.

Since the procedure is part of DFS process, the translation
is carried out from the innermost pairs of goto and label
until the outermost in the nested form. For instance, the
translation will begin with Type1 and its result will be used
in translation process of Type2 for the case of Typel is
inside Type2. Similarly, the case of Typel and Type2 are
parallely inside Type3 will be carried out by first translating
Typel and Type2 sequentially, and the results will be used
together in translation process of Type3, etc.

H. Results of Testing

To show that the automatic translation of goto’s that ap-
pear in PROMELA model into Java program work properly
for each type, this section presents the results of running
program with some various inputs for each type. The code
fragment of PROMELA models that contain goto were
manually generated, and they would be used as inputs of
the automatic translator. The testing was conducted with 10
models for each type and run one per each, so that, there were
30 results. However, to minimize the use of space (number
of pages), only one selected results were displayed for each
type.

1) Typel: The input sample used in this case representing
Type1 of goto pattern, which is label come before goto. As
shown in Fig. 8, the label incr lies outside if..fi construct,
while the goto lies inside. The label incr come before
the statement goto. So that, when the guard b < 100 is
executable, the control is sent back to the label incr and the
statement b = b+ a is executed, otherwise the control is sent
to the statement after if..fi construct. This flow of process will
be repeated until b >= 100. The output of running program
for this input (Fig. 8) is shown in Fig. 10.

&4 Promela to Java
File Edit Option

fModeI (New) log | token rliblHeaderImerface rHeaderImpl init
init{
a = 18;
incr:
b=»bb+ a;
if
i b < 188 -» goto incr;
: else -» skip;
fi;

¥

Fig. 8: The selected input (model) representing Type1

g:, Promela to Java

File Edit Option

(‘Model (New) | log | token | libHeaderinterface | Headerimpl | init

init{
if
1 a < b ->» goto swap;
i else -» skip;
fi;
b =b + 1808;
swap:
a=a+b;
b=2a- b;
a=a - b”
h

Fig. 9: The selected input (model) representing Type2

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

2) Type2: As it was mentioned previously, in Type2 state-
ment of goto comes before label. Therefore, all statements
are in between will be skipped. For instance, in Fig. 9, the
statement of goto lies in an action with the guard a < b - one
of the options in if..fi construct, and the corresponding label
(i.e., swap) lies outside of if..fi construct and comes after
it. When the guard a < b is executable (not blocked), the
statement of goto will be executed, and the control program
is delivered to location of swap, and the only statement
b = b+ 100 is skipped. Otherwise, the control is delivered
to statement b = b + 100, and the execution is performed
normally. The result of translation for this example is shown
in Fig. 12.

oy Promelato Jave

File Edit Oplion

foken

Mosdel (New] | log libHeaderintortace | Headerimgl | i

Fig. 10: The result of Typel associated with the selected
input of Fig. 8

3) Type3: In Type3, goto statement is in action part of
an unless, and label is in the guard of the same unless.
From Fig. 11 is seen that between goto and label are in
the same unless - goto is in main sequence, while label
is in an escape sequence. In this case, all statements before
goto (i.e., a =a—10,a =a — 5, and a = a — 1) will be

executed while the first statement in escape sequence (a < b)
is unexecutable. Because goto is the last statement in the
main sequence, after goto is being executed there will be no
statement skipped, and the control is sent to the label assign.
The result of translation - the output of running program is
shown in Fig. 13.

gj Promela to Java
File Edit Option
l/Mo-deI{Hew} | log | token | libHeaderinterface | Headerimpl | init

init{]
a = a-18;
a = a-5;
a = a-1;
goto assign;
} unless {

a < b;
assign:
b = a;

¥

}

Fig. 11: The selected input (model) representing Type3

g Promels to Java
File Edil Oplion
Mocel (New) | log

tokem W Hesderinteriace Hesgerimpl mr

Fig. 12: The result of Type2 associated with the selected
input of Fig. 9

Volume 48, Issue 3: September 2021



TAENG International Journal of Computer Science, 48:3, IJCS 48 3 10

III. CONCLUSION

The study has identified three types of goto pattern in
PROMELA model that could be automatically translated into
Java program using the exception handling mechanism in
Java. On the other hand, there were several pattern could
not be handled using the exception handling. Most of them
were nested patterns of goto, and among of them cross each
other. Those of three types were Type1 was the pattern where
label came before goto, Type2 was the pattern where goto
came before label, and Type3 was one where goto was in
action of an unless, and label was in the guard of the same
unless. Further more, it has been successfully developed
the translation template of each type that will be used to
translate the corresponding type of goto pattern into Java
program, and a procedure to determine the right type of goto
pattern correspond to the automatic translation. Subsequently,
the testing was conducted using 10 cases (i.e., PROMELA
model containing goto) for each type, and showed that the
automatic translation worked properly. In order to handle
those patterns that still could not be covered, there should
be a further study that reduce the limitations of an existing
exception handling mechanism to improve its capability.

Fig. 13: The result of Type3 associated with the selected
input of Fig. 11

REFERENCES

[1] A. Luvisi, "The History, Controversy, and Evolution of the Goto
Statement,” Sonoma State University, 2008.

[2] Anurag, Akankasha, and A. Saxena, “Implementation of Custom Excep-
tion and Its Optimization in Java,” IEEE 3rd International Conference
on Computing for Sustainable Global Development (INDIACom), 2016.

[3] A.Tomazos, "Explicit Flow Control: break label, goto case and explicite
switch,” Project of Programming Language C++ Evolution Working
Group, 2014.

[4] C. Pronk, "Promela to Java - Automatic translation,” Slides of TU Delft
course IN4023: Advanced Software Engineering, 2007.

[5] C. Wimberger, ’Source to Source Translator from C# to Java and Action
Script,” Journal of Kepler University Linz (KJU), 2008.

[6] D. A. Plaisted, ’Source-to-Source Translation and Software Engineer-
ing,” Journal of Software Engineering and Applications, 2013.

[7] E. Vielvoije, "Promela to Java, Using an MDA Approach,” Thesis, 2008.

[8] F. Ebert, F. Castor, and A. Serebrenik, ”A Reflection on An Exploratory
Study on Exception Handling Bugs in Java Programs, IEEE 25th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 18-21 Feb. 2020, London, ON, Canada. ISSN: 1534-
5351, DOI: 10.1109/SANER48275.2020.9054791, IEEE 2020, 2020.

[9] G. J. Holzmann, "The Model Checker SPIN,” IEEE Transactions on
Software Engineering, 1997.

[10] G. J. Holzmann, "The SPIN Model Checker: Primer and Reference
Manual,” Addison-Wesley Professional, ISBN 0 321 228628, 2003.
[11] H. Kondoh, and K. Futatsugi, ”To use or not to use the goto statement:
Programming styles viewed from Hoare Logic,” Science of Computer

Programming 60, pp 82-116, 2006.

[12] H. Melo, R. Coelho, and C. Treude, ”Unveiling Exception Handling
Guidelines Adopted by Java Developers,” IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2019.

[13] J. Oliveira, H. Macedo, N. Cacho, and A. Romanovsky, "DroidEH:
An Exception Handling Mechanism for Android Applications,” IEEE
29th International Symposium on Software Reliability Engineering
(ISSRE), 15-18 Oct. 2018, Memphis, TN, USA. DOI: 10.1109/IS-
SRE.2018.00030, IEEE 2018, 2018.

[14] K. Jiang, "Model Checking C Programs by Translating C to
PROMELA,” 2009.

[15] K. Seymour. and J. Dongarra, ”Automatic Translation of FORTRAN
to JVM Bytecode,” Concurrency and Computation Practice and Expe-
rience, vol. 15, pp 207-222, 2003.

[16] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schnei-
der, "How Developers Use Exception handling in Java ?,” IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR),
2016.

[17] M. Mehrabi, N. Giacaman, and O. Sinnen, “Unobtrusive Asyn-
chronous Exception Handling with Standard Java Try/Catch Blocks,”
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 21-25 May 2018, Vancouver, BC, Canada. ISSN: 1530-2075,
DOI: 10.1109/IPDPS.2018.00095, IEEE 2018, 2018.

[18] M. Ceccato, P. Tonellia, and C. Matteotti, "Goto Elimination Strategies
in the Migration of Legacy Code to Java,” 12th European Conference
on Software Maintenance and Reengineering, Athens, Greece, DOI:
10.1109/CSMR.2008.4493300, IEEE, Print ISBN: 978-1-4244-2157-2,
Print ISSN: 1534-5351, 2008.

[19] M. Kechagia, T. Sharma, and D. Spinellis, “Toward a Context De-
pendent Java Exceptions Hierarchy,” IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017.

[20] M. Nagappan, R. Robbes, Y. Kamei, E. Tanter, S. Mclntosh, A.
Mockus, and A. E. Hassam, ”An Empirical Study of goto in C code,”
Peer] PrePrint—http://dx.doi.org/10.7287/peer;j.preprints.826v1—CC-
BY 4.0 Open Access—rec: 11 Feb 2015, publ: 11 Feb 2015,
2015.

[21] M. Nagappan, “"Reconsidering Whether GOTO Is Harmful,” IEEE
Software, vol. 35, Issue: 3, DOI: 10.1109/MS.2028.2141020, 2018.
[22] R. Gerth, ”Concise PROMELA Reference,” 2012.

http://www.cse.msu.edu/ cse470/PromelaManual/Quick.html.

[23] S. Nakshatri, M. Hegde, and S. Thandra, ”Analysis of Exception
handling Pattern in Java Projects: An Empirical Study,” IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), 2016.

[24] Suprapto, R. Wardoyo, R. Pulungan, and B. Wijaya, "A Scheme of
Construct Association from PROMELA Model to Java Program,” Proc.
4th FTRA, 2013.

[25] Suprapto, R. Wardoyo, R. Pulungan, and B. Wijaya, "A Formal
Proof of Correctness of Construct Association from PROMELA to
Java,” IAENG International Journal of Computer Science, vol. 42, no.4,
pp313-331, 2015.

[26] T. Montenegro, H. Melo, R. Coelho, and E. Barbosa, “Improv-
ing developers awareness of the exception handling policy,” IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 20-23 March 2018, Campobasso, Italy. DOI:
10.1109/SANER.2018.8330228, IEEE 2018, 2018.

[27] W. Nabialek, A. Janowska, and P. Janowski, “Translation of Timed
Promela to Timed Automata with Discrete Data,” John Wiley Sons,
Ltd, 2008.

Volume 48, Issue 3: September 2021





