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Abstract—In the present paper, we introduce the concepts of
implicative filters, positive implicative filters, fantastic filters
and associative filters in a pseudo-quasi-MV algebra. The
properties of these types of filters are investigated and the
relationships between them are also discussed.

Index Terms—pseudo-quasi-MV algebras, implicative filters,
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I. INTRODUCTION

NOn-commutative algebraic models become a popular
topic in the non-classical logic research. In the last

decades, many non-commutative algebras were introduced as
the generalizations of the known commutative algebras. For
example, pseudo-hoops [12], pseudo-BL algebras [9], [10]
and pseudo-MV algebras [11], they had been introduced as
the non-commutative generalization of hoops, BL-algebras
and MV-algebras, respectively. In 2006, the notions of quasi-
MV algebras were introduced by Ledda et al. in [15]. Quasi-
MV algebras arising from quantum computation were closely
connected with fuzzy logic. Subsequently, Liu and Chen
extended the notions to the non-commutative cases, called
pseudo-quasi-MV algebras (pqMV-algebras for short) [17].
More properties of pqMV-algebras can be seen in [4], [5].

The importance of filters in studying the algebraic struc-
tures is well-known [7], [18], [19]. Moreover, in the view
of logic, a kind of filters correspond to a set of provable
formulae. Thus different types of filters were introduced
in an algebra and used to characterize the structures of
quotient algebras. For example, Haveshki et al. defined the
notions of (positive) implicative filters and fantastic filters
of a BL-algebra and discussed their relationship [13]. Then
Kondo and Dudek investigated the relationship among these
filters in a BL-algebra further [14]. The notions of (positive)
implicative filters and Boolean filters in a residuated lattice
were introduced by Liu and Li in [16]. Moreover, Bus-
neag and Piciu considered their relationship and constructed
quotient residuated lattices using these filters [2]. Alavi
et al. investigated not only implicative filters and positive
implicative filters, but also fantastic filters and associative
filters in a pseudo-hoop [1]. In addition, Ciungu introduced
involutive filters of pseudo-hoops in [8].

In [6], [17], we have shown the ideal theory in a pqMV-
algebra. Since filters are the dual notion of ideals in a pqMV-
algebra, some related properties of filters in a pqMV-algebra
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can be obtained dually. In order to study more properties of
filters and characterize the quotient structure of a pqMV-
algebra, we want to introduce some kinds of filters in a
pqMV-algebra in the present paper. Their properties and
the relationships between these filters are also expected to
discuss.

II. PRELIMINARY

This section recalls some basic properties of pqMV-
algebras which are used in the following.

Definition 2.1: [17] A pseudo-quasi-MV algebra (pqMV-
algebra, for short) is an algebra Q = ⟨Q; +,′ , 0⟩ of
type ⟨2, 1, 0⟩ satisfying the following conditions for every
υ,ϖ, ν ∈ Q:

(pqMV1) (υ +ϖ) + ν = υ + (ϖ + ν);
(pqMV2) υ +ϖ + 0 = υ +ϖ;
(pqMV3) υ + 0 = 0 + υ;
(pqMV4) υ + 0′ = 0′ = 0′ + υ;
(pqMV5) (υ + 0)′ = υ′ + 0;
(pqMV6) ϖ+(υ′+ϖ)′ = (ϖ+υ′)′+ϖ = υ+(ϖ′+υ)′ =

(υ +ϖ′)′ + υ;
(pqMV7) υ′′ = υ.

On any pqMV-algebra Q, we denote 0′ = 1 and define
some operations as follows: for every υ,ϖ ∈ Q, υ ⊗ ϖ =
(υ′+ϖ′)′, υ⊔ϖ = υ+(ϖ′+υ)′, υ⊓ϖ = (υ′⊔ϖ′)′, υ →L

ϖ = υ′ +ϖ and υ →R ϖ = ϖ + υ′. Moreover, one define
a relation υ ≤ ϖ iff υ ⊓ϖ = υ + 0. It is immediate to get
that the relation ≤ is reflexive and transitive. However, it is
not always antisymmetric. Below we present some equivalent
characterizations and properties of the relation.

Proposition 2.1: [17] Let Q be a pqMV-algebra. Then the
following conditions are equivalent for every υ,ϖ ∈ Q:

(1) υ ≤ ϖ;
(2) υ ⊔ϖ = ϖ + 0;
(3) υ →L ϖ = 1 = υ →R ϖ;
(4) υ ⊗ϖ′ = 0 = ϖ′ ⊗ υ.

Proposition 2.2: [3], [5] Let Q be a pqMV-algebra. Then
for every υ,ϖ, ν, δ ∈ Q, we have:

(P1) 0 ≤ υ ≤ 1;
(P2) υ ≤ υ + 0 ≤ υ;
(P3) if υ ≤ ϖ and ν ≤ δ, then υ + ν ≤ ϖ + δ and

υ ⊗ ν ≤ ϖ ⊗ δ;
(P4) υ ≤ υ +ϖ and υ ≤ ϖ + υ;
(P5) υ ⊗ϖ ≤ υ and ϖ ⊗ υ ≤ υ;
(P6) υ ⊗ϖ ≤ ν iff υ ≤ ϖ →L ν iff ϖ ≤ υ →R ν;
(P7) υ ⊓ϖ ≤ υ ≤ υ ⊔ϖ;
(P8) υ ≤ ϖ →L υ and υ ≤ ϖ →R υ;
(P9) if υ ≤ ϖ, then ϖ →L ν ≤ υ →L ν and ϖ →R

ν ≤ υ →R ν, if υ ≤ ϖ, then ν →L υ ≤ ν →L ϖ and
ν →R υ ≤ ν →R ϖ;

(P10) υ ≤ (υ →L ϖ) →R ϖ and υ ≤ (υ →R ϖ) →L ϖ;
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(P11) υ →L ϖ ≤ (ϖ →L ν) →R (υ →L ν) and υ →R

ϖ ≤ (ϖ →R ν) →L (υ →R ν);
(P12) (ϖ →L ν) ⊗ (υ →L ϖ) ≤ υ →L ν and (υ →R

ϖ)⊗ (ϖ →R ν) ≤ υ →R ν;
(P13) ν →L υ ≤ (ϖ →L ν) →L (ϖ →L υ) and ν →R

υ ≤ (ϖ →R ν) →R (ϖ →R υ);
(P14) (υ ⊔ ϖ) →L ν = (υ →L ν) ⊓ (ϖ →L ν) and

(υ ⊔ϖ) →R ν = (υ →R ν) ⊓ (ϖ →R ν);
(P15) υ →R (ϖ →L ν) = ϖ →L (υ →R ν) and υ →L

(ϖ →R ν) = ϖ →R (υ →L ν);
(P16) ((υ →L ϖ) →R ϖ) →L ϖ = υ →L ϖ and

((υ →R ϖ) →L ϖ) →R ϖ = υ →R ϖ;
(P17) 1 →L υ = υ + 0 = 1 →R υ;
(P18) υ →L (1 →R ϖ) = υ →L ϖ and υ →R (1 →L

ϖ) = υ →R ϖ;
(P19) (υ⊗ϖ) →L ν = υ →L (ϖ →L ν) and (υ⊗ϖ) →R

ν = ϖ →R (υ →R ν);
(P20) (υ →L ϖ) ⊔ (ϖ →L υ) = 1 and (υ →R ϖ) ⊔

(ϖ →R υ) = 1.

Suppose that Q is a pqMV-algebra and the set M ⊆ Q.
Then M is said to be a filter in Q if M satisfies: (F1) 1 ∈ M ;
(F2) if υ,ϖ ∈ M , then υ ⊗ ϖ ∈ M ; (F3) if υ ∈ M and
ϖ ∈ Q with υ ≤ ϖ, then ϖ ∈ M . Following from the
definition, if M is a filter in Q, then we have υ +ϖ ∈ M
and ϖ + υ ∈ M by (P4), for every υ ∈ M and ϖ ∈ Q.

Proposition 2.3: Let Q be a pqMV-algebra and the set
M ⊆ Q. Then the following statements are equivalent:

(1) M is a filter in Q;
(2) 1 ∈ M and if υ, υ →L ϖ ∈ M , then ϖ ∈ M ;
(3) 1 ∈ M and if υ, υ →R ϖ ∈ M , then ϖ ∈ M .

Proof: (1) ⇔ (2) Let υ, υ →L ϖ ∈ M . Then υ⊓ϖ = (υ →L

ϖ)⊗υ ∈ M . Because M is a filter in Q and υ⊓ϖ ≤ ϖ, we
have ϖ ∈ M using (F3). Conversely, suppose that υ,ϖ ∈ M .
Since υ →L (ϖ →L (υ ⊗ϖ)) = (υ ⊗ϖ) →L (υ ⊗ϖ) =
1 ∈ M and υ ∈ M , we have ϖ →L (υ ⊗ ϖ) ∈ M . Note
that ϖ ∈ M , we have υ ⊗ϖ ∈ M . If υ ∈ M and ϖ ∈ Q
with υ ≤ ϖ, then we have υ →L ϖ = 1 ∈ M , it turns out
ϖ ∈ M . Thus M is a filter in Q. The proof of (1) ⇔ (3) is
analogous to (1) ⇔ (2).

Given that Q is a pqMV-algebra. If M is a filter in Q and
υ →L ϖ ∈ M iff υ →R ϖ ∈ M for every υ,ϖ ∈ Q, then
M is called a normal filter in Q; if ϑ is a congruence on Q
and ⟨υ⊗ 1, ϖ⊗ 1⟩ ∈ ϑ implies ⟨υ,ϖ⟩ ∈ ϑ for every υ,ϖ ∈
Q, then ϑ is called a filter congruence on Q. Following from
[6], we can obtain that the mapping from the set of normal
filters to the set of filter congruences on a pqMV-algebra is
bijective. Assume that M is a normal filter in Q, we denote
[υ] = {ϖ ∈ Q|υ →L ϖ ∈ M and ϖ →L υ ∈ M} for
υ ∈ Q and Q/M = {[υ]|υ ∈ Q}. Define two operations on
Q/M as follows: [υ] + [ϖ] = [υ + ϖ] and [υ]′ = [υ′] for
every [υ], [ϖ] ∈ Q/M . Then (Q/M ; +,′ , [0]) is a pseudo-
MV algebra [6]. Moreover, if for every [υ], [ϖ] ∈ Q/M ,
we define [υ] ⊔ [ϖ] = [υ ⊔ ϖ], [υ] ⊓ [ϖ] = [υ ⊓ ϖ] and
[1] = [0]′, then (Q/M ;⊔,⊓, [0], [1]) is a bounded distributive
lattice [11].

III. IMPLICATIVE FILTERS AND POSITIVE IMPLICATIVE
FILTERS

In this section, the concepts of implicative filters and
positive implicative filters are introduced in a pqMV-algebra.

We discuss their relationship and show some equivalent
conditions of an implicative filter in the pqMV-algebra.

Definition 3.1: Let Q be a pqMV-algebra and the set M ⊆
Q. Then M is said to be an implicative filter in Q if for every
υ,ϖ, ν ∈ Q, M satisfies the following conditions:

(IF1) 1 ∈ M ;
(IF2) If υ ∈ M and υ →L ((ϖ →L ν) →R ϖ) ∈ M ,

then ϖ ∈ M ;
(IF3) If υ ∈ M and υ →R ((ϖ →R ν) →L ϖ) ∈ M ,

then ϖ ∈ M .

Proposition 3.1: Let M be an implicative filter in a
pqMV-algebra Q. Then M is a filter in Q.

Proof: Assume that υ, υ →L ϖ ∈ M . Because ϖ ≤ 1, we
have ϖ →L 1 = 1 using Proposition 2.1, it turns out υ →L

((ϖ →L 1) →R ϖ) = υ →L (1 →R ϖ) = υ →L ϖ ∈ M
by (P18). Since υ ∈ M and M is an implicative filter in Q,
we have ϖ ∈ M by (IF2). Thus M is a filter in Q according
to Proposition 2.3.

Definition 3.2: Let Q be a pqMV-algebra and M be a
filter in Q. Then M is said to be a Boolean filter in Q if for
every υ,ϖ ∈ Q, M satisfies the following conditions:

(BF1) if (υ →L ϖ) →R υ ∈ M , then υ ∈ M ;
(BF2) if (υ →R ϖ) →L υ ∈ M , then υ ∈ M .

Below we give the equivalent characterizations of an
implicative filter in a pqMV-algebra.

Theorem 3.1: Let Q be a pqMV-algebra and the set M ⊆
Q. Then for every υ,ϖ, ν ∈ Q, the following statements are
equivalent:

(1) M is an implicative filter in Q;
(2) M is a Boolean filter in Q;
(3) M is a filter in Q, ((υ →L ϖ) →R υ) →R υ ∈ M

and ((υ →R ϖ) →L υ) →L υ ∈ M ;
(4) M is a filter in Q, (υ′ →R υ) →R υ ∈ M and

(υ′ →L υ) →L υ ∈ M ;
(5) M is a filter in Q, if (ν′ ⊗ υ) →R ϖ ∈ M and

ϖ →R ν ∈ M , then υ →R ν ∈ M , if (υ ⊗ ν′) →L ϖ ∈ M
and ϖ →L ν ∈ M , then ν →L υ ∈ M ;

(6) if M is a normal filter in Q and (ϖ′ ⊗ υ) →R ϖ ∈
M , then υ →R ϖ ∈ M , if M is a normal filter in Q and
(υ ⊗ϖ′) →L ϖ ∈ M , then ϖ →L υ ∈ M .

Proof: (1)⇒(2) Suppose that M is an implicative filter in
Q. We have that M is a filter in Q by Proposition 3.1. If for
every υ,ϖ ∈ Q, (υ →L ϖ) →R υ ∈ M , because 1 ∈ M
and 1 →L ((υ →L ϖ) →R υ) = (υ →L ϖ) →R υ ∈
M , we have υ ∈ M . The condition (BF2) can be proved
analogously. Thus M is a Boolean filter in Q.

(2)⇒(1) Assume that M is a Boolean filter in Q. If υ ∈ M
and υ →L ((ϖ →L ν) →R ϖ) ∈ M , then (ϖ →L ν) →R

ϖ ∈ M by Proposition 2.3, it turns out ϖ ∈ M by (BF1).
The condition (IF3) can be proved analogously. Hence M is
an implicative filter in Q.

(3)⇒(4) Put ϖ = 0 in (3). We have (υ′ →R υ) →R υ =
((υ′ + 0) →R υ) →R υ = ((υ →L 0) →R υ) →R υ ∈ M
and (υ′ →L υ) →L υ = ((υ′ + 0) →L υ) →L υ = ((υ →R

0) →L υ) →L υ ∈ M .
(4)⇒(3) Because 0 ≤ ϖ, we get υ′ ≤ υ′+0 = υ →L 0 ≤

υ →L ϖ by (P2) and (P9), it turns out that (υ →L ϖ) →R

υ ≤ υ′ →R υ and (υ′ →R υ) →R υ ≤ ((υ →L ϖ) →R

υ) →R υ using (P9) again. Because (υ′ →R υ) →R υ ∈ M
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and M is a filter in Q, it follows that ((υ →L ϖ) →R

υ) →R υ ∈ M . The other one can be proved analogously.
(5)⇒(6) Suppose that the filter M in Q is normal and

(ϖ′ ⊗ υ) →R ϖ ∈ M . Since ϖ →R ϖ = 1 ∈ M , we have
υ →R ϖ ∈ M by the assumption. The other can be proved
similarly.

(6)⇒(5) Assume that (ν′ ⊗ υ) →R ϖ ∈ M and ϖ →R

ν ∈ M . Because M is a filter in Q, we have ((ν′ ⊗ υ) →R

ϖ) ⊗ (ϖ →R ν) ∈ M . By (P12), we have ((ν′ ⊗ υ) →R

ϖ)⊗ (ϖ →R ν) ≤ (ν′⊗υ) →R ν, it turns out (ν′⊗υ) →R

ν ∈ M , so υ →R ν ∈ M . The other can be proved similarly.
(6)⇒(4) By (P19), we have (υ′ ⊗ (υ′ →R υ)) →R υ =

(υ′ →R υ) →R (υ′ →R υ) = 1 ∈ M , so (υ′ →R υ) →R

υ ∈ M . The other can be proved similarly.
(3)⇒(1) Assume that υ →L ((ϖ →L ν) →R ϖ) ∈

M and υ ∈ M . Since M is a filter in Q, we have
(ϖ →L ν) →R ϖ ∈ M . By the assumption, because
((ϖ →L ν) →R ϖ) →R ϖ ∈ M , we get ϖ ∈ M by
Proposition 2.3. The other can be proved similarly. Hence
M is an implicative filter in Q.

(1)⇒(6) Let M be an implicative filter in Q. Then ϖ ≤
υ →L ϖ and (υ →L ϖ) →L 0 ≤ ϖ →L 0 by (P8) and (P9),
it turns out ϖ′ →R ϖ ≤ (υ →L ϖ)′ →R ϖ and then (ϖ′⊗
υ) →R ϖ = υ →R (ϖ′ →R ϖ) ≤ υ →R ((υ →L ϖ)′ →R

ϖ) using (P9) and (P19). Because (ϖ′⊗υ) →R ϖ ∈ M and
M is a filter in Q, we get υ →R ((υ →L ϖ)′ →R ϖ) ∈ M .
Moreover, note that M is normal, we obtain υ →L ((υ →L

ϖ)′ →R ϖ) ∈ M , thus (υ →L ϖ)′ →R (υ →L ϖ) ∈ M
by (P15) and then 1 →L (((υ →L ϖ) →L 0) →R (υ →L

ϖ)) = (υ →L ϖ)′ →R (υ →L ϖ) ∈ M . By (IF2), we have
υ →L ϖ ∈ M , and so υ →R ϖ ∈ M . The other can be
proved similarly.

In order to characterize the quotient algebra, we need more
results. The proofs of Lemma 3.1 and Lemma 3.2 are similar
to Proposition 2.10 in [20]. Here we omit them. Recall that if
⟨B; +,− ,∼ , 0, 1⟩ is a pseudo-MV algebra, we define υ⊔ϖ =
υ+(ϖ− + υ)∼, υ⊓ϖ = (υ− ⊔ϖ−)∼, υ →L ϖ = υ− +ϖ
and υ →R ϖ = ϖ+υ∼, then υ− = υ →L 0, υ∼ = υ →R 0
and υ ⊔ ϖ = (υ →L ϖ) →R ϖ = (υ →R ϖ) →L ϖ =
(ϖ →L υ) →R υ = (ϖ →R υ) →L υ.

Lemma 3.1: Let ⟨B; +,− ,∼ , 0, 1⟩ be a pseudo-MV alge-
bra. Then for every υ,ϖ ∈ B, the following statements are
equivalent:

(1) (υ →L ϖ) →R υ = υ;
(2) υ ⊔ υ− = 1;
(3) υ− →L υ = υ;
(4) ⟨B;⊔,⊓, 0, 1⟩ is a Boolean algebra.

Lemma 3.2: Let ⟨B; +,− ,∼ , 0, 1⟩ be a pseudo-MV alge-
bra. Then for every υ,ϖ ∈ B, the following statements are
equivalent:

(1) (υ →R ϖ) →L υ = υ;
(2) υ ⊔ υ∼ = 1;
(3) υ∼ →R υ = υ;
(4) ⟨B;⊔,⊓, 0, 1⟩ is a Boolean algebra.

Corollary 3.1: Let Q be a pqMV-algebra. If a normal
filter M in Q satisfies any condition in Theorem 3.1, then
⟨Q/M ;⊔,⊓, [0], [1]⟩ is a Boolean algebra.

Proof: According to Lemma 3.1, we only show ([υ] →L

[ϖ]) →R [υ] = [υ] for every [υ], [ϖ] ∈ Q/M . Since M
is normal and ((υ →L ϖ) →R υ) →R υ ∈ M , we have

((υ →L ϖ) →R υ) →L υ ∈ M . Meanwhile, because υ ≤
(υ →L ϖ) →R υ, we have υ →L ((υ →L ϖ) →R υ) =
1 ∈ M . Thus [(υ →L ϖ) →R υ] = [υ] and then ([υ] →L

[ϖ]) →R [υ] = [υ].

Proposition 3.2: Let Q be a pqMV-algebra and M,M ′ be
normal filters in Q with M ⊆ M ′. If M is an implicative
filter in Q, then M ′ is also an implicative filter in Q.

Proof: For every υ,ϖ ∈ Q, denote ν = (ϖ′ ⊗ υ) →R ϖ ∈
M ′. Then we have 1 = ν →L ν = ν →L ((ϖ′ ⊗ υ) →R

ϖ) = (ϖ′ ⊗ υ) →R (ν →L ϖ) ∈ M using (P15). Since
(ν →L ϖ) →L 0 ≤ ϖ →L 0 by (P8) and (P9), we have
(ν →L ϖ)′ ⊗ υ ≤ ϖ′ ⊗ υ, then (ϖ′ ⊗ υ) →R (ν →L

ϖ) ≤ ((ν →L ϖ)′ ⊗ υ) →R (ν →L ϖ), so ((ν →L ϖ)′ ⊗
υ) →R (ν →L ϖ) = 1 ∈ M . Because (ν →L ϖ) →L

(ν →L ϖ) = 1 ∈ M and M is an implicative filter in Q,
we get υ →R (ν →L ϖ) ∈ M following from Theorem 3.1
and then ν →L (υ →R ϖ) ∈ M . Because M ⊆ M ′, we
have ν →L (υ →R ϖ) ∈ M ′. Note that ν ∈ M ′, we get
υ →R ϖ ∈ M ′ using Proposition 2.3 again. The other can
be proved similarly. Therefore M ′ is an implicative filter in
Q by Theorem 3.1.

Below we define the positive implicative filter in a pqMV-
algebra.

Definition 3.3: Let Q be a pqMV-algebra and the set M ⊆
Q. Then M is said to be a positive implicative filter in Q if
for every υ,ϖ, ν ∈ Q, M satisfies the following conditions:

(PIF1) 1 ∈ M ;
(PIF2) if υ →R ϖ ∈ M and υ →L (ϖ →L ν) ∈ M , then

υ →L ν ∈ M ;
(PIF3) if υ →L ϖ ∈ M and υ →R (ϖ →R ν) ∈ M , then

υ →R ν ∈ M .

Proposition 3.3: Let Q be a pqMV-algebra and M be a
positive implicative filter in Q. Then for every υ,ϖ ∈ Q:

(1) if υ →L (υ →L ϖ) ∈ M , then υ →L ϖ ∈ M .
Especially, υ →L υ2 ∈ M , where υ2 = υ ⊗ υ;

(2) if υ →R (υ →R ϖ) ∈ M , then υ →R ϖ ∈ M .
Especially, υ →R υ2 ∈ M , where υ2 = υ ⊗ υ.

Proof: (1) Suppose that υ →L (υ →L ϖ) ∈ M . Because
υ →R υ = 1 ∈ M and M is a positive implicative filter in
Q, we have υ →L ϖ ∈ M by (PIF2). Especially, putting
ϖ = υ2, then υ →L (υ →L υ2) = υ2 →L υ2 = 1 ∈ M , so
υ →L υ2 ∈ M .

(2) It is similar to (1).

Proposition 3.4: Let Q be a pqMV-algebra. If a normal
filter M in Q satisfies the following conditions for every
υ,ϖ ∈ Q:

(1) if υ →L (υ →L ϖ) ∈ M , then υ →L ϖ ∈ M ;
(2) if υ →R (υ →R ϖ) ∈ M , then υ →R ϖ ∈ M ,

then M is a positive implicative filter in Q.

Proof: Suppose that υ →R ϖ ∈ M and υ →L (ϖ →L

ν) ∈ M for every υ,ϖ, ν ∈ Q. Since M is normal, we have
υ →R (ϖ →L ν) ∈ M and ϖ →L (υ →R ν) ∈ M by
(P15), so ϖ →R (υ →R ν) ∈ M . Note that υ →R ϖ ∈ M ,
we have (ϖ →R (υ →R ν)) ⊗ (υ →R ϖ) ∈ M . Since
(ϖ →R (υ →R ν)) ⊗ (υ →R ϖ) ≤ υ →R (υ →R ν) by
(P15), we get υ →R (υ →R ν) ∈ M and then υ →R ν ∈ M .
Using M is normal again, we have υ →L ν ∈ M . The
condition (PIF3) can be checked similarly. Therefore M is
a positive implicative filter in Q.
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Proposition 3.5: Let Q be a pqMV-algebra and M,M ′

be normal filters in Q with M ⊆ M ′. If M is a positive
implicative filter in Q, then M ′ is also a positive implicative
filter in Q.

Proof: For every υ,ϖ, ν ∈ Q, denote υ = υ →L (υ →L

ϖ) ∈ M ′. We calculate υ →L (υ →L (υ →R ϖ)) =
(υ ⊗ υ) →L (υ →R ϖ) = υ →R ((υ ⊗ υ) →L ϖ) =
υ →R (υ →L (υ →L ϖ)) = υ →R υ = 1 ∈ M . Because
υ →R υ = 1 ∈ M and M is a positive implicative filter
in Q, we have υ →L (u →R ϖ) ∈ M by (PIF2), which
implies υ →R (υ →L ϖ) ∈ M . Note that M ⊆ M ′ and
υ ∈ M ′, we have υ →L ϖ ∈ M ′ by Proposition 2.3. The
other one can be proved similarly. Therefore M ′ is a positive
implicative filter in Q from Proposition 3.4.

Below we will consider the relationship between posi-
tive implicative filters and implicative filters in any pqMV-
algebra.

Proposition 3.6: Let Q be a pqMV-algebra and M be an
implicative filter in Q. If υ′ →R υ ∈ M or υ′ →L υ ∈ M
for every υ ∈ Q, then M is a positive implicative filter in
Q.

Proof: Assume that υ →R ϖ ∈ M and υ →L (ϖ →L ν) ∈
M for every υ,ϖ, ν ∈ Q. Since M is an implicative filter
in Q, we have (υ′ →R υ) →R υ ∈ M by Theorem 3.1. If
υ′ →R υ ∈ M , then υ ∈ M by Proposition 2.3, it turns out
ϖ ∈ M and ϖ →L ν ∈ M , so ν ∈ M . Since M is a filter in
Q and ν ≤ υ →L ν, we have υ →L ν ∈ M . The condition
(PIF3) can be checked similarly. Therefore M is a positive
implicative filter in Q.

Proposition 3.7: Let Q be a pqMV-algebra. If M is a
normal and positive implicative filter such that (υ →L

ϖ) →R ϖ ∈ M implies (ϖ →L υ) →R υ ∈ M for every
υ,ϖ ∈ Q, then M is an implicative filter in Q.

Proof: Assume that (υ →L ϖ) →R υ ∈ M for every υ,ϖ ∈
Q. Since (υ →L ϖ) →R υ ≤ (υ →L ϖ) →R ((υ →L

ϖ) →R ϖ) by (P10) and (P9), we have (υ →L ϖ) →R

((υ →L ϖ) →R ϖ) ∈ M . Note that (υ →L ϖ) →L (υ →L

ϖ) = 1 ∈ M , so (υ →L ϖ) →R ϖ ∈ M , which implies
(ϖ →L υ) →R υ ∈ M . Moreover, because ϖ ≤ υ →L ϖ,
we have (υ →L ϖ) →R υ ≤ ϖ →R υ, it follows that ϖ →R

υ ∈ M . Note that M is normal, we have ϖ →L υ ∈ M ,
so υ ∈ M . Analogously, we can prove that (υ →R ϖ) →L

υ ∈ M implies υ ∈ M . Therefore M is an implicative filter
in Q by Theorem 3.1.

Proposition 3.8: Let Q be a pqMV-algebra with υ ≤ ϖ
or ϖ ≤ υ for every υ,ϖ ∈ Q and M be a filter in Q. If M
is a positive implicative filter in Q, then M is an implicative
filter in Q iff (υ →L ϖ) →R ϖ ∈ M implies (ϖ →L

υ) →R υ ∈ M for every υ,ϖ ∈ Q.

Proof: For every υ,ϖ ∈ Q, we have υ ≤ ϖ or ϖ ≤ υ.
Now suppose that (υ →L ϖ) →R υ ∈ M . If υ ≤ ϖ, then
υ →L ϖ = 1 and 1 →R υ = (υ →L ϖ) →R υ ∈ M .
Because 1 →R υ ≤ υ and M is a filter in Q, we have
υ ∈ M . If ϖ ≤ υ, since υ ≤ (υ →L ϖ) →R ϖ, we have
(υ →L ϖ) →R υ ≤ (υ →L ϖ) →R ((υ →L ϖ) →R

ϖ) by (P9), it turns out (υ →L ϖ) →R ((υ →L ϖ) →R

ϖ) ∈ M . Since M is a positive implicative filter in Q and
(υ →L ϖ) →L (υ →L ϖ) = 1 ∈ M , we have (υ →L

ϖ) →R ϖ ∈ M by (PIF3). By the assumption, we have

(ϖ →L υ) →R υ ∈ M . Note that ϖ →L υ = 1 and
(ϖ →L υ) →R υ = 1 →R υ ≤ υ, we have υ ∈ M . The
other can be proved similarly. Hence M is an implicative
filter in Q by Theorem 3.1. Conversely, if M is an implicative
filter in Q and (υ →L ϖ) →R ϖ ∈ M for every υ,ϖ ∈ Q,
then we have (υ →L ϖ) →R ϖ ≤ (υ →L ϖ) →R ((ϖ →L

υ) →R υ). Since M is a filter in Q, we get (υ →L ϖ) →R

((ϖ →L υ) →R υ) ∈ M . Because υ ≤ (ϖ →L υ) →R υ by
(P8), we have ((ϖ →L υ) →R υ) →L ϖ ≤ υ →L ϖ using
(P9), it follows that (υ →L ϖ) →R ((ϖ →L υ) →R υ) ≤
(((ϖ →L υ) →R υ) →L ϖ) →R ((ϖ →L υ) →R υ), so
(((ϖ →L υ) →R υ) →L ϖ) →R ((ϖ →L υ) →R υ) ∈ M
and then (ϖ →L υ) →R υ ∈ M by Theorem 3.1.

IV. FANTASTIC FILTERS AND ASSOCIATIVE FILTERS

In this section, the concepts of fantastic filters and associa-
tive filters in a pqMV-algebra are introduced. We also discuss
their relationship.

Definition 4.1: Let Q be a pqMV-algebra and the set M ⊆
Q. Then M is said to be a fantastic filter in Q if for every
υ,ϖ, ν ∈ Q, M satisfies the following conditions:

(FF1) 1 ∈ M ;
(FF2) if ν ∈ M and ν →L (υ →L ϖ) ∈ M , then ((ϖ →L

υ) →R υ) →L ϖ ∈ M ;
(FF3) if ν ∈ M and ν →R (υ →R ϖ) ∈ M , then

((ϖ →R υ) →L υ) →R ϖ ∈ M .

Proposition 4.1: Let Q be a pqMV-algebra and M be a
filter in Q. Then M is a fantastic filter in Q iff υ →L ϖ ∈ M
implies ((ϖ →L υ) →R υ) →L ϖ ∈ M and υ →R ϖ ∈ M
implies ((ϖ →R υ) →L υ) →R ϖ ∈ M for every υ,ϖ ∈
Q.

Proof: Suppose that M is a fantastic filter in Q and υ →L

ϖ ∈ M . Then we have 1 →L (υ →L ϖ) = υ →L ϖ ∈ M .
Since 1 ∈ M , we have ((ϖ →L υ) →R υ) →L ϖ ∈ M
by (FF2). The other can be proved similarly. Conversely,
suppose that ν ∈ M and ν →L (υ →L ϖ) ∈ M . Since
M is a filter in Q, we get υ →L ϖ ∈ M by Proposition
2.3, it follows that ((ϖ →L υ) →R υ) →L ϖ ∈ M by the
assumption. The condition (FF3) can be proved similarly.
Therefore M is a fantastic filter in Q.

Proposition 4.2: Let Q be a pqMV-algebra and M,M ′ be
two filters in Q with M ⊆ M ′. If M is a fantastic filter in
Q, then M ′ is also a fantastic filter in Q.

Proof: Suppose that υ →L ϖ ∈ M ′. Because M is a
fantastic filter in Q and υ →L ((υ →L ϖ) →R ϖ) = (υ →L

ϖ) →R (υ →L ϖ) = 1 ∈ M , we get (υ →L ϖ) →R

(((((υ →L ϖ) →R ϖ) →L υ) →R υ) →L ϖ) = ((((υ →L

ϖ) →R ϖ) →L υ) →R υ) →L ((υ →L ϖ) →R ϖ) ∈ M
by (P15) and Proposition 4.1. Since M ⊆ M ′, we have
(υ →L ϖ) →R (((((υ →L ϖ) →R ϖ) →L υ) →R υ) →L

ϖ) ∈ M ′. Because υ →L ϖ ∈ M ′ and M ′ is a filter in Q,
we have ((((υ →L ϖ) →R ϖ) →L υ) →R υ) →L ϖ ∈
M ′. Put ν = ((((υ →L ϖ) →R ϖ) →L υ) →R υ) →L ϖ.
Then ν ∈ M ′ and we calculate ν →R (((ϖ →L υ) →R

υ) →L ϖ) ≥ ((ϖ →L υ) →R υ) →L ((((υ →L

ϖ) →R ϖ) →L υ) →R υ) ≥ (((υ →L ϖ) →R ϖ) →L

υ) →R (ϖ →L υ) ≥ ϖ →L ((υ →L ϖ) →R ϖ)
= (υ →L ϖ) →R (ϖ →L ϖ) = (υ →L ϖ) →R 1 = 1, so
ν →R (((ϖ →L υ) →R υ) →L ϖ) ∈ M ′. Since ν ∈ M ′,
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we get ((ϖ →L υ) →R υ) →L ϖ ∈ M ′. Similarly, if υ →R

ϖ ∈ M ′, we can prove ((ϖ →R υ) →L υ) →R ϖ ∈ M ′.
Therefore M ′ is a fantastic filter in Q.

Below the relationship among fantastic filters, implicative
filters and positive implicative filters in any pqMV-algebra is
presented.

Proposition 4.3: Let Q be a pqMV-algebra. If M is an
implicative filter in Q, then M is a fantastic filter in Q.

Proof: Suppose that υ →L ϖ ∈ M and M is an implicative
filter in Q. Then we have ϖ →L 0 ≤ ϖ →L υ and then
(ϖ →L υ) →R υ ≤ ϖ′ →R υ by (P9), it turns out that
(ϖ′ ⊗ ((ϖ →L υ) →R υ)) →R υ = ((ϖ →L υ) →R

υ) →R (ϖ′ →R υ) = 1 ∈ M , so we get ((ϖ →L υ) →R

υ) →R ϖ ∈ M according to Theorem 3.1. Similarly, if
υ →R ϖ ∈ M , we can prove ((ϖ →R υ) →L υ) →R ϖ ∈
M . Hence M is a fantastic filter in Q by Proposition 4.1.

Proposition 4.4: Let Q be a pqMV-algebra and M be a
filter in Q. If M is a fantastic filter and positive implicative
filter in Q, then M is an implicative filter in Q.

Proof: If (υ →L ϖ) →R υ ∈ M for every υ,ϖ ∈ Q,
because M is a fantastic filter in Q, we get ((υ →L (υ →L

ϖ)) →R (υ →L ϖ)) →L υ ∈ M by Proposition 4.1, which
implies that ((υ2 →L ϖ) →R (υ →L ϖ)) →L υ ∈ M . By
(P11), we get υ →L υ2 ≤ (υ2 →L ϖ) →R (υ →L ϖ).
Because M is a positive implicative filter in Q, we have
υ →L υ2 ∈ M and then (υ2 →L ϖ) →R (υ →L ϖ) ∈ M ,
it follows that υ ∈ M . Hence M is an implicative filter in
Q by Theorem 3.1.

Definition 4.2: Let Q be a pqMV-algebra and the set M ⊆
Q. Then M is said to be an associative filter in Q if for every
υ,ϖ, ν ∈ Q, M satisfies the following conditions:

(AF1) 1 ∈ M ;
(AF2) if υ →R ϖ ∈ M and υ →L (ϖ →L ν) ∈ M , then

ν ∈ M ;
(AF3) if υ →L ϖ ∈ M and υ →R (ϖ →R ν) ∈ M , then

ν ∈ M .

Proposition 4.5: Let Q be a pqMV-algebra. If M is an
associative filter in Q, then M is a filter in Q.

Proof: Let υ, υ →L ϖ ∈ M . Then we have υ →L (1 →L

ϖ) = υ →L ϖ ∈ M . Since υ →R 1 = 1 ∈ M , we have
ϖ ∈ M using (AF2). Thus M is a filter in Q by Proposition
2.3.

Lemma 4.1: Let Q be a pqMV-algebra. If M is an asso-
ciative filter in Q, then υ′ ∈ M for every υ ∈ Q.

Proof: Because (υ →L 0) →L (1 →L (υ →L 0)) = 1 ∈ M
and (υ →L 0) →R 1 = 1 ∈ M , we get υ →L 0 ∈ M using
(AF2). Note that M is a filter in Q and υ →L 0 = υ′ +0 ≤
υ′, we have υ′ ∈ M .

Now we will see the relationship among associative filters,
(positive) implicative filters and fantastic filters in any pqMV-
algebra.

Proposition 4.6: Let Q be a pqMV-algebra and the set
M ⊆ Q. If M is an associative filter in Q, then we have

(1) M is an implicative filter in Q;
(2) M is a positive implicative filter in Q;
(3) M is a fantastic filter in Q.

Proof: (1) Let (υ →L ϖ) →R υ ∈ M . Then we get (υ →L

ϖ) →R (1 →R υ) ∈ M and (υ →L ϖ) →L 1 = 1 ∈ M .
Since M is an associative filter in Q, we have υ ∈ M by
(AF3). Similarly, we can prove that (υ →R ϖ) →L υ ∈ M
implies υ ∈ M . Therefore M is an implicative filter in Q by
Theorem 3.1.

(2) Suppose that υ →L (ϖ →L ν) ∈ M and υ →R ϖ ∈
M . We have ν ∈ M by (AF2). Since ν ≤ υ →L ν and
M is a filter in Q, we have υ →L ν ∈ M . Similarly, we
can prove that υ →R (ϖ →R ν) and υ →L ϖ ∈ M imply
υ →R ν ∈ M . Therefore M is a positive implicative filter
in Q.

(3) By Proposition 4.3 and (1).

Proposition 4.7: Let Q be a pqMV-algebra. If M is an
implicative filter in Q, then for every υ ∈ Q, the following
conditions hold:

(1) if υ′ →R υ ∈ M , then M is an associative filter in Q;
(2) if υ′ →L υ ∈ M , then M is an associative filter in Q.

Proof: (1) Suppose that υ →L (ϖ →L ν) ∈ M and υ →R

ϖ ∈ M . Because M is an implicative filter in Q, we have
(υ′ →R υ) →R υ ∈ M from Theorem 3.1. If υ′ →R υ ∈ M ,
then υ ∈ M by Proposition 2.3, it follows that ϖ →L ν ∈
M and ϖ ∈ M , so ν ∈ M using Proposition 2.3 again.
Therefore M is an associative filter in Q.

(2) It is similar to (1).

Corollary 4.1: Let Q be a pqMV-algebra and M be a filter
in Q. If M is a fantastic and positive implicative filter in Q
with υ′ →R υ ∈ M or υ′ →L υ ∈ M for every υ ∈ Q, then
M is an associative filter in Q.

Proof: Follows from Proposition 4.4 and Proposition 4.7.

Proposition 4.8: Let Q be a pqMV-algebra and M,M ′ be
normal filters in Q with M ⊆ M ′. If M is an associative
filter in Q and υ′ →L υ ∈ M ′ for every υ ∈ Q, then M ′ is
also an associative filter in Q.

Proof: By Proposition 4.6, Proposition 3.2 and Proposition
4.7.
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