
 

  

Abstract: the actual financial market is complicated and 

volatile, in which most investment portfolio models include the 

historical return of stock as an important indicator while 

overlooking the impact of stock efficiency. Meanwhile we have 

noticed that the specific indicators of fuzzy input and fuzzy 

output enable the fuzzy DEA model to effectively measure stock 

efficiency. Accordingly, this paper uses fuzzy DEA model to 

analyze the stock efficiency, with equity multiplier, price 

earnings ratio and beta value as fuzzy input, total assets 

turnover, earning per share and net profit growth rate as fuzzy 

output. Secondly, this paper takes the possibility mean and 

possibility variance as the measurement of portfolio return and 

risk, so as to build the mean-variance-efficiency portfolio model. 

And the genetic algorithm of exponential fitness function is 

applied to the model in order to satisfy the requirement of 

fitness values being non-negative. At the end, an empirical 

example is given to verify the feasibility of the model and 

improved algorithm, and we also prove that there is a certain 

correlation between stock efficiency and return. As shown by 

the results, it is quite indispensable to consider the portfolio 

efficiency in the actual financial market, which can provide 

investors with more comprehensive, scientific and effective 

decision-making scheme. 

 

Index Terms: Fuzzy DEA model, Genetic algorithm, 

Mean-Variance-Efficiency model, Fuzzy portfolio, Possibility 

theory 

 

I. INTRODUCTION 

he portfolio selection theory proposed by Markowitz [1] 

is the origin of modern financial theories. Markowitz, on 

the frame of probability theory, proposed the mean-variance 

(M-V) model. The major matter of portfolio management, 

which concerns investors most, is "how to maximize the 

return while containing the risk" or "how to minimize the risk 

given a certain return". In this case, investors must 

comprehensively take into account lots of internal and 
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external factors, which inspires researchers to discover a 

better portfolio model in actual consideration of fuzzy 

uncertainty and random uncertainty.  

So far, distinct modified models and hybrid algorithms 

have developed from the M-V model to simulate the financial 

reality. For instance, Zheng and Yao [2] optimized the 

portfolio in view of risk measurement and disintegration of 

ensemble empirical pattern. Yu et al. [3] researched on fuzzy 

multi-objective portfolio with the application of hybrid 

genetic algorithm. Nazir [4] presented an efficient financial 

portfolio selection and improved the computational 

procedure of Anticor’s algorithm. 

Zadeh’s [5] fuzzy set theory sets a mathematical 

foundation and establish an axiomatic system. The theory 

motivates scholars to study fuzzy portfolio model, such that 

Carlsson [6] and Fang [7] build portfolio model based on 

possibility theory; Li and Yi [8] proposed innovative 

trapezoidal fuzzy number and applied it to fuzzy 

mean-variance model and fuzzy mean-variance-skewness 

model. Ramli and Jaaman [9] proposed seven extended 

mean-variance fuzzy portfolio selection model. Chen and 

Wang [10] established a two-stage fuzzy portfolio selection 

model considering transaction costs. 

The data envelopment analysis (DEA) is a valuable tool for 

measuring the relative efficiency of a decision-making unit 

(DMU). Now, it has raised a heated discussion among 

scholars. For example, Liu and Wang [11] proposed three 

secondary goal models, including the initial efficiency value 

of DMUs, based on DEA cross-evaluation. Mirdehghan et al. 

[12] studied the relations among technical efficiency, cost 

efficiency and revenue efficiency in the DEA.  

In addition to the optimal asset allocation of a portfolio, 

selection of better-performing stocks also stands out for 

optimizing investment portfolios. The DEA has gradually 

come to the eyesight of scholars regarding portfolio selection, 

and therefore the portfolio performance has been considered 

in the model. Chen et al. [13] combined the 

mean-semi-variance model and the cross-efficiency model 

derived from DEA to construct a synthesized model of 

multi-objective fuzzy portfolio. Zhou et al. [14] constructed 

different evaluation models within the framework of fuzzy 

portfolio. Currently when compared to the large amount 

literature mentioned above, there exists few studies 

concentrating on combining DEA with fuzzy to make stock 

efficiency one of the objective functions.  

In this paper, possibility theory and fuzzy set theory focus 

on exploring portfolio selection under the fuzzy circumstance. 

Combined with fuzzy number, the DEA introduces stock 

efficiency into the traditional mean-variance model. What’s 

more, the genetic algorithm, by applying six different 

preference coefficients, can solve the portfolio model.  
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In Section II, the preliminary knowledge on possibility 

theory and DEA is given. The fuzzy multi-objective 

mean-variance-efficiency portfolio model is constructed in 

the Section III. Section IV introduces the genetic algorithm 

used in this paper. In Section V, the feasibility of the model 

and algorithm is verified by an empirical example. Section VI 

summarizes the whole paper and draws the conclusion. 

II.  PRELIMINARIES 

A. Possibility Theory 

Definition 1 [15]: Fuzzy number ( )FA . For 

 0  1  ， , it holds that   ( ) ( ) A a a


  =  
， . The 

possibility mean of A  can be defined as 

( ) ( ) ( )( )
1

0
.E A a a d   = +                                               (1) 

Definition 2 [16]: ( )FA . For  0  1  ， , it stands that

  ( ) ( ) A a a


  =  
， , The possibility variance of A  can 

be determined as 

( ) ( ) ( )( ) ( ) ( )( )
21 2

0
.Var A a E A a E A d    = − + −

         (2) 

Definition 3 [16]: ( )F,A B  . Let  0  1  ， , it holds 

that   ( ) ( ) A a a


  =  
，  and   ( ) ( ) B b b


  =  
， , The 

possibility covariance of A  and B  is specified by 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

0

1

0

, 

                   .

Cov A B a E A b E B d

a E A b E B d

   

   

= − −

+ − −




           (3) 

Theorem 1 [15]: Provided that ,    , we have 

( ) ( ) ( ),E A B E A E B   + = +                                           (4) 

( ) ( )( ) ( )( )

( ) ( )( )

2 2

                         2 , ,

Var A B Var A Var B

Cov A B

       

    

+ = +

+
           (5) 

where ( )

1, 0

0, 0

1, 0

x

x x

x






= =
− 

. 

Theorem 2 [15]： Let ( )F1 2, ,  , nA A A   be fuzzy 

numbers. For any n   real numbers 1 2, ,  , n    , we 

have 

( )( )

( ) ( )( )

2

1 1

                        2 , .

n n

i i i i i

i i

i j i i j j

i j

Var A Var A

Cov A A

   

     

= =



 
= 

 

+

 


         (6) 

The triangular fuzzy number A  is denoted as ( ), , A a  = , 

and its membership function is as follows: 

( )

1 , ,

1 , ,

0, other

A

a x
a x a

x a
x a x a




 


−
− −  


−

= −   +





                              (7) 

The cut −  set of A  is given by 

  ( ) ( )1  1A a a


   = − − + −  ， , where  0, 1  . 

Based on Definition 1 and 2, the possibility mean and 

possibility variance of A  are as follows: 

( ) ( ) ( )( )
1

0
1 1 ,

6
E A a a d a

 
     

−
= + − + − − = +  (8) 

( ) ( )

( )

( ) ( )

2
1

0

2
1

0

2 22

1
6

               1
6

          .
6 72

Var A a a d

a a d

 
   

 
   

    

− 
= − − − − 

 

− 
+ + − − − 

 

+ + −+ 
= + 

 



                     (9) 

B. Data Envelopment Analysis (DEA) 

Data envelopment analysis (DEA) [17] is a method of 

evaluating the relative effectiveness of the same type of 

decision-making units (DMU) based on the multiple input- 

and output indicators. Specifically, the notations involved in 

DEA model are shown in TABLE I. 

 

Thereby, the efficiency evaluation index of each DMU is 

defined as 

1

1

, 1,2, , .

s

r ri

r

i m

j ji

j

u y

h i n

v x

=

=

= =



                                                (10) 

Here, ih  represents the relative efficiency of DMU i , 

proper weight coefficients ,r ju v  enable 1, 1, ,ih i n = . 

Regarding the DMU 0i , with the greater 
0i

h  normally comes 

the greater output while the input is equal to that of others. 

For this reason, we are in passionate pursuit of maximizing 

the efficiency evaluation index, and therefore found an 

objective function of maximizing the index under the 

condition that the indexes of all decision-making units are not 

larger than one. The model is structured by 

0 0 0

1 1

1 1

max   

s.t.    1

        0, 0, 1,2, ,

s m

i r ri j ji

r j

s m

r ri j ji

r j

r j

h u y v x

u y v x

u v i n

= =

= =


=






   =



 

                                        (11) 

TABLE I 

SYMBOLIC DESCRIPTION OF DEA MODEL 

Notation Description 

j  Input indicator, 1,2, ,j m= L  

r  Output indicator, 1,2, ,r s= L  

i  Decision making unit (DMU), 1,2, ,i n=  

jix  Input of DMU i  in item j  

riy  Output of DMU i  in item r  

jv  A measurement of the input in item j , weight coefficient 

ru  A measurement of the output in item r , weight coefficient 
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C. Fuzzy DEA Model 

Normally, the commonly used model in the financial 

market is the standard DEA one, which requires high clarity 

and exact accuracy of input- and output indicators. However, 

in reality, it is impossible to fully describe the market with 

totally clear data. In this case, the fuzzy DEA utilizing 

imprecise and ambiguous data instead of clear one. The two 

models aforementioned vary from each other majorly 

regarding the input- and output data clarity (fuzzy number or 

clear number) of DMUs. 

Kao and Tai [18] proposed to obtain the range of fuzzy 

numbers by means of  − cut set, and cleverly transform the 

fuzzy DEA model into the standard DEA one with a certain 

range (upper- and lower limits of fuzzy numbers). This 

solution also applies to the current case. Furthermore, 

Mugera [19] once pointed out that triangular fuzzy number is 

most used, and thus the input and output indicators of DMUs 

are regarded as triangular fuzzy numbers.  

Let the input indicator j  of DMU i  be ( ), ,m

ji ji ji jix x  = , 

and its output indicator r  be ( ), ,m

ri ri ri riy y   = . The 

uncertain range of the fuzzy numbers ,ji rix y  can be 

determined by different confidence intervals defined by the 

 − cut set. That is, the  − cut set ( )0 1   can specify 

the lower- and upper limits of the fuzzy numbers as follows: 

( ) ( ) ( )

( ) ( )

= ,

        ,

L U

ji ji ji

m m

ji ji ji ji ji ji

x x x

x x

  

   

 
  

 = + − + −
 

                       (12) 

and 

( ) ( ) ( )

( ) ( )

= ,

         ,

L U

ri ri ri

m m

ri ri ri ri ri ri

y y y

y y

  

   

 
 

    = + − + −
 

                    (13) 

When 1 = , the fuzzy numbers convert to the clear ones, 

meaning no uncertainty. When 0 = , the numbers drop 

between the full fuzzy range. That is, the uncertainty is 

adjusted by modifying  . Further the efficiency score can be 

obtained in the concrete  − cut set. By definition given by 

Kao and Tai [18], the output indicators can take the lower 

limits of the fuzzy numbers, and the input ones can take the 

upper limits instead when provided a specific value of the 

 − cut set, which derives the lower limit of efficiency ( )
L

iE


 

of DMU i . The specific expression is as follows: 

( )
( )

( )

1

0

1

.

s
L

r ri
L r

i m
U

j ji

j

u y

E

v v x







=

=

=

+




                                                   (14) 

Conversely, the output indicators can take the upper limit 

of the fuzzy numbers while the input ones can take the lower 

limit of the numbers. Hereby the upper limit of the efficiency 

( )
U

iE


 of DMU i  can be obtained by 

( )
( )

( )

1

0

1

,

s
U

r ri
U r

i m
L

j ji

j

u y

E

v v x







=

=

=

+




                                                    (15) 

where 0v  is constant and ,r ju v  are weight coefficients. 

When we maximize the lower limit of DMU 0i ’s efficiency, 

where all DMUs’ efficiency is not greater than 1, the model 

(16) can be written as 

( ) ( )

( ) ( )

( ) ( )

0 00

1 1

0

1 1

0

1 1

0 0

max   

s.t.     1

         1

          1, , ,   ,  , 0,    is constant 

s mL U

r ri j ji

r j

s m
UL

r ri j ji

r j

s m
LU

r ri j ji

r j

r j

u y v v x

u y v v x

u y v v x

i n i i u v v

 

 

 

= =

= =

= =

  
+  

 


  +  
  


  +  
 

=  

 

 

 

       (16) 

Similarly, if the objective function aims to maximize the 

upper limit of DMU 0i ’s efficiency, the model (17) can be 

expressed as 

( ) ( )

( ) ( )

( ) ( )

0 00

1 1

0

1 1

0

1 1

0 0

max   

s.t.     1

         1

          1, , ,   ,  , 0,    is constant

s mU L

r ri j ji

r j

s m
UL

r ri j ji

r j

s m
LU

r ri j ji

r j

r j

u y v v x

u y v v x

u y v v x

i n i i u v v

 

 

 

= =

= =

= =

  
+  

 


  +  
  


  +  
 

=  

 

 

 

         (17) 

By solving the models (16) and (17), we are able to have 

the upper- and lower limits of the efficiency corresponding 

to each value of  . Assuming 1 = , the efficiency is the 

same as that obtained by the standard DEA. While 0 = , 

the efficiency range refers to that of the fuzzy numbers. 

Furthermore, the efficiency obtained with  does 

not exceed the efficiency range. 

III. FUZZY MULTI-OBJECTIVE PORTFOLIO MODEL 

Supposing that the investor plans to invest in n  stocks, the 

return of the stock i  is ( )1,2, ,ir i n= , and its investment 

proportion is ( )1,2, ,ix i n= . The return, possibility mean 

and variance of the portfolio R  are as follows: 

1

.
n

i i

i

R x r
=

=                                                                           (18) 

( )
1

,
n

i i

i

E R E x r
=

 
=  

 
                                                              (19) 

( ) ( ) ( )2

1 1

2 , ,
n n

i i i j i j

i i j

Var R x Var r x x Cov r r
=  =

= +                     (20) 

where ( ),i jCov r r  represents the covariance between ir  and 

jr . Next, we utilize the fuzzy DEA model to calculate the 

efficiency of stocks, so that the index drops within the range 

of fuzzy numbers. Provided the  − cut set, let the efficiency 

interval of stock i  be ( ) ( ),
L U

i iE E
 

 
 

. By averaging the 

efficiency, we have the efficiency evaluation index of the 

stock i  as ( ) ( )( )+ 2
L U

i iE E
 

. Furthermore, the overall 

portfolio efficiency is a linear combination of investment 

proportion and stock efficiency. The expression is as follows: 

0 1 
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( ) ( )

1

.
2

L U
n i i i

i

x E E
e

 

=

 +
 

=                                                    (21) 

As mentioned above, the efficiency of such a portfolio is 

measured by efficiency evaluation index computed by the 

Fuzzy DEA model. Assuming investors tend to be rational, 

say, they seek to maximize the return and the efficiency, and 

minimize the risk of the portfolio, the corresponding model is 

specified by 

( )

( ) ( ) ( )

( ) ( )

1

2

1 1

1

1

max  

min   2 ,

max   0.5

s.t.    1 ,  1, ,    

n

i i

i

n n

i i i j i j

i i j

n
L U

i i i

i

n

i i i i

i

E R E x r

Var R x Var r x x Cov r r

e x E E

x l x u i n

 

=

=  =

=

=

  
=  

 


= +


  = +
  



=   =




 



 ，

       (22) 

where il  and iu  are the upper- and lower limits. The model 

(22) is equivalent of the following model (23). 

( )

( ) ( ) ( )

( ) ( )

1

2

1 1

1

1

max  

max  2 ,

max   0.5

s.t.    1 ,  1, ,   

n

i i

i

n n

i i i j i j

i i j

n
L U

i i i

i

n

i i i i

i

E R E x r

Var R x Var r x x Cov r r

e x E E

x l x u i n

 

=

=  =

=

=

  
=  

 


− = − −


  = +
  



=   =




 



 ，

 (23)      

IV. GENETIC ALGORITHM 

A. Basic Definition of Genetic Algorithm 

The genetic algorithm is employed to solve the model (23). 

The algorithm initially encodes each solution from the 

problem domain, and establishes a fitness function based on 

the objective function. Later, all solutions are put into the 

fitness function to select the solutions with higher fitness 

values, which can form a new species. On this new species, 

we continue to perform selection, crossover and mutation 

operations iteratively so as to get the optimal solution with 

generality. Next are five basic steps of the algorithm. 

(1) Initialization: the feasible solution ( )1 2, , , nX x x x=  of 

the domain is generated randomly. It is then coded as 

chromosome ( )1 2, , , nC c c c=  ( i i il c u  ). The 

corresponding relation between ix  and ic  is as follows: 

1

, 1,2, , .i

i n

i

i

c
x i n

c
=

= =


                                                     (24) 

This practice can ensure that 
1

1
n

i

i

x
=

=  holds true. Assume 

that the size of the entire species is pop_siz, where the 

number of all solutions meet the condition before. Repeat the 

equation (24) for pop_size times to obtain the chromosome 

labeled as 1 2 _, , , pop sizeC C C . 

(2) Fitness function: a function to judge the quality of an 

individual in a species. In order to prevent the unreasonable 

distribution of the fitness values, we adjust the scaling of the 

fitness function. The requirement of fitness value being 

non-negative should be satisfied as well. For the reasons 

above, the following exponential fitness function fits here 

well, that is 

( ) ( )
,

f X
F X e=                                                                      (25) 

where ( )f X  is the weighted objective function by the 

preference coefficients of the model (23). Substituting the 

individuals 1 2 _, , , pop sizeX X X  in the species into the 

equation (25), we have the corresponding fitness values 

recorded as ( )1,2, , _iF i pop size= . 

(3) Selection: The selection of individuals from the parent 

species to the next generation according to the values of the 

fitness function, reflecting a survival procedure of the species. 

The possibility of individual iX  being selected is 

( )
_

1

, 1,2, , _ .i

i pop size

i

i

F
P X i pop size

F
=

= =


                            (26) 

(4) Crossover: Re-structing of the parent individuals. The 

algorithm performs this operation on each individual with 

probability cP . For example, the convex combination of two 

parent individuals 1 2,C C  can derive two new individuals 

( ) ( )1 1 2 2 2 11 , 1 .C C C C C C   = + − = + −                      (27) 

The algorithm will inspect whether the new individuals 

generated by crossover meet the constraint before. If so, the 

new individuals will enter the next generation. 

(5) Mutation: the mutation is performed on individuals 

within the population with probability mP . Suppose that the 

chromosome C from the parent generation is 

( )1 2, , , ,i nc c c c , where a gene ic  is randomly selected for 

mutation. Then we have a new individual C'  

( )1 2, , , , ,i nc c c c , and the ic  is given by  

( ),i i i ic l y u l= +  −                                                              (28) 

within which y  is a random number on the interval [0,1]. 

Similarly, the algorithm will also inspect whether the new 

individuals generated by mutation are limited by the 

condition before. If so, the new individuals will enter the next 

generation. 

B. Calculation Steps 

The specific flow of genetic algorithm is shown below: 

Step 1:  The feasible solutions of the problem domain are 

encoded to obtain the initial population pop_size(0); 

Step 2:  The fitness values of individuals in the population 

(pop_size(k)) are computed through the exponential 

fitness function; 

Step 3:  The selection of the superior individuals from the 

parent generation to the child generation; 
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Step 4:  The crossover is performed on each of the new 

generation with probability cP : 

 _ ( ) Crossover _ ( )pop size k pop size k ; 

Step 5:  The mutation is conducted on each of the new 

generation to with probability mP : 

 _ ( ) Mutation _ ( )pop size k pop size k ; 

Step 6:  If the conditions are met, then export the solutions; if 

the conditions are not met, repeat the step 2~6. 

V. EMPIRICAL EXAMPLE 

A. Fuzzy DEA Efficiency Analysis 

In this section, the effectiveness and applicability of the 

fuzzy DEA and portfolio model (23) are proved by an actual 

example. We select eight stocks that are traded in Shanghai 

stock market of China. The possibility distribution can be 

obtained by means proposed by Zhang et al. [20]. We collect 

the weekly closing prices of the eight stocks from October 

2016 to October 2018, and therefore get the possibility 

distribution as shown in TABLE II. 

 

For the purpose of working out the efficiency of the eight 

stocks, we select six indicators similar to those the reference 

[21]. The input indicators are equity multiplier, price 

earnings ratio and beta value. The output indicators are total 

assets turnover, earning per share and net profit growth rate. 

Similarly, this paper uses the historical data of the six 

indicators of the eight stocks from October 2016 to October 

2018, and estimates their possibility distribution. The specific 

results are shown in TABLE III-VIII. 

Using the fuzzy DEA model, combined with the data of the 

six indicators, we can get the efficiency of each stock given 

various  − cut sets. The results are presented in TABLE IX. 

 

 

 

 

 

 

TABLE II 

THE POSSIBILITY DISTRIBUTION OF EIGHT STOCK RETURNS 

Stock 1 2 3 4 

Code 600801 600276 601933 600516 

ai 0.0112 0.0108 0.0061 0.0054 

αi 0.0820 0.0563 0.0533 0.0787 

βi 0.0836 0.0437 0.0562 0.0718 

Stock 5 6 7 8 

Code 600809 600487 600585 603799 

αi 0.0016 0.0089 0.0104 0.0054 

αi 0.0529 0.0743 0.0537 0.0871 

βi 0.0836 0.0558 0.0592 0.1016 

 

TABLE III 

DISTRIBUTION OF EQUITY MULTIPLIER OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 40.6000 20.9900 17.3600 137.6350 

αi 23.2360 0.8000 0.5220 88.9880 

βi 15.7840 0.8090 1.5210 94.8470 

Stock 5 6 7 8 

αi 41.9900 38.3100 32.4800 75.5550 

αi 4.5180 0.5740 3.5720 8.6540 

βi 4.9320 2.7880 2.0150 3.2090 

 

TABLE IV 

DISTRIBUTION OF PRICE EARNINGS RATIO OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 17.7146 59.7610 48.7249 112.4947 

αi 2.7027 9.8068 5.2452 98.2008 

βi 9.8559 8.6875 4.7598 50.5034 

Stock 5 6 7 8 

αi 44.0331 22.0589 12.2082 41.7184 

αi 7.3390 2.2151 1.3828 25.3441 

βi 4.3739 3.3220 0.9502 20.8615 

 

TABLE V 
DISTRIBUTION OF BETA VALUE OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 1.6255 0.5888 1.0835 1.3527 

αi 0.4842 0.5126 0.3694 0.4376 

βi 0.5087 0.5729 0.3947 0.5091 

Stock 5 6 7 8 

αi 1.0798 1.5952 1.1302 1.5669 

αi 0.7686 0.6649 0.5182 0.8122 

βi 0.4962 0.5154 0.3918 0.8963 

 TABLE VI 

DISTRIBUTION OF TOTAL ASSETS TURNOVER OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 162.5450 58.8750 108.3450 135.2650 

αi 48.4200 51.2620 36.9370 43.7640 

βi 50.8670 57.2880 39.4660 50.9110 

Stock 5 6 7 8 

αi 107.9750 159.5200 113.0150 156.6850 

αi 76.8600 66.4940 51.8170 81.2150 

βi 49.6230 51.5360 39.1780 89.6260 

 
TABLE VII 

DISTRIBUTION OF EARNING PER SHARE OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 0.4201 0.6901 0.1039 0.6494 

αi 0.1131 0.1675 0.0175 0.5842 

βi 0.2594 0.1359 0.0240 0.4725 

Stock 5 6 7 8 

αi 0.7595 0.7312 1.4386 1.2869 

αi 0.0642 0.1154 0.2981 0.7909 

βi 0.1598 0.3077 0.3882 0.5238 

 TABLE VIII 

DISTRIBUTION OF NET PROFIT GROWTH RATE OF THE EIGHT STOCKS 

Stock 1 2 3 4 

ai 40.6000 20.9900 17.3600 137.6350 

αi 23.2360 0.8000 0.5220 88.9880 

βi 15.7840 0.8090 1.5210 94.8470 

Stock 5 6 7 8 

αi 41.9900 38.3100 32.4800 75.5550 

αi 4.5180 0.5740 3.5720 8.6540 

βi 4.9320 2.7880 2.0150 3.2090 

 

 
TABLE IX 

EFFICIENCY OF THE EIGHT STOCKS 

Stock 

 =0.00  =0.10  =0.20 

( )
L

iE
  

( )
U

iE


 ( )
L

iE


 ( )
U

iE


 ( )
L

iE


 ( )
U

iE
  

1 0.4943 1.0000 0.5153 1.0000 0.5376 1.0000 

2 0.8145 1.0000 0.8910 1.0000 0.9391 1.0000 

3 0.9197 1.0000 1.0000 1.0000 1.0000 1.0000 

4 0.2011 1.0000 0.3001 1.0000 0.4279 1.0000 

5 0.4589 1.0000 0.4897 1.0000 0.5209 1.0000 

6 0.5289 1.0000 0.5560 1.0000 0.5870 1.0000 

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

8 0.3175 1.0000 0.3534 1.0000 0.3936 1.0000 
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According to TABLE X, we can find that when   = 0.00, 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70 or 0.80, the upper limit 

of the efficiency of the eight stocks is always 1. Then we 

draw the efficiency lower limits of the eight stocks regarding 

distinct the values of -cut  set, as shown in Fig. 1. 

B. Preference Coefficient 

The portfolio model in this paper proposes a 

preference-weighting method for investors, with a preference 

coefficient ( ), ,E V effr r r r= , in which , ,E V effr r r  represent 

their preference for return, risk and efficiency separately, 

reflecting their attitudes towards different portfolios. In this 

paper, six preference coefficients are introduced. Specifically, 

the first one (2,1,2) fits radical investors because this cluster 

prefers return and efficiency to risk; the second one (1,2,1) is 

suitable for conservative investors because their preference 

focuses on risk rather than return and efficiency; and the third 

one is (4,3,1). The fourth preference coefficient is (1,0,1), 

indicating that investors only pay attention to return and 

efficiency without considering risk; the fifth preference 

coefficient is (1,1,1), stating that investors give equal 

preference to the three objectives; the sixth preference 

coefficient is (1,1,0), which is equivalent of the traditional 

mean-variance model. 

 

Fig. 1.  The lower efficiency limit of the eight stocks 

C. Analysis of Solution Results of the Model 

Using the algorithm designed in Section IV, we solve the 

model (23) based on the six preference coefficients, and then 

get the proportions of the stocks with 0.1,0.3,0.5,0.7 = . 

The specific results are shown in TABLE X-XIII. The 

TABLE X-XIII show us that the investment proportions of 

stock 1 and 8 in the mean-variance model are non-zero while 

the figures are zero in the mean-variance-efficiency model. 

This is because stock 1 and 8 have lower efficiency and return. 

Such a phenomenon can lead to a conclusion that the 

efficiency and return of the portfolio have a certain 

correlation, and hence investors could consider the efficiency 

of the portfolio when making decisions.  
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TABLE IX 

EFFICIENCY OF THE EIGHT STOCKS (CONTINUED) 

Stock 

 =0.30  =0.40  =0.50 

( )
L

iE


 ( )
U

iE


 ( )
L

iE


 ( )
U

iE


 ( )
L

iE


 ( )
U

iE


 

1 0.5613 1.0000 0.5866 1.0000 0.6355 1.0000 

2 0.9598 1.0000 0.9816 1.0000 1.0000 1.0000 

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4 0.5639 1.0000 1.0000 1.0000 1.0000 1.0000 

5 0.5596 1.0000 0.6024 1.0000 0.6497 1.0000 

6 0.6234 1.0000 0.6713 1.0000 0.7200 1.0000 

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

8 0.4389 1.0000 0.4901 1.0000 0.5481 1.0000 

 

TABLE IX 

EFFICIENCY OF THE EIGHT STOCKS (CONTINUED) 

Stock 

 =0.60  =0.70  =0.80 

( )
L

iE


 ( )
U

iE


 ( )
L

iE


 ( )
U

iE


 ( )
L

iE


 ( )
U

iE


 

1 0.6979 1.0000 0.7856 1.0000 0.9276 1.0000 

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

5 0.7024 1.0000 0.7617 1.0000 0.8291 1.0000 

6 0.7539 1.0000 0.7948 1.0000 0.8466 1.0000 

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

8 0.6205 1.0000 0.7034 1.0000 1.0000 1.0000 

 

TABLE X 

 INVESTMENT PROPORTION CORRESPONDING TO DIFFERENT PREFERENCE COEFFICIENTS WHEN 0 =  

Weight 1x  2x  3x  4x  5x  6x  7x  8x  

(2,1,2) 0.0000 0.0294 0.7051 0.0000 0.0000 0.0000 0.2655 0.0000 

(1,2,1) 0.0000 0.0000 0.5288 0.0000 0.0000 0.0000 0.4712 0.0000 

(4,3,1) 0.0000 0.0045 0.1292 0.0039 0.0000 0.0000 0.8624 0.0000 

(1,0,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

(1,1,1) 0.0000 0.2116 0.4462 0.0000 0.0000 0.0000 0.3423 0.0000 

(1,1,0) 0.0065 0.9379 0.0016 0.0000 0.0000 0.0000 0.0525 0.0015 

 
TABLE XI 

 INVESTMENT PROPORTION CORRESPONDING TO DIFFERENT PREFERENCE COEFFICIENTS WHEN 0.3 =  

Weight 1x  2x  3x  4x  5x  6x  7x  8x  

(2,1,2) 0.0000 0.0968 0.2685 0.0000 0.0000 0.0000 0.6346 0.0000 

(1,2,1) 0.0000 0.1612 0.3127 0.0000 0.0000 0.0000 0.5261 0.0000 

(4,3,1) 0.0000 0.2532 0.2570 0.0000 0.0000 0.0000 0.4897 0.0000 

(1,0,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

(1,1,1) 0.0000 0.0482 0.1879 0.0000 0.0000 0.0014 0.7625 0.0000 

(1,1,0) 0.0065 0.9379 0.0016 0.0000 0.0000 0.0000 0.0525 0.0015 
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VI. CONCLUSIONS 

This paper proposes a multi-objective fuzzy portfolio 

model considering return, variance and efficiency. Its 

specific goal is to maximize return and efficiency, and 

minimize variance. The efficiency of a portfolio is calculated 

by the fuzzy DEA using six fuzzy indicators of stocks. Equity 

multiplier, price earnings ratio and Beta value are regarded as 

three input indicators of the fuzzy DEA. Total assets turnover, 

earning per share and net profit growth rate are the three 

output indicators of the model. Finally, an actual example is 

given to solve the model by using genetic algorithm under 

different preference coefficients. The actual results indicate 

that it is necessary to consider portfolio efficiency and offer 

more decision-making options for investors. 
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TABLE XII 

 INVESTMENT PROPORTION CORRESPONDING TO DIFFERENT PREFERENCE COEFFICIENTS WHEN 0.5 =  

Weight 1x  2x  3x  4x  5x  6x  7x  8x  

(2,1,2) 0.0000 0.5892 0.0481 0.0664 0.0000 0.0000 0.2963 0.0000 

(1,2,1) 0.0000 0.5499 0.1751 0.0000 0.0000 0.0000 0.2749 0.0000 

(4,3,1) 0.0000 0.4093 0.1217 0.1209 0.0000 0.0000 0.3482 0.0000 

(1,0,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

(1,1,1) 0.0000 0.4008 0.0875 0.1191 0.0000 0.0000 0.3926 0.0000 

(1,1,0) 0.0065 0.9379 0.0016 0.0000 0.0000 0.0000 0.0525 0.0015 

 
TABLE XIII 

 INVESTMENT PROPORTION CORRESPONDING TO DIFFERENT PREFERENCE COEFFICIENTS WHEN 0.7 =  

Weight 1x  2x  3x  4x  5x  6x  7x  8x  

(2,1,2) 0.0000 0.4646 0.0438 0.0436 0.0000 0.0000 0.4480 0.0000 

(1,2,1) 0.0000 0.6246 0.0712 0.0000 0.0000 0.0000 0.3042 0.0000 

(4,3,1) 0.0000 0.5420 0.1408 0.0704 0.0000 0.0000 0.2468 0.0000 

(1,0,1) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

(1,1,1) 0.0000 0.3902 0.1795 0.0000 0.0000 0.0000 0.4303 0.0000 

(1,1,0) 0.0065 0.9379 0.0016 0.0000 0.0000 0.0000 0.0525 0.0015 
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