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Abstract—A fuzzy identity-based signature (FIBS) allows
a user with identity i to produce a signature that can be
verified under identity j when and only when i and j are
close to each other. Lattice-based cryptography is thus of
high importance. Aiming to solve the unwanted disclosure of
biometrics data in the biometrics applications and to enhance
the computing efficiency and authentication security, adaptive
security based on FIBS from lattices is proposed. On the basis
of the definition and security model of the fuzzy identity fully
homomorphic signature (FIFHS), the key homomorphism and
partitioning technology can be used to assign values to any
circuit of the signature message. The correctness and security
of the scheme are derived and proved strictly, and the adaptive
security existential unforgeability of the scheme under adaptive
chosen message and identity attacks is reduced to the module
short integer solution (MSIS) problem, which is as difficult as
approximating the worst-case module-generalized independent
vectors problem (Mod-GIVP).

Index Terms—lattice-based cryptography; fuzzy identity fully
homomorphic signature (FIFHS); forward security.

I. INTRODUCTION

SHAMIR [1] proposed an identity-based cryptographic
system. The main idea is to generate a public key from

an arbitrary phone number, identity number, email, etc., and
derive the corresponding private key from the key generation
centre. Therefore, identity-based cryptography is a good
alternative to public key infrastructure. Sahai and Waters
[2] viewed each identity as a set of descriptive attributes
to tolerate minor identity errors. Sahai and Waters proposed
the concept of fuzzy identity-based encryption (FIBE), and
an FIBS scheme was constructed from the decisional bilinear
Diffie-Hellman (BDH) problem. Many FIBE schemes have
emerged, such as [3], [4], [5]. Agrawal et al. [6] proposed a
FIBE scheme based on learning with errors (LWE). Yang et
al. [7] constructed a new cryptographic primitive called the
fuzzy identity-based signature (FIBS), which is an analogue
of FIBE, and constructed a FIBS scheme based on the
computational Diffie-Hellman problem. Some FIBS schemes
and ID-based biometric authentication schemes based on the
traditional number theory assumptions, such as [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], are not immune
to quantum computing attacks. In a FIBS scheme, a signer
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with identity i issues a signature that can be verified under
identity i′ when and only when identity i and identity i′

are within a certain distance estimated by a certain measure.
The private key associated with an identity is shared among
signature generation servers rather than the master key of
the public key generator. The FIBS schemes can naturally
be applied to biometric identification applications.

Yang et al. [19] proposed the first FIBS scheme. A number
of FIBS schemes were constructed under the assumptions
of traditional number theory. However, according to Shor’s
work [20], traditional number theory problems can be solved
using a quantum computer in polynomial time. As one of the
most promising candidates for post-quantum cryptography,
lattice-based cryptography has attracted significant interest in
recent years due to several potential benefits: asymptotic effi-
ciency, worst-case hardness assumptions and security against
quantum computers. Inspired by the breakthrough results
of Ajtai [21], lattice-based cryptography has been rapidly
developing [22], [23], [24], [25]. Yao et al. [26] proposed
a FIBS for the small integer solution (SIS) problem. Zhang
et al. [27] constructed a FIBS scheme in which the lattice
basis delegation technique is used to generate the private
key, while the additive homomorphic hash function is used
to obtain the homomorphic linear lattice-based signature.
Zhang et al. [28] proposed a FIBS from lattices for identities
in a large universe. In a homomorphic signature scheme,
let f denote a Boolean circuit function. Given the public
key and vector signatures σ = (σ1, . . . , σl) for l messages
µ = (µ1, . . . , µl), the homomorphic signature algorithm
generates a signature σ′ for f(µ). An arbitrary verifier can
confirm the validity of the signature σ′ given the tuple
(σ′, µ, f). Johnson et al. [29] proposed redactable signa-
tures and set-homomorphic signatures that has the property
that given a signature on a message, anyone can generate
signatures on subsets of the message. Some homomorphic
signature schemes are proposed, such as [30], [31], [32],
[33]. The first homomorphic signature scheme can compute
constant degree polynomials on signed messages [34]. A
homomorphic signature scheme for a class of predicates
was proposed in [35]. Inspired by [36], Wichs solved the
difficulty of evaluating arbitrary circuits over signed data in
homomorphic signature schemes [33]. Their scheme achieves
adaptive security using chameleon hash functions. Another
way to realize adaptively secure fully homomorphic signature
schemes is using a normal signature plus a non-interactive
zero-knowledge proof. Boyen et al. [37] constructed the first
adaptively secure homomorphic signature scheme based on
the short integer solution (SIS) problem that can evaluate
any circuit over signed data. Zhang et al. [38] construct-
ed a post-quantum forward-secure identity-based signature
scheme from lattices and used the basis delegation technique
to provide flexible key update. Wang et al. [46] constructed
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a leveled adaptively strong-unforgeable identity-based fully
homomorphic signature. Ramadan et al. [47] constructed
an identity-based signature with server-aided verification
scheme for 5G mobile systems.

In this paper, we focus on four properties of identity-
based signatures: forward security, strong unforgeability, full
homomorphism, and post-quantum security. We present a
forward-secure identity-based fully homomorphic signature
scheme with flexible key update using the basis delegation
technique from lattices. The proposed scheme is proved to
be strongly unforgeable under the MSIS problem.

The rest of this paper is organized as follows. Some
preliminaries are presented in Section II. The syntax and
the security model of FIFHS are proposed in Section III.
The proposed scheme and its security proof are presented in
Section IV. Finally, the conclusion is given in Section V.

II. PRELIMINARIES

A. Notation

Z denotes the set of integers. R denotes the set of real
numbers. Random variables are denoted by upper-case italic
letters (e.g., X). Vectors are column vectors denoted by bold
lower-case letters (e.g., v), and vT denotes the transpose
of v. Matrices are sets of column vectors denoted by bold
capital letters (e.g., X). Im denotes an m-order identity
matrix. For a matrix A ∈ Rn×n, s1(A) denotes its spectral
norm, and ‖A‖GS denotes the longest column vector of
its Gram-Schmidt orthogonalization. Define a polynomial
ring R = Z[x]/〈Φm(x)〉, where Φm(x) = xm/2 + 1 is
an m-degree cyclotomic polynomial. The statistical distance
between two distributions X and Y on a countable set D
is defined as follows: ∆(X,Y ) = 1

2

∑
d∈D |X(d) − Y (d)|.

We say that a function f(n) is poly(n) if it is bounded by
a polynomial in n. The notation ω(f(n)) refers to the set of
functions (or an arbitrary function in that set) growing faster
than c · f(n) for any constant c > 0.

B. Lattices and Gaussian Distribution

Let q be prime, A ∈ Zn×mq , u ∈ Znq , and define the
following three lattices

Λq(A) = {e ∈ Zm : ∃ s ∈ Znq , e = AT s(mod q)};

Λ⊥q (A) = {e ∈ Zm : Ae = 0(mod q)};

Λu
q(A) = {e ∈ Zm : Ae = u(mod q)}.

ρs(x) = exp(−π‖x‖
2

s2 ) is the probability density function
of the n-dimensional standard Gaussian distribution with
centre 0 and variance s. For a lattice L, s > 0, DL,s(x) =

ρs(x)∑
x∈L ρs(x) denotes the discrete Gaussian distribution over

the lattice L. For a polynomial ring R on the variable x over
R, Dcoeff

L,s denotes the distribution of a(x) =
∑n−1
i=0 aix

i, of
which coefficient vector (a0, a1, . . . , an−1) follows a discrete
Gaussian distribution DL,s.

C. Rings

Let n be a power of 2. Let m = 2n. Define a polynomial
ring R = Z[x]/(xm/2 + 1). For prime q, define Rq =
Zq[x]/(xm/2 + 1). The coefficient embedding is defined as
follows:

φ :


R → Zn

a(x) =
n∑
i=1

aix
i 7→ (a0, . . . , an−1)

The ring homomorphism rotΦm,n : R → Zn×n maps
a(x) ∈ R to a matrix over Zn×n, in which the i-th row vector
is φ(xi ·a(x)mod Φm(x)) ∈ Zn. An element of the R-model
Rm is denoted as x = (x1, x2, . . . , xn)T ∈ Rm. Define two
multiplication operations as follows: for x, y ∈ Rm, x⊗ y =∑n
i=1 xiyi; For x ∈ Rm, y ∈ R, xy = (x1y, x2y, . . . , xny).
lemma 1 ([39]) Let q be a prime such that q ≡ 3(mod 8),

and let n be a power of 2. We have the following two
conclusions:

1) Φ2n(x) = xn + 1 splits as xn + 1 ≡ t1t2(mod q) for
two irreducible polynomials t1 = xn/2 + uxn/4 − 1 ∈
Zq[x] and t2 = xn/2 − uxn/4 − 1 ∈ Zq[x], where
u2 ≡ −2(mod q). For each a ∈ Rq satisfying a ∈ R×q ,
are invertible and ‖φ(a)‖2 <

√
q.

2) Let n be a power of 2, q be a prime larger than 4n
such that q ≡ 3(mod 8), and k, k′, `, ρ ∈ Z+ be
positive integers satisfying k′, ` ≥ 1, k ≥ 2, and
ρ < 1

2

√
q/n. Define the family of hash functions H =

{ha(x)|[−ρ, ρ]kR → Rk
′

q }, where hA(x) = Ax for A ∈
Rk
′×k
q , x ∈ Rk×1

q . Then, H is a universal hash function
family. For A ∈R Rk

′×k
q , X ∈R Rk×`q , we have

4
(

(A,AX), (A, U(Rk
′

q × `))
)
≤ `

2

√(
qk′

(1+2ρ)k

)n
.

D. Important Algorithms

Definition 1 ([40]) A function ε(x) is negligible if, for
every m > 0, there exists x0 such that ε(x) ≤ 1

xm for each
x ≥ x0.

Lemma 2 ([41]) The randomized algorithm TrapGen
outputs a vector a ∈ Rkq and a matrix Ta ∈ Rk×k, where
rot(aT )T ∈ Zn×nkq is a full-rank matrix and rot(Ta) ∈
Znk×nk is a basis for Λ⊥q (rot(aT )T ) such that a is negl(n)-
close to uniform.

Lemma 3 ([42]) Let n be a power of 2 and q be a
prime such that q ≡ 3(mod 8). The randomized algorithm
e ← SampleLeft(a,b,u,Ta, σ) is defined such that given
vectors a,b ∈ Rkq , where rot(aT )T and rot(bT )T ∈ Zn×nkq

are full-rank, an element u ∈ Rq , a matrix Ta ∈ Rk×k

such that rot(Ta) ∈ Znk×nk is the trapdoor basis of
the lattice Λ⊥(rot(aT )T ), and a Gaussian parameter σ ≥
‖rot(Ta)‖GS · ω(

√
log nk), the algorithm outputs a vector

e ∈ R2k sampled from a distribution that is negl(n)-close to
Dcoeff

Λ⊥
φ(u)

([
rot(aT )T |rot(bT )T

])
,σ

, i.e.,
[
a|b
]
eT = u, φ(e) ∈ Z2nk

is distributed according to D
Λ⊥
φ(u)

([
rot(aT )T |rot(bT )T

])
,σ

.

Lemma 4 ([39]) The randomized algorithm e ←
Sampleright(a, gb,R, y,u,Tgb

, s) is defined such that given
vectors a, gb ∈ Rmq , where b = aR + ygb such that
rot(aT )T and rot(gb) ∈ Zn×nmq are full-rank matrices,
elements y ∈ R∗q and u ∈ Rq , a matrix R ∈ Rm×m,
a matrix TGb ∈ Rm×m such that rot(Tgb

) ∈ Znm×nm
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is the basis of Λ⊥(rot(gb)), and a Gaussian parameter
s > s1(R) · ‖rot(Tgb

)‖GS · ω(
√

log nm), the algorithm
outputs a vector e ∈ R2m sampled from a distribution
that is negl(n)-close to Dcoeff

Λ⊥
φ(u)

([
rot(aT )T |rot(bT )T

])
,s

, i.e.,

[a|b]eT = u, φ(e) ∈ Z2nm is distributed according to
D

Λ⊥
φ(u)

([
rot(aT )T |rot(bT )T

])
,s

.

Lemma 5 ([42]) Let n be a power of 2 and q be a
prime such that q ≡ 3(mod 8). The deterministic PPT
algorithm ExtBasis(Ta, c = [a|b]) is defined such that given
vectors a ∈ Rmq and b ∈ Rmq , where rot(aT )T ∈ Zn×nmq

and rot(bT )T ∈ Zn×nmq are full-rank matrices, and a
matrix Ta ∈ Rm×m such that rot(Ta) ∈ Znm×nm is the
trapdoor basis of Λ⊥(rot(aT )T ), the algorithm outputs Tc ∈
Z

(m+m)×(m+m)
q such that rot(Tc) ∈ Zn(m+m)×n(m+m)

q is
the trapdoor basis of Λ⊥

([
rot(aT )T , rot(bT )T

])
.

Lemma 6 ([39]) Let the public matrix gb =
[1, b, · · · , bk′−1] ∈ Rkq satisfying rot(gb) ∈ Zn×n and
‖gb‖GS ≤

√
1 + b2, k′ ≥ k. There exists a deterministic

polynomial time (PT) algorithm g−1
b that inputs u ∈ Rq and

outputs P = g−1
b (u) such that gbP = u.

Lemma 7 ([43]) The preimage sampling algorithm
PreSample involves the input of a vector a ∈ Rkq , a short
basis Ta ∈ Rk×k as a trapdoor, where rot(aT )T ∈ Zn×nkq

is a full-rank matrix and rot(Ta) ∈ Znk×nk is a basis for
Λ⊥q (rot(aT )T ), a Gaussian parameter σ ≥ ‖rot(Ta)‖GS ·
ω(
√

log nk), and a vector u ∈ Rq . This algorithm works as
follows: First, it chooses an arbitrary t ∈ Rkq via the linear
algebra equation a ∗ t = u(mod q) (except for a negligible
fraction of rot(aT )T such that t always exists). Then, the
algorithm outputs e← (Dcoeff

Λ⊥
φ(t)(rot(aT )T ),σ

)k.

Lemma 8 ([44]) Let q > 2, A ∈ Zn×mq , R ∈ Zn×mq .
Let TA be a basis of Λ⊥q (A). There exists a PPT algo-
rithm NewBasis(A,R,TA, δ) that outputs a random basis
TB for Λ⊥q (AR−1) such that ‖T̃B‖ ≤ O(

√
log2m) and

δ ≥ ‖T̃A‖σR
√
m ·O(

√
log2m) ·O(log2m). There exists an

algorithm SampleRwithBasis(A) that generates a matrix R
sampled from Dm×m along with a short basis for Λ⊥q (AR−1)
without any short basis for Λ⊥q (A). This algorithm proceeds
as follows:

1) Run the algorithm TrapGen to generate a random rank
n matrix B ∈ Zn×mq and a basis TB for Λ⊥q (B).

2) Sample ri ∈ Zm via PreSample(B,TB, ai, σR) for i ∈
{1, . . . ,m}.

3) Output R ∈ Zm×m and the basis TB for Λ⊥q (B).

E. Module Short Integer Solution Problem

A module is an algebraic structure generalizing rings
and vector spaces, whereas module lattices generalize both
arbitrary lattices and ideal lattices. In [45], Langlois and
Stehlé bridged the reduction from Mod-GIVP to MSIS.

Definition 2 (MSISq,m,β assumption [44]) Given
a1, · · · , am ∈ Rkq chosen independently from a
uniform distribution, find z1, · · · , zm ∈ R such that∑m
i=1 ziai = 0(mod q) and 0 ≤ ‖z‖ ≤ β, where

z = (z1, · · · , zm)t ∈ Rmq .
Theorem 1 (A reduction from Mod-GIVP to MSIS [45])

For any d ≥ 1, ε(N) = N−ω(1), there is a probabilistic
polynomial time reduction from solving Mod−GIV P ηεγ in
polynomial time (in the worst case, with high probability) to

solving MSISq,m,β in polynomial time with non-negligible
probability, for any m(N), q(N), β(N), γ(N) such that γ ≥
β
√
N · ω(

√
logN), q ≥ β

√
N · ω(logN) and m, log q ≤

poly(N).

III. FIFHS AND THE SECURITY MODEL

M denotes the plaintext space. C : Ml → M denotes
a circuit that inputs l plaintexts and outputs a plaintext.
The forward-secure FIFHS consists of the following five
algorithms:
• Setup(1κ, 1l, parameter) takes the security parameter

1κ, the maximum size l for the message set, and the
public parameter as inputs and outputs the master public
key mpk and public key pk.

• Extract(pk,mpk, ω) takes pk, mpk and the identity
ω = {ωi}`i=1 as inputs and outputs the private key
skω,1.

• Update(pk, skω,j , ω) Given pk, the current secret key
skω,j of a user ω at the current time period j ≤ d− 1,
the algorithm computes an updated secret key skω,i for
user ω at update time period i (j ≤ i ≤ d).

• Sign(τ, i, skω,i, µ) takes the index τ ∈ {0, 1}κ, a
private key skω,i associated with an identity ω at the
current time period i ≤ d, a message µ and its cor-
responding index i as inputs and outputs the signature
σω,µ.

• Eval(pk, τ, µ, σ, C) takes the public key pk, index τ ,
message sequence µ, signature sequence σ and circuit
C as inputs and outputs the signature σ′ω,µ′ for the
evaluation message µ′ = C(µ).

• V erify(pk, η, τ, µ, σω,µ, C) takes pk, identity η =
{ηi}`i=1 (|η ∩ ω| ≥ t), index τ , message µ, signature
σω,µ, and circuit C as inputs outputs 1 if the verification
is successful.

For any index τ ∈ {0, 1}λ, any circuit C, any message µ,
any index i ∈ [l], identities ω = {ωi}`i=1 and η = {ηi}`i=1

satisfying |η ∩ ω| ≥ t, FIFHS satisfies consistency if the
following two equations hold

Pr[V erify(pk, η, µ, Sign(τ, i, skω,i, µ))] = 1;

Pr[V erify(pk, τ, µ′, σ′ω,µ′ , C)] = 1.

For i ∈ [l], σi is the signature generated by
Sign(skω,i, τ, i, µi), and σ′ is the signature for evaluation
circuit µ′ = C(µ) obtained by Eval(pk, τ, µ, σ, C).

Let ε denote a FIFHS scheme, F denote a PPT adversary,
and D denote a challenger. The notion of existentially
unforgeable homomorphic signatures against adaptively full
chosen message and identity attacks (EU-FH-ACMIA) is
defined as follows:
• Setup : D runs the Setup algorithm and provides the

adversary F the public parameters.
• Stage 1 : F declares the target identity ω∗ = {ω∗i }`i=1.
• Stage 2 : F adaptively issues private key queries

and signature queries for any identity ω = {ωi}`i=1

satisfying |ω ∩ ω∗| < t.
• Stage 3 : F makes a number of different queries to the

challenger C.
– Extract Query : F issues an extract query for

any identity ω = {ωi}`i=1 satisfying |ω ∩ ω∗| < t;
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C then runs the Extract algorithm to obtain the
private key skω and sends it to F .

– Sign Query : F can query for a dataset index
i ∈ 2κ, for a message index j ∈ [l], a message
µij ∈ M, and any identity η(j) = {η(j)

i }`i=1

satisfying |η(j) ∩ ω∗| < t. F assigns a random
tag τi ∈ {0, 1}κ to the dataset i, then runs
Extract to obtain the private key skη(j) , and finally
runs Sign(τi, j, skη(j) , µij) to obtain the signature
ση(j),µij .

• Output : F outputs (ω∗, µ∗, σ∗ω∗,µ∗). If the
set in ω∗ ∩ η(j) was not submitted to the
Extract Query and the Sign Query, respectively,
and V erify(pp, ω∗, µ∗, σ∗ω∗,µ∗) = 1.

F wins if V erify(pp, ω∗, µ∗, σ∗ω∗,µ∗) = 1, and either
1) τ∗ 6= τi for all i or
2) τ∗ = τi for some i, but µ∗ 6= C∗(µi), where µi =

(µi1, . . . , µil) is the vector of messages queried under
a common tag τi but differing indices j ∈ [l].

F’s probability of success AdvFIFHEU−FH−ACMIA(F , ε) is
defined as follows:

Pr[V erify(pp, ω∗, µ∗, σ∗ω∗,µ∗) = 1].

If AdvFIFHEU−FH−ACMIA(F , ε) is negligible in the security
parameter κ, we say the signature scheme satisfies EU-FH-
ACMIA security.

IV. FORWARD-SECURE FIBFHS OVER LATTICES

Each dataset should be associated with a unique random
tag τ that is used for signing and verification. τ consists of
two components: t ∈ {0, 1}λ and b ∈ {0, 1}l. The first bit
is fixed to t[0] = 0. We use the lattice mixing technique for
t ∈ {0, 1}λ to realize adaptive security. b ∈ {0, 1}l is used
to prove adaptive security. Let H : {0, 1}∗ → Rmq be a hash
function.

A. Construction

• Setup: Input security parameter 1λ, the maximum num-
ber ` of inputs for the circuit family C, the number of
bits |τ | (|τ | = |t| + |b| = λ + `) for the tag, and the
maximum depth dmax of the circuit family C.

1) Set n = n(λ, dmax), q = q(n, dmax), and m =
m(n, dmax). Let the Gaussian parameters be s1 =
s1(n) and s2 = s2(n).

2) Run the algorithm (a,Ta)← TrapGen to generate
one random matrix a ∈ Rmq with its associated
trapdoor Ta ∈ Rm×mq .

3) Sample 1 + 2` random matrices f ∈ Rmq and
di∈[`],τ∈{0,1} ∈ Rq and |t| random matrices
{wi}i∈[t] ∈ Rmq .

4) Output the master secret key
msk = Ta and the public parameters
(a, f, gb,di∈[`],τ∈{0,1}, {wi}i∈[t]).

• Extract: Given inputs pk, mpk, the identity ω =
{ωi}`i=1 and an initial time period i = 1, the key
generation centre generates the private key as follows:

1) Define w =
∑|t|
i=1(−1)t[i]wi and set at = (a|b +

w) ∈ R2m
q to denote the dataset matrix.

2) Run ExBasis(a,Ta,b+w) to generate the trapdoor
Tat for the lattice Λ⊥(a|b + w).

3) Let Rω‖1 = H(ω‖1), and run T′at,ω‖1 ←
NewBasisDel(at, Rω‖1,Tat , s1).

4) Output the private key {T′at,ω‖1}.
• Update: Upon input of the public parameter, the current

time period i ≤ d, and T′at,ω‖j , which denotes the
signing secret key associated with the previous time
period j < i, the user with identity ω performs the
following steps to update his signing secret key:

1) Compute Rω‖j = H(ω‖j) · · ·H(ω‖1) and com-
pute aω‖j = at · R−1

ω‖j as the public key in time
period j with respect to signing secret key T′at,ω‖1.

2) Let Rj→i = H(ω‖i) · · ·H(ω‖j+1), and compute
T′at,ω‖i ← NewBasisDel(aω‖j , Rj→i,Taω‖i , si).

Note that T′at,ω‖i is a short basis of Λ⊥(aω‖j),
where aω‖i = aω‖j · R−1

j→i, and Rω‖i =
H(ω‖i) · · ·H(ω‖1).

• Sign: Upon input of the public parameter, an identity
ω, and a message u = (u1, . . . , un) ∈ Znq , the signer
generates the fuzzy identity-based fully homomorphic
signature as follows:

1) For each i ∈ [`], choose a uniform random
polynomial fi(x) ∈ Zq[x] of degree t such that
fi(0) = ui.

2) Let ûi = (f1(i), . . . , f`(i)) ∈ Rq such that u =∑`
i=1 li · ûi, where li =

∏
j 6=i

−i
j−i .

3) Let u′ = C(u), run

SampleLeft(a,T′at,ω‖i, aω‖i,di,τ +gb(u′+ ûi), s2)

to generate a vector (ri,1|ri,2) ∈ R2m
q . That is,

(ri,1|ri,2) satisfies the following equation:

aω‖i ⊗ (ri,1|ri,2)T = di,τ + gb(u′ + ûi)(mod q).

4) Output the signature {u′, (ri,1|ri,2)i∈[`], ω}.
• V erify: To verify the signature {u′, (ri,1|ri,2)i∈[`], ω}

with respect to the identity ω = {ω1, . . . , ω`} against
an identity η = {η1, . . . , η`}, let I ⊆ [`] denote the set
of matching bits in ω and η. If |I| = |ω ∩ η| < t, the
receiver outputs 0; otherwise, the receiver executes the
following steps:

1) Parse the index τ = (t|b) ∈ {0, 1}λ+`, and parse
the signature σi = (ri,1|ri,2).

2) Compute w =
∑|t|
i=1(−1)t[i]wi, set at = (a|b +

w) ∈ R2m
q .

3) Compute ei = g−1
b [aω‖i(ri,1|ri,2)T − di,τ − gbu′].

4) Verify u =
∑
j 6=i li · aω‖i ⊗ eTi , where li =∏

j 6=i
−i
j−i .

• Eval: Upon input of the public key pk, index τ , mes-
sage sequence µ, signature sequence σ and circuit C,
the evaluation algorithm executes the following steps:

1) Suppose the gate g = (u, v, w) is a NAND
gate. For each wire in the gate, let di denote the
public matrix associated with that wire. Construct
the dataset matrix w =

∑|t|
i=1(−1)t[i]wi, let at =

(a|b + w) ∈ R2m
q .

2) Let (x, y) be the values carried by wires (u, v).
Compute aω‖i ⊗ ru = du + gbx, aω‖i ⊗ rv =
du + gby.
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3) Define dw = dvd̃u+ (yd̃u+ ûid̃u−ydu−yûi)gb,
where d̃u = g−1

b (du).
4) Output rw = rvd̃u − yru.

B. Correction

Let σi = (ri,1|ri,2) be the signature for message u′ under
the tag τ = (t|b). By the construction of algorithm Sign,
we have

aω‖i ⊗ (ri,1|ri,2)T = di,τ + gb(u′ + ûi)(mod q).

Let ru and rv be signatures for messages x and y, respec-
tively, under public keys du and dv , such that

aω‖i ⊗ ru = du + (x+ ûi)gb,

aω‖i ⊗ rv = dv + (y + ûi)gb.

Compute

aω‖i ⊗ rw = aω‖i ⊗ (rv · d̃u − yru)

= aω‖i ⊗ rvd̃u − at ⊗ yru
= dv + (y + ûi)gbd̃u − ydu + (x+ ûi)gb
= dw + (1− xy)gbûi
= dw + (x NAND y)gbûi

(1)

C. Security

Theorem 2 For a prime modulus q = poly(n), if there
is a PPT forger F that outputs an EU-FH-ACMIA forgery
with probability ε in time t, then there is a PPT algorithm
B that solves the MSISq,n,m assumption in time t′ ≈ t and
with probability ε′ ≥ ε · 1−3−k

Qid
· (1− Qe

Qid
) · (1− Qs

Qid
), where

Qid, Qe, and Qs are the maximal numbers of hash queries,
extract queries and sign queries made by F , respectively.

Proof: Assume there exists a PPT adversary F who wins
the unforgeability security game defined above; we construct
a reduction B that can leverage the adversary F to break the
MSISq,n,m assumption.
Setup. D sends the public key and the public parameters

to F . D randomly chooses |t| vectors {si}i∈[|t|] ∈ Rmq . Select
|t| uniformly random scalars h0, . . . , h|t| ∈ Zq , and randomly
select (1+2`) vectors x, xi,b ∈ Rm2 . Set a = a∗x. Set the pub-
lic key pk = (a, a∗, gb, {di,τ = a∗ ⊗ xi,b}i∈[`],b∈{0,1}, {ti =
a∗ ⊗ si + higb}i∈[|t|]).
Stage 1 : F declares the target identity ω∗ = {ω∗i }`i=1.
Stage 2 : For any identity ω = {ωi}`i=1 such that |ω ∩

ω∗| < t, F sends the private key query and signature query.
Extract Query. Although C does not know the master

private key, C can construct a private key for ω. Given ω =
{ω1, . . . , ω`}, C returns {T′at,j}j∈[`] to F . C samples rj,ωj ←
Zn×n and runs SampleRwithBasis to obtain the short basis
T′at,j for the lattice Λ⊥q (a · r−1

j,ωj
).

Hash Query. F may adaptively query the random oracle
H on any identity, any time period i and any message
of its choice. To respond consistently to these queries, D
maintains a list L that is initially empty, and the simulator
simply returns the same output on the same input without
incrementing the query counter Qid. D answers the Q-th
query as follows.

1) For Q = Q∗, set H(ω‖i) = R∗i , store (ω, i, R∗i , ∗, ∗)
in L, and return R∗i as the oracle H(ω‖i)’s value.

2) For Q 6= Q∗, compute ai = a · (R∗i−1 · · ·R
∗

2R
∗

1)−1,
run (Ri,Tb)← SampleRwithBasis(ai), save the tuple
(ω, i, Ri,b,Tb) in L, and return Ri as the value of
H(ω‖i).

Sign Query. Reduction B answers adaptive message
queries from F on any message as follows. C answers all
the queries from F and executes the following operations:

1) Select a random index τ = (t|b) ∈ {0, 1}λ+`, and
restrict t[0] = 0.

2) Compute tt =
∑
i(−1)ti[i]ti, hi =

∑
i(−1)ti[i]hi.

3) Compute at = (a|b + tt). For each i ∈ [`],
run SampleRight(a∗, gb,u+

∑
i(−1)t[i]si, tgb ,di,b[i] +

uigb, s3) to generate (ri,1|ri,2).
4) Output the index τ = (t|b) ∈ {0, 1}λ+` and the

signature σ = {σi}i∈[`].
5) Increment the counter.

Output. Reduction B receives a forgery tuple from F .

1) If the type of forgery submitted by adversary F is dif-
ferent than the type initially guessed by the reduction,
then abort the simulation.

2) Otherwise, construct a solution to the MSISq,n,m
challenge as follows: F computes the index vector and
the scale t∗ =

∑
i(−1)ti[i]ti and h∗ =

∑
i(−1)ti[i]hi.

We have [a∗|a∗(x +
∑
i(−1)t∗[i]si)]⊗ (ri,2|ri,1)T = dC +

gb(u∗ + ûi). There exists a vector k ∈ Rq , such that
dC = a∗⊗uC+k·gb and the following equation holds with an
overwhelming advantage a∗(r∗i,2 + (u +

∑
i(−1)t∗[i]si)r∗i,1−

uC) = (k + u∗)gb = 0. Since the proof is exactly the same
as that of Lemma 4.4 of [37], we omit it here. Since there
are exponentially many choices of si values that would result
in the same view of the adversary. Therefore, the probability
that the term on the right-hand side vanishes is negligible. If
k+u∗ = 0, (r∗i,2+(u+

∑
i(−1)t∗[i]si)r∗i,1−uC) is the solution

for the MSISq,n,m assumption; otherwise, output (r∗i,2+(u+∑
i(−1)t∗[i]si)r∗i,1−uC)Tgb as the solution. Furthermore, B

completes Extract Query and Sign Query without abort-
ing with probability at least (1− Qe

Qid
)(1− Qs

Qid
). Therefore,

we can deduce that (r∗i,2 + (u +
∑
i(−1)t∗[i]si)r∗i,1 − uC) is

a short non-zero preimage of 0 under a∗ with probability
ε′ ≥ ε · 1−3−k

Qid
· (1− Qe

Qid
) · (1− Qs

Qid
).

D. Application to Biometric Authentication

• Enrolment Phase
1) User A uses his biometric data in an enrolment

phase. The properties of his biometric data are
measured with specialized equipment and mod-
elled as a feature vector.

2) Run NewBasisDel to generate the private key sω .
3) User name A is used as the signed message. Run

Sign(PP, sω, A, ω) to generate the reference data
(ri,2|ri,1)i∈[`]. The certification authority stores
di,τ , the reference data (ri,2|ri,1)i∈[`] and the
biometric measurement data ω = {ω1, . . . , ω`}.

4) The certification authority erases the private key
sω and the user name.

• Authentication/Verification Phase
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1) Each user sends his biometric measurement data
to the certification authority.

2) User B computes his biometric measurement data
and his biometric measurement data η, randomly
chooses εi ∈ R2

q , and sends them to the certifica-
tion authority.

3) The certification authority finds (ri,2|ri,1)i∈[`] and
the biometric measurement data ω by searching
user name A.

4) The certification authority computes the set I =
ω ∩ η, returns {ξi = (ri,2|ri,1)⊗ εi}i∈[`], his own
biometric measurement data η, and his own user
name to B.

5) User B computes {(ri,2|r) = ξi ⊗ ε−1
i }i∈[`],

computes ei = g−1
b [at(ri,1|ri,2)T − di,τ − gbu′],

and verifies whether the following equation holds:
u =

∑
j 6=i li · at ⊗ eTi , where li =

∏
j 6=i

−i
j−i .

E. Performance Analysis

It is assumed that the output of the hash algorithm is
128 bits and that the random number is 128 bits according
to the NIST security parameter. Let n denote the lattice
dimension, th denote the operation time of the hash function,
tp denote polynomial multiplication, tg denote the Gaussian
sampling algorithm, td denote dot multiplication, ` denote the
length of the identity (attribute), and |ω| denote the length of
the fuzzy identity. Table 1 compares the running times. We
implemented these cryptography operations using the C/C++
PBC library on a 64-bit Windows 10 Thinkpad X1 notebook
and a 64-bit Ubuntu 14.4 LTS Think Center desktop, as
shown in Table 2, with th = 0.3 ms, td = 0.28 ms, tp = 0.45
ms, tg = 0.52 ms, td = 0.27 ms, n = 128, m = 256,
and ` = 50. Table 3 compares the communication overhead
and computation overhead. In addition, Table 4 shows the
concrete sizes of the related schemes when n = 256,
q = 12289, ` = 50, and |ω| = 25. Table 5 gives the security
comparison. Figure 1 shows the sizes of PK for ` = 10,
q = 12289. Figure 2 shows the sizes of SK for ` = 10,
q = 12289. Figure 3 shows the sizes of communication
overhead for ` = 10, q = 12289.

Table 1. Time Comparison
Scheme Enrolment Phase Authentication Phase

Ours 2`mtg 2`mtp
[26] nth + `ntp + 2`mtg nth + 2`mtp
[27] nth + `ntp + 2`mtg nth + 2`mtp
[28] nth + `ntp + 2`mtg nth + 2`mtp

Table 2. Concrete Time Comparison
Scheme Enrolment Phase Authentication Phase

Ours 13312 ms 11520 ms
[26] 16230 ms 11558 ms
[27] 16230 ms 11558 ms
[28] 16230 ms 11558 ms

Table 3. Overhead Comparison
Scheme PK SK Communication Overhead

Ours 2n2 log q 2`n2 log q |ω|+ (4`n2 + n) log q

[26] 8`n2 log2 q 4`n
√
n log2 q |ω|+ 4`n

√
n log2 q

[27] 5n2 log2 q 5`n2 log2 q |ω|+ 5n2(` + 1) log2 q

[28] 6`n2 log2 q 16`n2 log2 q |ω|+ 4`n2 log2 q

Table 4. Concrete Overhead Comparison
Scheme PK SK Communication Overhead

Ours 217 KB 1359 KB 2718 KB
[26] 591000 KB 18469 KB 18468 KB
[27] 7388 KB 369376 KB 376764 KB
[28] 443251 KB 1182003 KB 295501 KB

Fig. 1. Comparison for PK Sizes

Fig. 2. Comparison for SK Sizes

Fig. 3. Comparison for Communication Overhead

Table 5. Security Comparison
Scheme Adaptive Security Homomorphism Forward Security

Ours
√ √ √

[26] × × ×
[27] × × ×
[28] × × ×
[46]

√ √
×

V. CONCLUSION

In this paper, we proposed a new construction for lattice-
based fuzzy identity-based signatures with flexible key up-
date that is fully homomorphic. The proposed scheme is
proved to be existentially unforgeable under an adaptively
full chosen message and identity attacks based on the MSIS
problem, which is as difficult as approximating the Mod-
GIVP assumption in the worst case. Compared with the
previous lattice-based FIFHS schemes, our proposed FIFHS
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scheme is efficient, especially in terms of the communication
overhead. The proposed scheme can be applied to biometric
authentication in the post-quantum environment. The exten-
sion to an efficient fuzzy attribute-based fully homomorphic
signature scheme in the standard model will be considered
in our future work.
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