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Abstract— Cloud computing is a promising technology for 

providing efficient virtualized compute and storage resources 

to users on a pay-per-usage model. Large-scale geographically 

distributed data centers have been established to support the 

increasing demand for cloud services. Execution of data-

intensive workloads is a challenging problem especially when 

objectives such as load balancing and energy reduction are 

essential to reduce cloud providers operational cost while 

providing high quality-of-service to users. Meantime, the high 

rates of data transfers result in network congestion that 

increases the makespan of workloads. This paper presents a 

novel Energy-Efficient and Bandwidth-Aware workload 

allocation method to run data-intensive applications on geo-

distributed cloud DCs. We formulated the workload allocation 

problem as a multi-objective optimization problem to minimize 

the workload makespan, data centers energy consumption, and 

communication network congestion overhead. We designed a 

meta-heuristic genetic algorithm to find a near-optimal 

workload allocation. Extensive simulations using synthetic and 

real traces showed a 32% average reduction of workload 

makespan and 35% average reduction in network traffic 

compared to benchmark allocation methods.  

 
Index Terms— Green Computing, Energy Efficiency, Geo-

Distributed Data Centers, Task Scheduling, Deadline, Data-

intensive. 

I.  INTRODUCTION 

loud computing provides virtualized compute, storage, 

and network resources with cheaper prices in a pay-as-

you-go model [1, 2, 27]. The growing demand for cloud 

services has led to the establishment of Data Centers (DCs) 

worldwide to cover users’ requests. Currently, large 

providers, such as Google, Amazon, and Microsoft, operate 

tens of DCs around the globe to ensure higher availability 

and disaster recovery [3, 26]. The Wide Area Network 

(WAN) that connects the users’ and the geo-distributed DCs 

plays an important role in satisfying user’s satisfaction and 

providers’ profit. Therefore, the network delay incurred in 

transferring data back and forth between the initial residence 

location and the virtual machines hosting the users’ 

applications must be optimized for delivering excellent 

Quality of Service (QoS).  

It is worth noting that fully replicating data across all 

DCs exhaust the storage space and the network bandwidth 

due to the overhead of updating all distributed copies. 

Besides, the Service-Level-Agreements (SLA) may enforce 

restrictions of replication due to security and privacy 

constraints. Therefore, managing data movement between 

the storage nodes and computing nodes have recently 

attracted researchers’ attention.  

Data-intensive applications manipulate and process large 

volumes of data resulting in higher network transfer cost 

than computational cost. Consequently, the allocation of 

users’ tasks to virtual machines should optimize the WAN 

network delay and hence avoid link congestion. Therefore, 

workload allocation methods should exploit the available 

bandwidths of the network links to efficiently distribute the 

workload tasks among the available virtual machines. 

Currently, cloud providers established geo-distributed 

DCs with thousands of computing, network, and storage 

resources leading to massive consumption of energy that 

pollute the environment with CO2 produce higher carbon 

emission. (3% of the global electricity production is due to 

server clusters in DCs [2, 25] with3.5% of the global carbon 

emission in 2018, to become 14% by 2040 [4].) Hence, 

cloud providers need to employ efficient workload 

allocation methods that lead to minimizing energy 

consumption for the sake of reducing operational cost and 

keeping the environment clean by reducing carbon dioxide 

emissions.  

This paper proposes an Energy-Efficient and Bandwidth-

Aware (EEBA) workload allocation method to help 

providers reduce operational cost while offering good QoS 

to users.   The contributions of this paper are summarized as 

follows: 

We formulate the problem of allocating data-intensive 

workload tasks to running VMs in geo-distributed cloud 

DCs as a multi-objective optimization problem that targets 

the minimization of energy consumption, network links 

congestion and workload makespan. 
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We design a meta-heuristic genetic algorithm that solved 

the formulated optimization problem efficiently.  

We conduct extensive simulations using CloudSim 

toolkit to validate the efficiency of the proposed EEBA 

method using both synthetic and real workload traces. The 

results are compared with benchmark workload allocation 

algorithms showed the efficiency of our method in reducing 

power consumption and data transfer cost, and hence 

providing better QoS and fulfilling user satisfaction. 

The rest of the paper is organized as follows.  Section II 

presents the works related to the workload allocation 

problem in cloud systems. Section III presents a description 

of our proposed cloud model. Section IV shows our 

formulation to the workload allocation problem as a multi-

objective optimization problem. Section V presents our 

proposed meta-heuristic genetic algorithm to solve the 

optimization problem. Section VI presents the evaluation of 

the proposed EEBA method using CloudSim simulation 

toolkit. Section VII concludes the paper. 

II. RELATED WORK 

Banerjee et al. targeted the minimization of load 

balancing in solving the workload allocation problem [5]. 

They proposed a greedy task allocation method that 

minimized the makespan of the VMs and hosts as well as 

the tasks/cloudlets completion times, which lead to 

improving the hosts load balancing. Dong et al studied the 

minimization of DC energy consumption during tasks 

allocation [6]. They proposed the Most-Efficient-Server-

First (MESF) method that schedules tasks to most energy-

efficient servers. Chatterjee et al. proposed the Conductance 

cloudlets allocation policy calculated through the ratio of 

each VM processing speed to the sum of all available VMs 

processing speed [7]. Although the authors used the 

conductance of each VM to calculate the VMs capacity, 

however, the proposed algorithm missed the importance of 

the cloudlets length as well as the cloudlets distribution, 

which lead to load imbalance. Huai et al addressed the 

problem of energy reduction in heterogeneous cloud 

environments [8]. They proposed the Benefit-driven 

Scheduling (BS) method that maps tasks to the most energy-

efficient server. Also, they proposed two different heuristic 

algorithms, Power Best First (PBF) and Load Balancing 

(LB), for tasks scheduling on homogenous servers. 

However, they didn’t consider the network delay in 

selecting the computing resources for workload execution.  

Klizavoivh et al. considered the network delay and 

bandwidth congestion on resource allocation [9]. The 

authors proposed an energy-efficient task scheduler with 

traffic load balancing, e-STAB, which consolidates jobs to a 

minimum number of activating servers to minimize 

congestion and network delay. However, the method targets 

environments with a single DC. Alizadeh et al.  studied the 

problem of inter-DC network traffic generated by 

MapReduce jobs when allocating them to geo-distributed 

DCs [10]. Their proposed optimization problem jointly 

optimizes input data movement and task placement. 

Although their experiments showed promising results in 

reducing the inter-DC network traffic, however, the applied 

method does not address the problem of energy 

consumption. 

Toosi et al. [11] proposed a provisioning algorithm for 

scheduling deadline-constrained data-intensive applications 

while taking into account aspects such as data transfer time, 

the location of data, and the network bandwidth. However, 

the proposed algorithm does not target the minimization of 

DCs’ energy. Abdi et al. proposed a model for deadline-

constrained bag-of-tasks applications in federated hybrid 

clouds that minimized providers cost. However, they 

ignored the cost incurred due to energy consumption and 

data transmission [12].  

Most of the proposed task allocation methods discussed 

above tackle the problem of minimizing the workload 

makespan while trying to reduce the energy consumption of 

the cloud resources. However, none studied the collective 

optimization among the makespan, load balancing, energy 

consumption, network links congestion, which is the goal of 

the current paper. 

III. MODEL DESCRIPTION  

The placement of users’ data on storage nodes, such as 

Amazon S3 cloud, could raise the overhead of moving data 

to/from the compute nodes if the user’s task is not allocated 

to a proper virtual machine, and hence physical machine 

[13]. Insufficient bandwidths of network links lead to 

network congestion and longer transfer delays resulting in 

data packet loss and connection blocking [14].  Therefore, 

efficient workload allocation has to take into consideration 

the network delay cost, which significantly could degrade 

performance severely and hence reduce QoS as well as 

providers’ profit. Besides, incorporating energy cost in the 

mapping process will further reduce the operational cost in 

addition to obtaining sustainable environment due to 

reducing the Carbon dioxide footprint. 

This section introduces the cloud system model 

components and the target application model. 

A. Cloud system components 

The target cloud computing system employed in this 

paper consists of four components as depicted in Fig. 1:  

1. Provider Data Centers: The cloud provider has a set of 

geographically distributed DCs. Each DC has a set of 

heterogeneous physical machines (compute nodes) that 

host a set of running virtual machines ready for running 

workload tasks. 

2. Cloud Broker: A cloud broker is an intermediary 

between the compute resources on DCs and the users. It 

accepts the users’ workload tasks and allocates them to 

a set of preconfigured and running virtual machines 

distributed among the providers’ DCs. The users’ 

requests require the movement of data files to the 

virtual machines where their tasks run. It is assumed the 

data files associated with the workload tasks are in one 

Storage Node (SN) that could be on the S3 cloud server. 

To move data faster between the SN and the physical 

machines hosting the workload VMs, we assume 

network links are configured and set prior to the 

workload allocation, and the bandwidth of the available 

links are known.  

3. Cloud Users: Cloud users send their services’ requests 

to a cloud provider broker that assigns them to the 

currently running VMs at different provider DCs. 
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Fig. 1. The target cloud computing system model for running data intensive workloads. 

B. Workload Model 

There are a variety of cloud service provisioning models 

depending on the users’ requirements. Cloud providers and 

their brokers need to employ efficient allocation strategies to 

provide enhanced QoS while increasing their profits. One 

provisioning situation arises from offering a reservation 

model where independent users have their own tasks and 

associated data that are required to execute during a specific 

period of time (such as virtual classrooms.). In such 

situations, the workload is static and require a fixed number 

of virtual machines. We target workloads consisting of tasks 

characterized by long data transfer times compared to their 

shorter processing times. For example, a collection of users 

need to process a set of independent large files, such as 

video clips, in a short period of time. Therefore, cloud 

brokers should employ allocation algorithms that schedule a 

collection of independent tasks (Bag-of-Tasks BoTs) so that 

the overall makespan of the BoT is minimal while 

employing a number of preconfigured VMs placed on 

geographically distributed DCs owned by a provider.  

Our proposed EEBA allocation method considers 

heterogeneous VMs which are pre-configured and ready to 

use during a specific period of time. The pre-configuration 

as in Azure cloud environment decreases the overhead of 

setting up and creating new VMs on the spot leading to the 

reduced computational cost of the software stack and the 

operating system configuration [14]. 

Our objective is to efficiently allocate tasks and their 

data so that the overall completion time of the workload 

execution is minimum while reducing the power 

consumption of computing resources to decrease DCs 

operational costs. 

IV. PROBLEM FORMULATION 

In this section, we present a mathematical formulation of 

the proposed EEBA workload allocation method as a multi-

objective optimization problem.  

A. Model Assumptions 

The EEBA allocation method assumes the following: 

 The target data-intensive workload consists of a set of 

independent tasks, i.e. it is a bag-of-tasks (BoT) 

workload. 

 There is a set of available VMs pre-configured and 

ready for execution on a set of PMs hosted in a set of 

distributed DCs. 

 Each VM executes one task at a time, and the task can 

use all the processing cores allocated for the VM. 

 The data files associated with the tasks are initially 

located in a storage node (SN), where they are moved 

back and forth to the DCs where the tasks reside. 

 The network links between the DCs are preconfigured 

before starting the workload allocation. Therefore, the 

network links delays and available bandwidths are 

known a priori. 

TABLE 1 DESCRIPTION OF PARAMETERS USED IN THE PROBLEM 

FORMULATION. 

Notation Description 

T set of independent tasks (BoT) to be scheduled 

D Set of geographically distributed DCs 
V Set of VMs hosted on D 

H Set of physical machines hosting V 

F Set of data files associated with  tasks T 
m Total number of hosts 

d Total number of DCs 

l Total number of VMs 
vj Total number of VMs allocated to host hj 

n Total number of tasks 

taski A single task (cloudlet) submitted by a user,  taski ∈ T 

fi A  data file associated with a task ti,  fi ∈ F  

dci DC at location i s. t. dci ∈ D 

𝑣𝑚𝑖
𝑗
 

virtual machine i allocated to host hj s. t. vmj ∈  V 

and hj  ∈ H 

Tt 
Subset of worload tasks , Tt  ⊂ T to be run on 

resource 𝑣𝑚𝑖
𝑗
 

t 
Total number of tasks assigned to be run on resource 

𝑣𝑚𝑖
𝑗
 

𝐷𝑇𝑇 
A deadline time to execute workload T; set in the 

SLA between the broker and users. 

𝑒𝑡(𝑡𝑘 , 𝑣𝑚𝑖
𝑗
) Execution time of task tk on vmi allocated to host hj 

𝑡𝑡(𝑡𝑘 , 𝑣𝑚𝑖
𝑗
) 

Transfer time of task tk to be processed on compute 

resource vmi allocated to host hj 

𝑙𝑙(𝑡𝑎𝑠𝑘𝑖) Length of a task taski in million instructions 

𝑚𝑖𝑝𝑠(𝑣𝑚𝑖
𝑗
) 

The available MIPS for virtual machine vmi allocated 

to host hj 

𝑝𝑒(𝑣𝑚𝑖
𝑗
) 

The number of processing elements assigned to vmi 
allocated to host hj 

𝐿𝑖𝑛𝑘𝐵𝑤( 𝑑𝑐𝑖) The available network link bandwidth between the SN 
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and 𝑑𝑐𝑖   

dt(𝑑𝑐𝑖) 
The delay time before sending a data file between the 

SN and the virtual machine 𝑣𝑚𝑖
𝑗
at DC  𝑑𝑐𝑑 

P𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗
) power consumption of the vmi allocated to host hj 

CTT The completion time of the workload T 

𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖) 
Congested time span of the network link between the 

SN  and dci 

𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)) 
Available time span of the network link between the 
SN  and dci  

B. Mathematical Formulation 

Given a workload consisting of n tasks T={t1, t2, 

…,tn}, a set of f files F={f1, f2, …,ff} associated with 

tasks T, a set of d DCs D={dc1, dc2, …, dcd} 

distributed in different geographical regions, a set of 

m hosts H={h1, h2, …,hm} distributed among d DCs, 

and a set of l VMs V={vm1, vm2, …,vml} allocated 

to m number of hosts, The goal is to allocate the set of 

tasks T to the set of virtual machines V such that a 

Deadline time set by the SLA is met. Our proposed 

EEBA method target the minimization of three sub 

objectives: workload makespan, network links 

congestion, and DCs energy consumption. Our 

proposed method allocates all tasks of workload as 

one BoT. It also treats all VMs as one aggregated list, 

even they are located on different DCs. The hosts are 

also aggregated in one list. Therefore, we introduce 

three matrices to depicts the relationships between 

these entities. 

Hosts/DCs relationship.  Each DC contains more than 

one host and each host is located at only one DC. Let A be 

m x d matrix showing the mapping status of the m hosts to 

the d DCs as follows: 

𝐴 = [

𝑎11 ⋯ 𝑎1𝑑
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑑
] 

where 𝑎𝑖𝑗  is a binary variable (0/1) such that: 

𝑎𝑖𝑗 = {
1,     𝑖𝑓 ℎ𝑖  𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝐷𝐶 𝑑𝑐𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

VMs/Hosts relationship. Each host can hold more than 

one VM and each VM is executed at only one host. Let B be 

l x m matrix showing the mapping status of the l VMs to the 

m hosts as follows: 

𝐵 = [
𝑏11 ⋯ 𝑏1𝑚
⋮ ⋱ ⋮
𝑏𝑙1 ⋯ 𝑏𝑙𝑚

] 

where 𝑏𝑖𝑗  is a binary variable (0/1) such that: 

𝑏𝑖𝑗 = {
1,     𝑖𝑓 𝑣𝑚𝑖  𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 ℎ𝑜𝑠𝑡 ℎ𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Tasks/VMs relationship. Each VM can execute more than 

one task and each task is executed at only one VM. Let C be 

n x l matrix showing the mapping status of the n tasks to the 

l VMs as follows: 

𝐶 = [

𝑐11 ⋯ 𝑐1𝑙
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑙

] 

where 𝑐𝑖𝑗  is a binary variable (0/1) such that: 

𝑐𝑖𝑗 = {
1,     𝑖𝑓 𝑡𝑖  𝑖𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑣𝑚𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Now, we show how the workload makespan, the 

network link overhead, and the total energy consumption are 

calculated using the above three matrices A, B, and C. 

Makespan calculation. Let the completion time of task 

taskk on 𝑣𝑚𝑖
𝑗
 is the time instance where it finishes 

execution. This time includes processing/execution time of 

the task and the data transfer time.    

The execution time of task taskk on 𝑣𝑚𝑖
𝑗
 will be defined 

as: 

𝑒𝑡(𝑡𝑎𝑠𝑘𝑘 , 𝑣𝑚𝑖
𝑗
) =

𝑙𝑙(𝑡𝑎𝑠𝑘𝑘)

𝑚𝑖𝑝𝑠(𝑣𝑚𝑖
𝑗
) ∗ 𝑝𝑒(𝑣𝑚𝑖

𝑗
)
                        (1) 

In Equation (1), we assume a task taskk is processed in 

parallel using all the available PEs/cores of the virtual 

machine 𝑣𝑚𝑖
𝑗
.  

The transfer time to send a data file fa, associated with 

task taska, from the SN where it initially resides to a virtual 

machine 𝑣𝑚𝑖
𝑗
located in a DC  𝑑𝑐𝑥, and then return the file 

back to its initial location can be computed as follows: 

 

𝑡𝑡(𝑡𝑎𝑠𝑘𝑎, 𝑣𝑚𝑖
𝑗
) =

𝑖𝑛𝑆𝑖𝑧𝑒(𝑓𝑎) + 𝑜𝑢𝑡𝑆𝑖𝑧𝑒(𝑓𝑎)

𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑥)
+ 2 ∗ 𝑑𝑡(𝑑𝑐𝑥)      (2) 

 

We assume that the available link bandwidth between 

the storage node (SN) and the DC, where a virtual machine 

𝑣𝑚𝑖
𝑗
 resides, are the same in both directions 

From Equations (1) and (2), the completion time for a 

task taskk to be processed on VM 𝑣𝑚𝑖
𝑗
is calculated as 

follows: 

𝑐𝑡(𝑡𝑎𝑠𝑘𝑘 , 𝑣𝑚𝑖
𝑗
)

=

{
 
 

 
 𝑡𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
) + 𝑒𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
),

  𝑖𝑓𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛 𝑣𝑚𝑖
𝑗

𝑐𝑡(𝑡𝑎𝑠𝑘𝑘−1, 𝑣𝑚𝑖
𝑗
) + 𝑡𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
) + 𝑒𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
),

  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

In Equation (3), we assume the subset of tasks allocated to 

a VM is queued and processed one by one as revealed in  

Fig. 2. 
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Fig. 2. Scheduling t tasks to 𝒗𝒎𝒊
𝒋
, the waiting tasks are inserted into a FIFO 

queue 

The makespan schedule to execute a set of t tasks 

Tt={taska, taskb,…, taskt} allocated to a resource 𝑣𝑚𝑖
𝑗
 s. t. 

Tt ⊂T, will be simply the completion time of the last queued 

task, taskt, as given in Equation (4) below. 

𝑀𝑆
𝑣𝑚𝑖

𝑗 = 𝑐𝑡(𝑡𝑎𝑠𝑘𝑡 , 𝑣𝑚𝑖
𝑗
)                                                         (4) 

Consider a host hk and a set of v VMs running on this 

host such that Vv={𝑣𝑚1
𝑘, 𝑣𝑚2

𝑘, ..., 𝑣𝑚𝑣
𝑘} ⊂ V. Therefore, 

the makespan schedule to execute all tasks on host hk is 

defined as the maximum among all makespan schedules on 

all VMs running on host hk, as given in Equation (5). 

 

𝑀𝑆ℎ𝑘 = 𝑚𝑎𝑥𝑖=1
𝑣 𝑏𝑖𝑘 ∗ 𝑀𝑆𝑣𝑚𝑖

𝑘                                                  (5)   

Given a set of m hosts, H = {h1, h2, ..., hm}, distributed 

on a set of d DCs. Using Equations (4)-(5) above, we can 

calculate the makespan to execute all tasks in T on all active  

hosts as: 

𝑀𝑆𝑇 = 𝑚𝑎𝑥𝑙=1
𝑑 𝑚𝑎𝑥𝑖=1

𝑚 𝑎𝑖𝑙 ∗ 𝑀𝑆ℎ𝑖                                           (6) 

Network Overhead calculation. Data-intensive 

applications are highly sensitive to WAN communication 

network (between SN and specific DC) and its available 

bandwidth that leads to communication delay and 

consequently networks congestion [11]. In this paper, we 

introduce the network overhead (NOV) as a metric to guide 

us in effectively allocating a workload’s tasks to the VMs 

hosts on different hosts in different DCs such that the 

accompanied data transfers are minimum. The overhead 

occurs when the available bandwidth of the network links 

connecting the storage nodes, where data resides, and the 

compute nodes/hosts on DCs is insufficient leading to 

excessive network traffic due to link congestions.  

Let 𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)) be the time span of the network 

link between the SN and the VMs placed on dci being 

congested, and 𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)) be the time span of the 

network link between the SN  and the VMs placed on dci 

being active. Hence, we define the network overhead 𝑁𝑂𝑉𝑇 

as the average ratio of the time period when the network 

links experience bandwidth utilization of 100% as given in 

Equation (7) below. 

𝑁𝑂𝑉𝑇 =
1

𝑑
∑

𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖))

𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖))

𝑑

𝑖=1

                          (7) 

Energy Consumption calculation. Developing an energy-

aware task allocation algorithm requires measuring the 

dynamic power consumption to run the tasks on the compute 

resources. To derive a new power consumption model, real-

time server power consumption monitoring is needed. 

However, this is out of the scope of this paper. We used the 

linear power model done in [13]. In this model, the power 

consumption of a server scales linearly with its CPU 

utilization. The total power consumed by a host/server is 

given by: 

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑓𝑢𝑙𝑙 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝑢                  (8) 

where Pidle is the server power consumption without 

running any load on the server, Pfull is the amount of 

consumed power when the server is fully utilized, and u is 

the percentage of CPU utilization. Therefore, the power 

consumption of a host hj,d holding v number of VMs 

(sketched in Fig. 3 below) on DC dcd equals to the total 

power consumed by v VMs allocated on host j. Assume 

𝑃𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗
)  is the amount of power consumed by a virtual 

machine 𝑣𝑚𝑖
𝑗
 at an instant of time, then the total power 

consumption of host hj,d at a given instant of time can be 

calculated as in Equation (9). Hence, the total energy 

consumption 𝐸𝐶𝑇 of all the m hosts H={ h1, h2, …,hm} for 

processing all the workload tasks T for time interval [0, ht] 

can be calculated as in Equation (10) below.  

𝑃𝑜𝑤𝑒𝑟 (ℎ 𝑗,𝑑) =∑𝑏𝑖𝑗 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗

𝑣

𝑖=1

)                              (9) 

𝐸𝐶𝑇 = ∑∑𝑎𝑗𝑘 ∗ 𝑃𝑜𝑤𝑒𝑟(ℎ 𝑗,𝑘)

𝑚

𝑗=1

∗ ℎ𝑡                              (10)

𝑑

𝑘=1

 

 

 

Fig. 3. A physical server/host with v VMs 

C. The Optimization Problem 

The main goal of the proposed method is to map a set of 

tasks T to a set V of VMs placed on geo-distributed DCs 

without violation of the workload deadline constraint DTT 

given by the SLA agreement between the provider and cloud 

user. In additions, the mapping should result in a reduction 

in the total execution cost. To fulfill this goal, we target 

three objectives. The first objective is to minimize the 

makespan to execute the set of T tasks on the set of 

available VMs. The second objective is to minimize the 

network’s links overhead incurred due to data files 

transmission from the SN to the computing nodes. The third 

objective is to minimize the energy consumption of the 

computing servers because of running the VMs.   

Given the above three mini-objectives, we can formulate our 

multi-objective optimization problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (

𝑀𝑆𝑇
𝑁𝑂𝑉𝑇
𝐸𝐶𝑇

)                              (11) 

Subject to: 

1- The completion time of executing the workload T on a 

set of available VMs V should not exceed the deadline 
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time constraint DT(T) given by the SLA between the 

provider and user, 

 

𝑀𝑆𝑇 ≤ 𝐷𝑇𝑇                                 (12) 

2- At any instance, a task is executed on only one VM,  

∑𝑐𝑖𝑗

𝑙

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … , 𝑛           (13) 

3- At any instance, each VM is executed at only one host: 

∑𝑏𝑖𝑗

𝑚

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … , 𝑙                (14) 

4- At any instance, each host is assigned to only one DC 

∑𝑎𝑖𝑗

𝑑

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … ,𝑚          (15) 

5- The task requirements do not exceed the capacity of the 

VM allocated to it.  

∑ 𝑐𝑖𝑗 ∗ 𝑡𝑎𝑠𝑘𝑘  ≤  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑣𝑚𝑗
ℎ)𝑡

𝑘=1    (16) 

∀ 𝑖, 𝑗, ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑖 = 1,2, … , 𝑛 ;  𝑗 = 1, 2, … , 𝑙;  
 ℎ = 1,2, … ,𝑚 

 

𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗  ∈ {0,1} 

V. THE EEBA METHODOLOGY 

In this section, we propose a genetic-based EEBA 

workload allocation method to solve the formulated multi-

objective optimization problem in Equations (11) – (16), 

which is an NP-hard problem [15].  

Given a set T={t1, t2, …, tn} of n tasks , a set F={f1, f2, 

..., ff} of m files (input/output files of tasks T), a set 

D={dc1, dc2, …, dcd} of DCs distributed in different  

regions, and a set of distributed and running VMs V={vm1, 

vm2, …, vml} with different computing specification, the 

EEBA genetic algorithm tries to optimally allocate the set of 

tasks T to the set of running VMs V so that the total power 

consumption of the cloud DCs is minimized and the QoS is 

satisfied.  

A. Proposed EEBA Genetic-Based Algorithm 

In this section, we adopt Genetic Algorithms (GA) to 

solve the formulated multi-objective EEBA model given in 

Equations (11) - (16). We denote our adapted genetic 

algorithm as EEBA. First, we describe the genetic operators 

used in the genetic algorithm and relate them to the task 

allocation problem under investigation. Then, we present 

algorithms to calculate the three components of the multi-

objective function (Equation 11) that we use as the 

algorithm’s fitness function. 

A.1. Genetic operators 

Encoding: A chromosome represents a solution to the 

problem. That is the allocation of the n workload tasks to the 

running VMs. A chromosome consists of n genes each of 

which is responsible for mapping a task to a specific VM. 

The value of a gene is a positive integer between 1 and l, the 

total number of VMs. Table 2 shows an example of mapping 

a workload consisting of 10 tasks to 3 VMs. Therefore, a 

chromosome consists of 10 genes. 

TABLE 2 A ONE CHROMOSOME CONSISTING OF TEN GENES (TASKS) 

Task # 10 9 8 7 6 5 4 3 2 1 

Binary 
representati

on of a 

gene  

00

01 

00

10 

00

01 

01

00 

00

01 

00

10 

00

01 

01

00 

00

10 

00

01 

VM  # 1 2 1 3 1 2 1 3 2 1 

Initial Population: This is a set of chromosomes that 

are randomly created to initialize a way to an optimal 

solution.  Each chromosome in the population represents a 

solution to the problem (T tasks allocated to V VMs) and it 

is called a population individual. From this initial 

population, the fittest individual(s) are selected to mate and 

produce the next generation. 

Selection: There are various strategies to select the best 

individuals that produce fittest new generation such as 

Boltzmann strategy, rank-based selection, roulette wheel, 

and tournament selection. We used the roulette wheel where 

rank is given to each individual according to its fitness 

value. 

Crossover: This is an important operator of GA that 

improves the quality of the newly generated population. 

Pairs of chromosomes (parents/individuals) are selected to 

produce next-generation individuals. We used random point 

crossover to exchange VMs assignment between 

corresponding tasks. 

Mutation: To avoid generating uniform populations, a 

mutation operator is used to maintain genetic diversity in the 

subsequent generations. Moreover, mutation recovers the 

good characteristics lost during the crossover. It is used to 

modify the genes of a randomly selected chromosome using 

a mutation probability. 

Fitness function: A successful GA algorithm depends 

on selecting a suitable fitness function to guide the 

chromosomes selection and hence the final solution to the 

original problem. We selected the objective function of the 

formulated multi-objective optimization problem given in 

Equation (11) as the fitness function. The three components 

of the objective function, namely the workload makespan, 

the network overhead, and the DCs energy consumption, are 

merged into a single function by a weighted sum of the three 

components.  

B. Fitness function calculation 

The following three algorithms show how the three 

components of the multi-objective function (Equation 11) 

are calculated. 

Network Overhead Calculation: Algorithm 1 shows 

pseudocode for calculating the network overhead (discussed 

in Section III). “D” and “LinkBw” are the sets of a geo-

distributed DCs and network link bandwidths between the 

SN and distributed computing nodes, respectively. “d” refers 

to one of “c” DCs in “dc” list. The key idea of this algorithm 

is to estimate the average ratio of the time when the network 

links experience bandwidth utilization of 100% and the 

active times of the links.  It tracks the available and the 

requested bandwidth of each network link (line 3 and 4). If 

the available bandwidth is less than the requested one, it 
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calculates the elapsed time of the link being congested (lines 

5-8). After computing the total time of network links being 

congested, it is divided by the time span of the links being 

active (line 10). The algorithm runs until the end of 

workload processing (line 11). Finally, the algorithm 

retrieves the NOV value after dividing the total congested 

time of inter-DCs links by the number of DCs “c” (line 12-

13). 
Algorithm 1 Network Overhead Calculation NOV(T) 

Input: D={dc1, dc2, …, dcd}, a set of d DCs 

𝐿𝑖𝑛𝑘𝐵𝑤 = {𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐1), 𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐2),… , 𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑑)}, a set of 
configured network link bandwidths between the SN and the distributed 

DCs D. 
Output: NOV value 

Processing: 

1: Do 
2:     For each DC i in D list 

3:           AvailableBw(dci) = LinkBw(dci).getUtilization() // get utilization 

of LinkBw(dci) 
4:           RequestedBw(dci)=LinkBw(dci).getRequested() // get requested of  

LinkBw(dci) 

5:           If AvailableBw(dci) < RequestedBw(dci) 
6:               timeDifference=LinkBw(dci).getTime()-

LinkBw(dci).previousActiveTime()  

                  //get the elapsed time of the LinkBw(dci) being congested 
7:               OverheadTimeDifferenceLinkBw(dci)+=timeDifference // 

compute the total congested  

                  time of LinkBw(dci) 
8:            End If 

9:      End For 

10:    NOVDC+= OverheadTimeDifferenceLinkBw(dci)/activeTime // 

activeTime: is the time  
         span of the network link between the SN and dci being active. 

11: Until the workload end of processing 

12: NOV= NOVDC/d 
13: Return NOV 

Makespan Calculation: Algorithm 2 below calculates 

the makespan of a workload T. For each vmi of v number of 

VMs allocated to host hj (line 4) the vmi makespan is 

calculated using Equation 4 (line 5). Consequently, the host 

hj makespan will be the maximum makespan of v VMs 

scheduled on host hj (as shown in Equation 5 and lines 6-8). 

Hence, the makespan of workload T is the maximum 

makespan of m hosts (lines 10-12). 

Algorithm 2 Makespan Calculation MS(T) 

Input: H={h1, h2, …,hm}, a set of m hosts 
V={vm1, vm2, …,vml}, a set of l VMs 

T = {𝑡1, 𝑡2…, 𝑡𝑛}, a set n tasks 
Output: Makespan value of workload T  

Processing: 

1: MS(T)=-1 
2: for each host hj in H  

3:    MS(hj)=-1 

4:    for each VM vmi in v VMs allocated to host hj 

5:           MS(𝑣𝑚𝑖
𝑗
) = CompletionTime(𝑡𝑡 , 𝑣𝑚𝑖

𝑗
) // MS(𝑣𝑚𝑖

𝑗
) is the 

completion time of the last queued task  

             tt  allocated to 𝑣𝑚𝑖
𝑗
 as shown in Equation (4.4), such that 

CompletionTime(𝑡𝑡, 𝑣𝑚𝑖
𝑗
) calculated using Equation 4.3 

6:          if MS(𝑣𝑚𝑖
𝑗
)>MS(hj) 

7:                 MS(hj) = MS(𝑣𝑚𝑖
𝑗
) 

8:          End if 

9:     End for 
10:   if  MS(hj) > MS(T) 

11:      MS(T)= MS(hj) 

12:   End if 
13:End for 

14: Return MS(T) 

 

Energy Consumption Calculation: Algorithm 3 below 

calculates the expected total energy consumption of DCs to 

execute the workload T. The GetPowerConsumption() 

function (line 4) returns the power consumption of each hi 

using the real consumption data provided in SPECpower 

benchmark [23] according to the level of utilization in Watts 

-Table 9 (implementation details are given in Section VI).  

 
Algorithm 3 Energy Consumption Calculation EC(T) 

Input: D={dc1, dc2, …, dcd}, a set of d DCs 
H={h1, h2, …,hm}, a set of m hosts 

Output: EC value 

Processing: 
1:EC=0 

2: For each DC dci in DC list D 

3:     For each host hj in dci 
4:       EC+= hi.GetPowerConsumption()*ActiveTime(hi)// compute the 

energy consumption of hi  

          as per its utilization as shown in Table 9-Section VI 
5:     End For 

6: End For  

7: Return EC 

C. The EEBA genetic-based algorithm 

The proposed EEBA adaptive genetic algorithm is given 

in Algorithm 4 below. It describes the solution to the multi-

objective optimization problem in Equations (11-16). 

Algorithm 4: EEBA-G algorithm 

Input: T= {t1, t2, …,tn}, a set of workload tasks. V= {vm1, vm2, …, vml}, 
a set of distributed VMs. 

D={dc1, dc2, …, dcd}, a set of geo-distributed DCs, workload Deadline 

time DT(T).  
Population size (pop_size; the number of solutions in each generation), 

Maximum number of generations (max_gen) (the used parameters are 

given in Table 3 –Section VI) 
Output: allocating set of task T to the set of VMs V.  

Processing: 

1: Begin 
2: Generate the initial population randomly with pop_size individuals 

3: Evaluate each candidate solution (individual) by calculating the fitness 

value for each 
    individual in the initial population using Algorithms 1, 2 and 3. 

4: Find the top two fittest individuals and consider them elite; pass them to 

next generation without  
    any changes. 

5: While  gen_size < pop_size 

6:               Use random Roulette Wheel method to select two chromosomes 
as parents 

7:               Perform crossover between the selected chromosomes 

8:               Pass the new individuals to the next generation 
9: End while 

10: Replace the current generation with the newly created generation. 

11: Apply mutation operator with probability Pm=0.15 
12: Go to step 3 until the max_gen or if the achieved makespan is less than 

or equal to DT(T) (Equation 12) 

13: End  

As shown in Algorithm 4, GA goes through the following 

phases:  

1- Creation of the initial random population (line 2), where 

each population individual is considered a possible 

solution to the problem.  

2- Calculating the Fitness evaluation (line 3) using the 

above Algorithms 1, 2 and 3. The fitness function is a 

weighted sum of three objectives. 

3- Parents’ selection to generate the new fittest 

populations by applying crossover and mutation GA 

operators to the selected parents (line 4-11). After a 

number of iterations, the algorithm retrieves the 

individual with the highest fitness from the last 

population as an optimal solution to the problem (line 

12). 

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



 VI. PERFORMANCE EVALUATION 

This section validates the effectiveness of the proposed 

EEBA method through extensive simulations using 

CloudSim 3.0.3 simulator. We start by presenting a brief 

description of the CloudSim environment as well as the 

modules that are used in our implementations. Then we 

show the performance of our method using both synthetic 

and real data sets.  

A.  CloudSim Toolkit 

CloudSim is a toolkit for the simulation of cloud 

computing systems. CloudSim is an open-source 

development toolkit that supports the development of new 

resource management, application scheduling, VM 

allocations, migrations methods, and much more new 

implementation policies to improve the cloud environment 

from its various levels [24]. To model the adaptive EEBA 

genetic algorithm, we utilized CloudSim 3.0.3 by modifying 

the DC broker algorithm that plays the role of mediator 

between the cloud user and service provider.  

B. Simulation Setup 

The extensive simulations were conducted on Intel(R) 

core(TM) i7 Processor 3.4GHz, Windows 7 platform using 

NetBeans IDE 8.0.2 and JDK 1.8. Different scenarios were 

conducted through varying the number of distributed DCs 

and their specifications as well as the workload 

characteristics to validate the effectiveness of the proposed 

EEBA method. The network links characteristics are 

represented by the following two matrices: 

1- Delay Matrix (DM) that stores and resembles the 

average value for communication delay between the SN and 

geographically distributed DCs hosting the compute nodes 

(VMs). The communication delay was approximated using 

the geographical distance since there is no general analytical 

model for the delay in the network [13]. However, in our 

experiment, we used the WAN Latency Estimator [16] to 

estimate the network latency in milliseconds. 

2- Bandwidth Matrix (BM) that represents the 

bandwidth link capacity between the SN and the compute 

nodes at the DCs. The bandwidth between the SN and the 

geo-distributed DCs is randomly generated between [1Gb/s, 

10Gb/s]. 

We conducted two different simulation scenarios. The 

first one uses a synthetic workload trace. This scenario 

randomly models the distributed cloud environment and 

measures the effectiveness of the proposed EEBA method 

using time-based metrics including the network overhead 

incurred. However, the second one uses the benchmark 

Planetlab workload traces [17] with real data about hosts’ 

energy consumption to show an accurate estimate of the 

energy-saving due to using our proposed EEBA model.  

For comparison purposes, the proposed adaptive EEBA 

genetic algorithm was compared and analyzed according to 

three benchmark task allocation algorithms: Shortest Job 

First (SJF), Round Robin (RR), an energy-efficient genetic-

based task allocation algorithm [18], which we call Green 

Genetic algorithm (GGA), and the Location-aware Energy-

Efficient (LAEE) genetic-based algorithm, that proposed in 

[13]. LAEE is a designed heuristic takes into account the 

cost of the data transfer time as well as the workload 

makespan without considering the network overhead 

between the SN and computing nodes.  

Table 3 shows the experimental setup of the different 

genetic operators used in the proposed EEBA adaptive 

genetic algorithm based on a benchmark used parameters 

[13, 19]. 

TABLE 3 GENETICS PARAMETER SETTINGS 

Parameter  Value  

Population size  100  

Number of generations  100  

Crossover rate  0.8  

Mutation rate  0.15 

 

C. Experimental Results 

C.1. The first Scenario 

In this experiment, the cloud provider owns 4 different 

DCs distributed among 4 different regions: US, Asia, 

Australia, and Brazil. The SN of the cloud provider (as 

shown in Section III) is located in Australia.  

Table 4 shows the average distance and latency between 

the cloud provider SN and geo-distributed DCs. To measure 

effectively the makespan metric, two different cloud 

environments are tested. One considered hosts are 

homogeneous of Type 1 (as shown in Table 5), and use 

small VM instance type (as shown in Table 6). The others 

are considered heterogeneous hosts of types: Type 1-7 (as 

shown in Table 5) and four different VM types (as shown in 

Table 6).  The number of hosts for each DC varies within 

the range [100:300]. We assume that hosts will consume the 

full system power when the server is on. Moreover, we 

consider that SN and DCs are fully connected, and the 

capacity of different links varies within the range [0.5 Gb/s: 

10 Gb/s].  

To measure the efficacy of the proposed EEBA method, 

we focus on measuring the three time-based performance 

metrics, namely, workload makespan, VM makespan, and 

host makespan. Moreover, the newly proposed network 

overhead (NOV) parameter (see Section III) is used to 

measure the degree of the WAN communication network 

congestion. Consequently, nine BoT clusters are created (as 

shown in Table 7 and 8). Each cluster workload is built 

synthetically using a random uniform distribution generator 

to consider cloud user applications. The generated clusters 

contain different tasks types varying in the range of 

[1000:6000] as a task length (MI), and in the range of 

[0.05:1000] as a task data file size (MB). To study the 

importance of EEBA model and its effect on data 

transmission delay between the SN and the geo-distributed 

DCs, the data sizes of each generated workload (BoT) is 

considered as the following three types:  

1- Simple BoT: Bag-of-tasks  with  small size data  

2- Mixed BoT: Bag-of-tasks  for a mixed size data  

3- Heavy BoT: Bag-of-tasks  for data-intensive  

Tasks with large data size traces are expected to show 

the importance of the EEBA method in data placement and 

DCs selection that achieves higher improvement in 

makespan. For the plotted results of the genetic-based 

algorithms (i.e., LAEE, GGA, and EEBA) we plot the 

average of 25 independent executions in order to avoid the 

effect of the initial random population. 

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



TABLE 4  AVERAGE DISTANCE AND LATENCY BETWEEN THE SN AND THE 

SELECTED DCS 

DC dc1 dc2 dc3 dc4 

Average 

Distance 

(miles) 

10500 6500 2200 8400 

Average 

Latency 

(milliseconds)  

194 122 46 150 

TABLE 5 HOST’S TYPE AND SPECIFICATIONS 

Host’s 

type 

Specifications  

Type 1 HP ProLiant ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores], 

16GB) 

Type 2 HP ProLiant ML110 G5 (1 x [Xeon 3075 2660 MHz, 2 cores], 

16GB) 

Type 3 HP ProLiant ML110 G3 (1 x [Pentium D930 3000 MHz, 2 

cores], 16GB) 

Type 4 IBM server x3250 (1 x [Xeon X3470 2933 MHz, 4 cores], 

32GB) 

Type 5 IBM server x3250 (1 x [Xeon X3480 3067 MHz, 4 cores], 

32GB) 

Type 6 IBM server x3550 (2 x [Xeon X5670 2933 MHz, 6 cores], 

48GB) 

Type 7 IBM server x3550 (2 x [Xeon X5675 3067 MHz, 6 cores], 
64GB) 

TABLE 6 AMAZON EC2 VM(S) SPECIFICATIONS 

VM instance 
Type 

Cores MIPS RAM 
(MB) 

Bandwidth 
(Mbps) 

Storage 
(GB) 

Extra Small 1 500 613 100 0.633 

Small 1 1000 1740 100 1.7  

Medium 1 1500 1740 100 0.85 

Large 1 2000 870 100 3.75 

TABLE 7 VM CLUSTER SPECIFICATIONS 

Cluster Type Number of VMs Number of Cloudlets 

Small 500 1000 

Medium 1000 2000 

Large 1500 3000 

TABLE 8 THREE TYPES OF WORKLOAD SPECIFICATIONS WITH VARIABLE 

DATA SIZES 

Simple BoT Mixed BoT Heavy BoT 

 33% [0.05:1] MB  

[0.05:1] MB 33% [2:500] MB [100:1000] MB 

 33% [501:1000] MB  

 

Workload Makespan. The main objective of this 

experiment is to study the importance of combining data 

transfer time, network delay (Equations 2 and 3), and NOV 

(Equation 7) as factors when executing different types of 

BoT application. Figures 4a and 4b show the corresponding 

workload makespan results for the three different workload 

clusters under RR, SJF, GGA, LAEE, and EEBA using three 

different BoT workload type (Simple, Mixed, Heavy).  

As shown in the figures (Figures 4a and 4b) EEBA 

algorithm significantly outperforms other competing 

algorithms in achieving high cloud QoS with approximate 

11%, 38%, and 15% rate of makespan enhancement using 

Simple, Mixed, and Heavy BoT respectively.  

The makespan improvement as shown in Figures 4a and 

4b varies in its rates according to workload cluster type (see 

Table 8). It is shown that the EEBA genetic algorithm 

achieves significant improvements in makespan in case of 

the Mixed BoT (up to 38%). On the other hand, the 

improvement is limited to up 11% and 15% compared to 

other competing algorithms Heavy BoT respectively. The 

following illustrates precisely the importance of the EEBA 

model using different workload specifications (as shown in 

Table 8) carried out in homogeneous and heterogeneous 

cloud environment of Type 1 and types: Type 1-7 

respectively as shown in Table 5: 

1- In the case of Simple BoT that reflects the small size 

data applications, we observe that the data transfer 

time and the NOV incurred due to WAN 

communication network congestion is negligible 

compared to the total BoT makespan time. That is 

why the improvement rate is limited to 11% 

compared to other competing algorithms. 

2- In the case of Mixed BoT that reflects the mixed size 

data application, we observe the main efficacy of 

EEBA algorithm and its high importance in 

achieving high improvement in makespan compared 

to other competing ones. The importance of 

considering the WAN communication network link 

BW is clearly shown in this experimental part and 

how the EEBA model to direct the data-intensive 

tasks to high available bandwidth DCs without 

ignoring the importance of data transfer time and 

links delay. Moreover, although LAEE algorithm 

takes into its consideration the data transfer time and 

the links delay [13], however, and as shown in Fig. 

4, EEBA outperforms the LAEE with an average 

rate of 20% due to the importance of considering the 

WAN communication network link bandwidth to 

minimize the NOV (using Equation 7). The figure 

also shows the unstableness of the SJF algorithm 

using this type of applications.  

3- In the case of Heavy BoT that reflects the data-

intensive application type, the EEBA algorithm 

outperform the competing non-location aware 

(GGA, SJF, and RR) with an average makespan 

improvement rate of 18%. However, the 

improvement is limited to 10% compared to LAEE 

that is data transfer and link delay aware algorithm. 

As a conclusion, EEBA model guarantees a perfect 

makespan of an application in different cases and 

contributes with an approximate 21% rate of makespan 

improvement (using different scenarios and environments).  
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Fig. 4a. Workload Makespan in different number of cloudlets and VMs –Homogenous environment (Type 1 as shown in Table 5)

Fig. 4b. Workload Makespan in different number of cloudlets and VMs –Heterogeneous environment (types: Type 1-7 as shown in Table 5) 

 

VM Makespan. Fig. 5 shows the comparison results of 

the average of VMs makespan where 10 VMs are selected 

randomly using the average of three different cluster types 

(as shown in Table 8) conducted on homogeneous as well as 

a heterogeneous cloud environment.  This metric is an 

indicator that reflects the importance of the EEBA allocation 

algorithm to improve the utilization of the available VMs. 

Fig. 5 shows that the EEBA algorithm has approximately a 

uniform VM makespan among all available VMs compared 

to RR, SJF, GGA, and LAEE using the average of different 

workload type as shown in Table 8. This reflects the success 

of the EEBA algorithm to balance the workload on the 

available VMs, which lead to the workload makespan 

improvement seen in Fig. 4 above.  

Fig. 5. VM Makespan: Comparing our proposed EEBA algorithm with RR, 

SJF, GGA and LAEE algorithms. 

Host makespan. The Host makespan (calculated using 

Equation 5) is a good indication of the degree of loading 

balancing of the allocation algorithm. Fig. 6 shows the rate 

of improvement in host makespan using the average of the 

three workload types given in Table 8 conducted on 

homogeneous as well as heterogeneous cloud environment 

using 10 hosts selected at random from all available geo-

distributed DCs.  

 

 

Fig. 6: Host Makespan: Comparing our proposed EEBAG algorithm with 
RR, SJF, GGA and LAEE algorithms. 

The results show the importance of the proposed EEBA 

in balancing the tasks of the BoT workload among the 

available hosts that hold a number of VMs, which helps in 

satisfying the deadline constraint. 

Network Overhead (NOV): The NOV metric measures 

the percentage of network congestion throughout the BoT 

execution time (as shown in Equation 7), is a crucial 

indication about the efficacy of EEBA model in achieving 

high QoS and low SLA violations.  Fig. 7 shows that the 

EEBA model contributes with approximate of 55% of NOV 

improvement compared to LAEE GGA, SJF and RR using 

homogeneous and heterogeneous hosts with two different 

VM cluster type (Mixed and Heavy). On the other hand, 

using the Simple BoT workload type the NOV is below 1% 

with respect to all algorithms including EEBA. Fig. 7 

reveals that the network links are more congested when 

executing Heavy BoT workload type, with large data sizes. 

Accordingly, the makespan achievements of the EEBA 

model (as shown in Fig. 4), is the result of the model 

efficacy in reducing the NOV and network congestion as 

plotted in Fig. 7.  
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TABLE 9 HP & IBM SERVERS HOST LOAD TO ENERGY (WATT) MAPPING TABLE 

 
Server type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP G5 93.7 97 101 105 110 116 121 125 129 133 135 

HP G3 105 112 118 125 131 137 147 153 157 164 169 

IBM x3470 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113 

IBM x3480 42.3 46.7 49.7 55.4 61.8 69.3 76.1 87 96.1 106 113 

IBM x5670 66 107 120 131 143 156 173 191 211 229 247 

IBM x5675 58.4 98 109 118 128 140 153 170 189 205 222 

 

 

Fig. 7: Network overhead (NOV): Comparison graph among RR, SJF, 
GGA, and LAEE versus proposed EEBA algorithm 

 

Fig. 8: BoT SLA deadline violation in a different number of cloudlets and 
VMs 

SLA violation: SLA violation due to exceeding the 

deadline of the workload incurs penalty paid by the cloud 

provider to compensate users. Moreover, it reduces user 

satisfaction and degrades cloud providers’ QoS. The authors 

in [20, 21] estimated that a delay for one-second could result 

in a 16% degradation in customer satisfaction and more than 

22% drop in cloud services sales.  

Fig. 8 shows the importance of the EEBA algorithm in 

achieving the users’ time constraint with a minimum SLA 

violation compared to other competing algorithms. It shown 

that EEBA guarantees the least number of SLA violations 

with less than 6% compared to actual time constraint set by 

cloud users’. The total improvement of EEBA algorithm is 

around 80% over the non-location-aware competing 

algorithms (GGA, SJF, and RR). However, EEBA model 

contributes to around 60% improvement in SLA violation 

over the location and network-aware LAEE algorithm that 

ignores the network link bandwidths, which lead to more 

network congestion shown as higher NOV percentage (as 

shown in Fig. 7).  

C.2. The Second Scenario 

This scenario measures the effectiveness of the proposed 

EEBA model in optimizing the power consumption of the 

provider’s DCs, which has a direct impact on leveraging the 

revenue of the cloud providers and pave the way to green 

computing. We combined our method with the Dynamic 

Voltage and Frequency Scaling (DVFS) technique [22] that 

contributes to the overall reduction of energy by adjusting 

the processor/core working frequencies whenever the 

utilization is low.   

The experiment was conducted using real Planetlab 

workload traces [17]. The selected workload is made up of 

287,794 cloudlets with different specifications. To emulate 

the cloud environment, we build a simulation setup made up 

of 800 servers distributed among 4 DCs to run 800 

heterogeneous VMs with Amazon specifications shown in 

Table 6. However, hosts are considered heterogeneous of 

type 1-7 as shown in Table 5. According to the linear power 

model in Equation (1), and the real data from the 

SPECpower benchmark [23], Table 9 presents the host's 

power consumption at different load levels. Each WAN link 

(between SN and distributed DCs) is emulated using one 

physical link with a bandwidth capacity randomly generated 

in the interval [1Gb/s, 10Gb/s]. To emulate the WAN delay 

environment, the delays are generated using the geometric 

distances between the SN and the 4 distributed DCs as used 

in [13] and as shown in Table 4. The results shown in Fig. 8 

are calculated from one-day simulation time.  

Fig. 9 shows the energy consumption improvements 

when a cloud provider’s broker employs the proposed 

EEBA energy-efficient task allocation method instead of 

non-power aware algorithms such as RR and SJF. As the 

figure shows, the average power saving improvement rate of 

EEBA algorithm is about 14% over the benchmarks 

algorithms RR and SJF, 9% over the GGA genetic 

algorithm, and 3% over LAEE algorithm. Moreover, Fig. 9 

shows the importance of combining the DVFS technique to 

task allocation model that leads to high-energy efficiency 

compared to non-power aware task allocation model (NPA) 

that does not incorporate the DVFS technique and ignore its 

importance. 

Overall, Fig. 9 prove the importance of load balancing 

that achieved using EEBA model in reducing the energy 

consumption considering the minimization of the network 

links overhead besides the workload makespan over the 

other competing algorithms as shown in the previous 

figures.  

 

Fig. 9. Comparing the DCs Energy Consumption of the proposed EEBA 

algorithm with LAEE, GGA, SJF, RR, and NPA algorithms. 
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Genteic Convergance

Genetic Convergence. Solving an optimization problem 

using GA requires a critical issue called GA convergence. 

Crossover and mutation are important operators to produce 

the diversity needed and avoid suboptimal solutions [19].  

Consequently, suboptimal solutions occur due to premature 

convergence, which means that the GA converges quickly. 

Therefore, tuning GA parameters is an important concern to 

get an optimum solution. 

Fig. 10 shows that EEBA characterized by good stability 

and high convergence. The influence of good use and tuning 

of GA operators reflects the result, which reveals that up to 

almost 43% of EEBA processing time is saved without 

affecting the model accuracy. 

Fig. 10. Genetic Convergence 

The above experimental results lead us to the following 

conclusions:  

1- The performance of the EEBA model (as shown in Fig. 

4) is highly depends on the generated workload type, 

i.e. Simple, Mixed, or Heavy. Moreover, incorporating 

NOV as a factor in data-intensive BoT workload 

allocation NP problem over geo-distributed DCs has 

high efficacy in minimizing network link congestion 

between the SN and geo-distributed DCs as shown in 

Fig. 7. 

2- Task allocation algorithm is essential to achieving load 

balancing and system efficiency. LAEE and EEBA task 

allocation models proved their efficacy among the 

competing algorithms on achieving their objectives in 

optimizing the cloud QoS through minimizing the 

workload makespan (as shown in Fig. 4) as well as the 

DCs energy consumption (Fig. 9). For instance, and 

since we target the problem of data-intensive workload 

that specified with high data transfer, NOV should be 

taken into account to avoid the congested network that 

leads to QoS degradation. That is why EEBA is more 

suitable for data-intensive workload type resulting in 

low SLA violation as shown in Fig. 8. 

3- Since we are targeting the data-intensive 

applications that require high data transfer time compared to 

its execution time, incorporating the DVFS technique is 

crucial in achieving high-energy efficiency (as shown in Fig. 

9). However, one cannot ignore the importance of high-

performance EEBA model that incorporates the energy 

factor (Equation 9) in achieving high-energy efficiency 

compared to other competing algorithms (Fig. 9). Moreover, 

the above experimental results show the efficacy of load 

balancing achieved using EEBA and LAEE models in extra 

contribution to energy saving compared to other non-energy 

aware algorithms. 

VII. CONCLUSION 

This paper presented the EEBA method, an Energy-

Efficient and Bandwidth-Aware workload allocation method 

for data-intensive applications in geo-distributed DCs. Our 

method combined energy consumption, workload makespan 

and WAN network overhead to fulfill a better QoS for cloud 

users. We formulated the allocation problem as a multi-

objective optimization problem, which is an NP-hard 

problem. We proposed a meta-heuristic genetic algorithm to 

find a near-optimal solution to the problem. Extensive 

simulations are conducted using both real and synthetic 

workload traces. Our experimental results showed that the 

proposed EEBA method improved the workload makespan 

and QoS by respecting the workload deadline constraint. 

Also, the EEBA adaptive genetic algorithm contributed to 

reducing the energy consumption of the cloud DCs due to 

load balancing the workload tasks as well as reducing the 

communication network links delay due to the proposed 

network overhead metric (NOV).  
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