
 

  

Abstract—The machinery manufacturing industry has 

always been an important pillar of China's economic 

development. When we solve different problems in mechanical 

production, people often face the trade-off of having to choose 

among some desired multiple optimization goals, because many 

goals cannot often be optimized at the same time, or even 

conflict with each other. To improve the comprehensive 

performance of hydrodynamic sliding bearing, the improved 

multi-objective model is applied to this problem to obtain more 

reasonable parameter design. We use MOPSO with linear 

weighting method to solve our proposed model. The results of a 

numerical example show that our model and algorithm are 

feasible and more effective than the traditional MOPSO by 

more reasonable parameter design. 

 

Index Terms—multi-objective optimization, machinery 

manufacturing, linear weighting method, constrain, 

objective function 

 

I. INTRODUCTION 

ydrodynamic Sliding Bearing (HSB) has many 

advantages in engineering, including strong bearing 

capacity, low power consumption, good impact resistance, 

high operation accuracy and so on, so it is widely used in a 

series of rotating machinery. Generally, the parameters of 

HSB are often selected in a certain range according to the 

experience of operators, which is unstable, and its optimality 

is usually not guaranteed. It is often accompanied by 

problems such as high fuel consumption, rapid temperature 

rise and poor bearing capacity. To improve the 

comprehensive performance of HSB, this paper applies the 

improved multi-objective optimization model to obtain more 

reasonable parameter design. 

On the one hand, some scholars did some research about 

 
Manuscript received January 16, 2021; revised July 31, 2021.  This 

research was supported by the “Humanities and Social Sciences Research 

and Planning Fund of the Ministry of Education of China, No. 
18YJAZH014-x2lxY9180090”, “Natural Science Foundation of Guangdong 

Province, No. 2019A1515011038”, “Guangdong Province Characteristic 

Innovation Project of Colleges and Universities, No. 2019GKTSCX023”, 
“Soft Science of Guangdong Province, No. 2018A070712006, 

2019A101002118”. The authors are highly grateful to the referees and editor 

in-chief for their very helpful comments. 
Junfeng Zhao is a Teacher of the School of Mechanical and Electrical 

Engineering, Guangdong Polytechnic of Industry and Commerce, 

Guangzhou 510510, China, (e-mail: junfengzhao_cn@163.cn). 
Jian Li is a Student of the School of Mathematics, Sun Yat-sen University, 

Guangzhou 510275, China, (e-mail: lijian93@mail2.sysu.edu.cn) 

Cuirong Huang is a Student of the School of Mathematics, South China 
University of Technology, Guangzhou 510640, China, (corresponding 

author to provide e-mail: 472913094@qq.com). 

algorithms. Gui et al. [1] did some researches on partner 

selection based on NSGA-II. Shahrzad et al. [2] designed a 

virtual enterprise partner selection algorithm considering 

customer types. Hossein et al. [3] applied the multi-objective 

particle swarm optimization (MOPSO) algorithm to evaluate 

the performance. An alternative MOPSO algorithm was 

proposed by Farshad [4] for conjunctive water use 

management. Rajani [5] discussed the influence of 

parameters on the performance of the MOPSO algorithm. 

On the other hand, some scholars put forward some ideas 

about multi-objective optimization. Li et al. [6] adopted a 

multi-objective decision-making method in the selection of 

virtual enterprise partners. Huang et al. [7] solved the 

problem of multi-criteria partner selection under fuzzy 

uncertainty. Son et al. [8] innovated the collaborative 

transportation scheduling optimization method based on 

genetic algorithm. Zhao et al. [9] studied multi-objective 

models with different relative advantage parameters based on 

the MOPSO algorithm. Yu [10] proposed a fuzzy 

multi-objective multi-period portfolio based on wavelet 

neural network. 

There are some scholars who proposed some achievements 

on interval optimization fields. Meng et al. [11] did some 

researches on interval neuromorphic preference relations. 

Mahmood et al. [12] applied the risk assessment method to 

the virtual enterprise of small and medium-sized enterprises. 

Liao et al. [13] analyzed the benefits of enterprise server 

virtualization and cloud computing. Kohnke et al. [14] 

studied the risk and rewards of enterprise use of augmented 

reality and virtual reality. Huang et al. [15] did some research 

on the partner selection of virtual enterprises under the 

condition of uncertain candidate information. 

In Section II, we explain the notations and basic 

conceptions. In Section III, we introduce the procedure of 

MOPSO. Then, we introduce construction of multi-objective 

optimization model for HSB in Section IV. Moreover, we use 

numerical examples to compare the similarities and 

differences of MOPSO and linear weighting method in 

Section V. Finally, we draw some conclusions in Section VI. 

II. MODEL CONSTRUCTION 

A. Model Variables 

The design of sliding bearing involves many structural 

parameters. According to the actual conditions, some 

parameters are selected to optimize the performance of 

sliding bearing, including ratio of width to diameter, relative 

gap size and dynamic viscosity of lubricating oil. Then the 

model variables can be expressed as 
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1 2 3[ , , ] [ / , , ] .T TX x x x B d  = =                                                (1) 

B. Objective Functions 

The objective function is set according to the working 

requirements of HSB. We want to minimum friction 

coefficient, minimum calorific value and maximum bearing 

capacity, which can be transformed into objective functions. 

(1) Minimum friction coefficient 

In order to ensure the transmission efficiency of sliding 

bearing transmission, the greater the friction resistance is, the 

worse the efficiency is. Therefore, the first objective function 

is to minimize the friction coefficient. 
2

1.51 3

1 2 1

2

min ( ) 0.55 0.55 ,
d x x

f X f x x
p Fx






−= = + = + (2) 

where   is the diameter width ratio of bearing. When 

/ 1B d  , 1 = ; When / 1B d  , 
1.5( / )d B = ;   is 

dynamic viscosity of lubricating oil. It is generally 

considered that the bearing is under the average working 

temperature. The unit of   is Pa s ;   is journal angular 

velocity which unit is /rad s ; p  is average specific 

pressure of bearing which unit is Pa ;   is relative 

clearance; d  is the bearing diameter which unit is m ; F  is 

bearing working load which unit is N . 

(2) Minimum calorific value 

In order to control the heating and wear of sliding bearing, 

the value of bearing should be minimized, thus, the objective 

function can be obtained by 

2 2 2

1

min ( ) ,
( / )

Fv Fv Fv
f X pv

Bd B d d x d
= = = =                          (3) 

where p  is average specific pressure of bearing. Its unit is 

Pa ; F  is bearing working load which unit is N ; /B d  is 

the diameter width ratio of bearing; d  is the bearing 

diameter which unit is m ; v  is journal circumferential speed 

which unit is /m s . 

(3) Maximum bearing capacity 

Hydrodynamic sliding bearing design needs to have 

enough bearing capacity, which is directly expressed as the 

bearing capacity coefficient 
2

p

p
C




= . The greater pC  is, 

the stronger the bearing capacity is. Thus, the objective 

function can be obtained by 
22

2

3 2

1 3

max ( ) ,p

Fxp
f X C

d x x



 
= = =                                    (4) 

where   is dynamic viscosity of lubricating oil. It is 

generally considered that the bearing is under the average 

working temperature. The unit of   is Pa s ;   is journal 

angular velocity which unit is /rad s ; p  is average specific 

pressure of bearing which unit is Pa ;   is relative 

clearance; d  is the bearing diameter which unit is m ; F  is 

bearing working load which unit is N . 

At the same time, the design of sliding bearing is limited in 

several aspects, which can be summarized as the following. 

C. Constraints 

(1) Minimum film thickness 

The larger the minimum oil film thickness minh , the worse 

the bearing capacity of the model. The roughness of the 

friction surface, the cleanness of the lubricating oil, the 

deformation of the shaft and bearing and other factors will 

also affect it. Thus, we have 
3 23 2

3 1

min 1 2

2 1

( / )
55 55 ( ).

( / 1) ( 1)
z z

d x xnd B d
h k R R

B d F Fx x




= =  +

+ +
      (5) 

Namely, 

3 2

3 1

1 1 2

2 1

( ) ( ) 55 0,
( 1)

z z

nd x x
g X k R R

Fx x
= + − 

+
                              (6) 

where v  is bearing speed, its unit is / minr ; k  is safety 

factor which is generally taken as 2 ~ 3k = ; 1zR  and 2zR  are 

the surface roughness and bearing hole respectively. 

(2) Bearing width diameter ratio 

The general requirement of bearing design specification is 

min max( / ) / ( / ) .B d B d B d                                                (7) 

Namely, 

2 1 max( ) ( / ) 0g X x B d= −                                                     (8) 

and 

3 min 1( ) ( / ) 0.g X B d x= −                                                    (9) 

(3) Specific pressure 

min max

2 2

1

.

( / )

p p p

F F F
p

Bd B d d x d

 



= = =


                                           (10) 

By the above function, we can get 

4 2

1

( ) 0
F

g X p
x d

= −                                                          (11) 

and 

5 max2

1

( ) 0.
F

g X p
x d

= −                                                    (12) 

(4) Bearing relative clearance 

The size of bearing relative clearance   affects the 

bearing capacity, temperature rise and the accuracy of 

rotation. In design progress, the value range of   is usually 

determined by empirical formula min max    . This is 

equivalent to the following formula, 

6 min 2( ) 0g X x= −                                                           (13) 

and 

7 2 maxg ( ) 0.X x = −                                                           (14) 

(5) Viscosity of lubricating oil 

We choose the type and brand of lubricating oil according 

to the general oil selection principle. Assuming that the 

temperature of lubricating oil is 35 ~ 60t C C=   , so we can 

get the constraint function as below, 

8 min 3( ) 0g X x= −                                                            (15) 

and 

9 3 maxg ( ) 0.X x = −                                                          (16) 

III. MOPSO (MULTI OBJECTIVE PARTICLE SWARM 

OPTIMIZATION ALGORITHM) 

Particle swarm optimization (PSO) is an algorithm that 

simulates the social behavior of birds. In PSO algorithm. The 

particles will fly over the hyperplane in the search space. The 

change of particle’s position in search space is based on the 

social psychology trend that particles in the population 
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imitate other successful particles. A population contains a 

series of particles, each of them represents a solution in the 

feasible region. Particles will continuously optimize their 

position based on the position of themselves and other 

particles. 

Next, some special notations are introduced: ( )ix t  

represent the position of particle ip  at the moment of t , ( )iv t  

represent the velocity of particle ip  at the moment of t . The 

position of ip  is updated by adding a velocity of ( )iv t . The 

position update formula is as follow: 

( ) ( 1) ( ).i i ix t x t v t= − +                                                         (17) 

The velocity update formula is as follow: 

1 1 2 2( ) ( 1) ( ( )) ( ( )),
ii i pbest i gbest iv t Wv t C r x x t C r x x t= − + − + − (18) 

where W  is the inertia weight, 1 2,C C  are learning factor 

coefficients which are usually constants, 1 2,r r  are random 

values in [0,1] . To deal with the multi-objective problem, 

Sierra and Coello [16] created MOPSO algorithm based on 

PSO algorithm. The main procedure is shown below and 

summarized in TABLE I. 

Step 1: Initialization population POP: for 0  to  MAXi =

/*MAX is the total number of particles*/ 

initialization POP[i] ; 

Step 2: Initialize the velocity vector for each particle: for

0  to  MAXi = , VEL[i]=0 ; 

Step 3: Calculate the value of each particle in POP ; 

Step 4: The particle position representing the non-dominated 

vector is stored in warehouse REP ; 

Step 5: Generating hypercube of search space explored so far, 

these hypercubes are used as coordinate system to 

locate particles, and the coordinates of each particle 

are determined according to the value of the objective 

function; 

Step 6: Initializes the memory of each particle which will 

serve as a guide to traverse all search fields, and 

memory will also be stored in the repository: for 

0  to  MAXi = ,    PBESTS i  = POP i ; 

Step 7: According to the given formula, the velocity and 

position of particles are updated iteratively; 

Step 8: End cycle. 

In TABLE I, inertia weight W  values 0.4; 1R  and 2R  are 

random numbers in  0,1 ; current position of particle i  is 

 POP i ; PBESTS[i]  is the best position for the i  particle to 

pass through;  REP h  is a value taken from the warehouse; 

The serial number h  is generated as follows. Each 

hypercube with more than one particle is assigned a fitness 

equal to any number divided by the number of particles 

contained in the hypercube. This is mainly to reduce the 

fitness of hypercube with more particles, which can be 

regarded as a method of sharing fitness. Then, we will use the 

roulette method to select the hypercube and randomly extract 

particles from it. 

IV. CONSTRUCTION OF MULTI-OBJECTIVE 

OPTIMIZATION MODEL FOR HSB 

Combined with the above conditions, a multi-objective 

optimization model of HSB is proposed as below. 

1 2

*

min     ( ) [ ( ), ( ),..., ( )]      

s.t.    ( ) 0,     1,2,..., ,    

        ( ) 0,     1, 2,..., ,

        ( ) ,   =1,2,...,J,

              ，

T

p

u

v

j j

n

F X f X f X f X

g X u m

h X v q n

k X K j

X R



=

 =


= = 




 

                   (19) 

where n  means the dimension of solution variables, p  

means the number of objective functions, m  is the number of 

inequality constraint functions and n  is  the number of 

equality constraints. ( )jk X  means the fuzzy constraint, and 

jK  represents the fuzzy constraint range that ( )jk X  can fall 

into. Noting that 3 ( )f X , the original model is to find its 

maximum value, here we add a negative sign to convert it 

into the minimum value of 3 ( )f X− , that is 

1 2 3

3

min        ( ) [ ( ), ( ), ( )]

s.t.       ( ) 0,       1,2,...,9,

           X .

T

u

F X f X f X f X

g X u

R

=

 =




                           (20) 

In the model (20), 
2

1.51 3

1 2 1
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d x x

f X f x x
p Fx


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
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2 2 2

1

( ) ,
( / )

Fv Fv Fv
f X pv

Bd B d d x d
= = = =                              (22) 

22

2

3 2

1 3

( ) .p

Fxp
f X C

d x x


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− = − = − = −                               (23) 

Next, we can use the MOPSO algorithm introduced in 

Section III to solve the model to obtain the pareto solution set. 

Consider the following example: a mine hoist needs to use 

hydrodynamic sliding bearing device, and known working 

load 35000F N= , which is stable. The diameter of journal 

is 100d mm= , and speed of shaft is 1000 /n r min= .

TABLE I 

ALGORITHM 

WHILE COUNT<COUNTMAX  DO 

FOR i Max  

Step C1 1 2VEL[i] W VEL[i] R (PBESTS[i] POP[i])+R (REP[h] POP[i])=  +  −  − , POP[i] POP[i] VEL[i]= + . 

Step C2 If the bouPOP[i] ndries , VEL[i] VEL[i]= −  or POP[i] the boundries= . 

Step C3 Calculate FIT[i] . 

Step C4 Update REP . 

Step C5 If FIT[i] any FIT[j] in REP , replace the -thj  particle by the -thi  particle. 

Step C6 If FIT[i]  is best before, PBESTS[i] POP[i]= . 

END 

COUNT COUNT 1= + . 
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The lining material is babbitt alloy and the bearing is split 

type. Other parameters are as follows. 

0.001~ 0.002 = , / 0.5 ~1.2B d = , 

(0.5 ~ 3.5)p MPa= , (0.02 ~ 0.04)Pa s =  . 

1 2 4.8z zR R m+ = , 2k = . It can be seen from the above 

actual working conditions that the value range of 1x  is 

 0.5,1.2 , 2x  is  0.001,0.002  and 3x  is  0.02 ~ 0.04 . 

V. SOLUTIONS AND ANALYSIS BASED ON LINEAR WEIGHTING 

METHOD 

A. Solution of Pareto Set ---MOPSO Algorithm 

In the MOPSO algorithm (see Section III), the subalgebra 

quantity is 200, the warehouse size is 200, the maximum 

iteration number is 100, the inertia weight is 0.4, the 

self-confidence coefficient 1C  = 2, the population influence 

coefficient 2C  = 2, the number of scales in each dimension is 

20, and the coefficient of variation is 0.5.   

The running results are shown in the TABLE II. We draw 

the changes of their corresponding objective functions to 

draw the following Fig. 1. Combined with the Fig. 1, it can be 

seen that after 200 iterations, the change of 1x  is still large in 

the space limited by the pareto solution set and the values of 

2x  and 3x  are relatively stable, but still have a certain range 

of changes. At the same time, in order to maximize the 

objective function 3 ( )f X , we often need to reduce the value 

of 1x , and at the same time, the value of 1( )f X  and 2 ( )f X  

will increase to a certain extent. This conclusion is consistent 

with the definition of pareto solution. 

 
Fig. 1.  The change of each objective function corresponding to each solution 

 

TABLE II 
RUNNING RESULTS 

Solution Number 1 /x B d=  
2x =  

3x =  
1( )f X f=  5

2( )  ( 10 )f X pv=   3( ) pf X C=  

1 0.5357 0.0020 0.0200 0.0028 5.7006 12.4765 

2 0.5031 0.0020 0.0200 0.0030 6.0715 13.2873 

3 0.7701 0.0020 0.0200 0.0016 3.9663 8.68044 

4 0.5270 0.0019 0.0200 0.0028 5.7959 12.6661 

5 0.5660 0.0020 0.0200 0.0025 5.3958 11.8091 

6 0.8958 0.0020 0.0200 0.0012 3.4095 7.46197 

7 0.6884 0.0020 0.0200 0.0019 4.4365 9.70958 

8 0.5732 0.0020 0.0200 0.0025 5.3280 11.6605 

9 0.5071 0.0020 0.0200 0.0030 6.0224 13.1804 

10 0.5817 0.0020 0.0200 0.0024 5.2499 11.4898 

11 1.2000 0.0020 0.0200 0.0008 2.5452 5.5704 

12 1.2000 0.0019 0.0200 0.0008 2.5452 5.4466 

13 1.2000 0.0019 0.0200 0.0008 2.5452 5.1068 

14 1.2000 0.0019 0.0200 0.0008 2.5452 5.3489 

15 1.2000 0.0018 0.0201 0.0007 2.5452 4.9059 

16 1.2000 0.0019 0.0202 0.0008 2.5452 5.1969 

17 1.2000 0.0018 0.0201 0.0007 2.5452 4.7778 

18 1.2000 0.0018 0.0200 0.0007 2.5452 4.5638 
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Fig. 2.  Change of optimal solution with value 
 

TABLE III 
RESULTS UNDER 20 DIFFERENT WEIGHT ALLOCATION METHODS 

Number ( 1 2 3, ,k k k ) 1 /x B d=  2x =  3x =  1( )f X f=  5

2( )  ( 10 )f X pv=   3( ) pf X C=  

1 (0.1,0.1,0.8) 0.5000 0.0020 0.0200 0.0031 6.1087 13.3690 

2 (0.1,0.2,0.7) 0.5000 0.0020 0.0200 0.0031 6.1087 13.3690 

3 (0.2,0.2,0.6) 0.5643 0.0020 0.0200 0.0026 5.4126 11.8456 

4 (0.2,0.3.0.5) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

5 (0.3,0.3,0.4) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

6 (0.3,0.4,0.3) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

7 (0.4,0.4,0.2) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

8 (0.5,0.4,0.1) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

9 (0.5,0.3,0.2) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

10 (0.6,0.2,0.2) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

11 (0.6,0.1,0.3) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

12 (0.7,0.2,0.1) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

13 (0.7,0.1,0.2) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

14 (0.8,0.1,0.1) 1.2000 0.0010 0.0200 0.0004 2.5453 1.3926 

15 (0.1,0.8,0.1) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

16 (0.2,0.7,0.1) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

17 (0.2,0.6,0.2) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

18 (0.1,0.7,0.2) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

19 (0.2,0.5,0.3) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

20 (0.1,0.5,0.4) 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

B. Fuzzy Evaluation Method----Linear Weighting Method 

Next, we use the linear weighting method to obtain the 

ideal solution of the model. They can be obtained by the 

following formula. 

1

( )
( *) min ( ) min{ [ ] },

p
ti i

i

i i i

f X m
F X F X k

M m=

−
= =

−
                  (24) 

where *X  is the satisfactory solution, ,i iM m  represent the 

maximum and minimum values of the first objective 

function in all the discrete solutions. t  is constant, which 

determines the shape of the satisfaction function (especially, 

when t  is taken as 1, the shape of the function is trapezoid). 

ik  is the undetermined coefficient, which can be taken by 

the relative importance of different objective functions. The 

influence of different values of t  and ik  on the final 

solution will be discussed by different combination. 

Next, we use the linear weighted minimum deviation 

method to evaluate the solution. In order to observe the 

sensitivity of the pareto solution to each objective function, 

we tried 20 different weight distribution methods to explore 

the pareto solution set. The results are shown in TABLE III.  

In the same way, the value which reflects the obvious 

change of optimal solution with ik  is selected. We use the 

following data to draw a graph. 

when 1 1 2 3( , , ) (0.1,0.2,0.7)T TK k k k= = , then 1=0.0031f ,

2 =6.1087f , 3 =13.3690f ; 

 when 2 1 2 3( , , ) (0.1,0.8,0.1)T TK k k k= = , then 1=0.0008f ,

2 =2.5453,f  3 =5.5704f  and so on.  

The changes of four groups of solutions and objective 

function values are plotted as shown in Fig. 2.  
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It can be seen from the above chart that the value of 3x  is 

relatively stable. No matter how the weight of the objective 

function changes, its value is basically unchanged around 

0.0200. The change of weight mainly affects the distribution 

of 1x  and 2x . It is also found that the change of the spatial 

position of the solution vector is often caused by the large 

change of 3k  in the weight vector. We observe the value of 

3k  in the first 10 rows of TABLE III, its value decreases row 

by line. The result is that the gradual increase of 1x  and the 

decrease of 2x  (the amplitude is small), and the value of each 

objective function is consistent with the change of 

corresponding coefficient. 

It is not difficult to find out from the TABLE III that when 

the weight distribution is more uniform, 1 2 3( , , )TX x x x=  

(1.2000,0.0020,0.0200)T=  has strong stability. Therefore, 

this paper regards it as the optimal solution.  

The above optimal solution is obtained based on the linear 

weighted minimum deviation method when 1t = . Similarly, 

we choose the strategy of maintaining the weight 

1 2 3( , , ) (0.3,0.3,0.4)T Tk k k =  to explore the influence of 

different values of t  on the optimal solution. The results are 

shown in TABLE IV. The corresponding results are plotted 

as shown in Fig. 3. Then we have the following findings. 

(1) When t  is in the interval (0,1] , the distribution of the 

solution is relatively stable, 1x  and 3x  are basically 

unchanged, and 2x  is floating upward. For the objective 

function, 1( )f X  decreases, 2 ( )f X  remains unchanged, 

and 3 ( )f X  increases. 

(2) When t  gradually approaches 1, each objective function 

corresponding to the solution is optimized, and when 

1t = , the optimization effect of the model is the best. 

(3) For the case of 1t  , with the increase of t , 1x  

gradually decreases, while 2x  and 3x  remain stable. At 

the same time, the objective function 1( )f X  has a small 

increase, the value of 2 ( )f X  also increases, but 3 ( )f X  

also changes in the direction of optimization. (because 

we want to maximize 3 ( )f X , so the value of 3 ( )f X  

also gradually increases. 

This phenomenon is due to the normalization of the 

objective function value. Therefore, the larger the index is, 

the smaller the value of the multiplication part corresponding 

to each weight is. That is, the overall change brought by the 

difference between the membership degrees of different 

solutions becomes smaller due to the existence of the index. 

So, it is easier to tend to the solution with larger weight which 

makes the overall objective function produce a larger 

percentage change. For example, when 1t =  is compared 

with that 3t = , we choose to sacrifice the growth of 1( )f X  

and 2 ( )f X  in exchange for the increase of heavier 3 ( )f X , 

which is consistent with the change of solution when 1t =  

and weight 3k  increases. Although the underlying principles 

may have some similarities, the new solutions brought by the 

change of t  value still give us some reference for our final 

choice.  

TABLE IV 

OPTIMAL SOLUTION DISTRIBUTION UNDER DIFFERENT T VALUES 

t   1 /x B d=  
2x =  

3x =  
1( )f X f=  5

2( )  ( 10 )f X pv=   3( ) pf X C=  

1/3 1.2000 0.0010 0.0200 4.2066 2.5453 1.3926 

1/2 1.2000 0.0010 0.0200 4.2066 2.5453 1.3926 

1 1.2000 0.0020 0.0200 0.0008 2.5453 5.5704 

2 0.9161 0.0020 0.0200 0.0013 3.3342 7.2971 

3 0.8515 0.0020 0.0200 0.0014 3.5869 7.8501 

 

Fig. 3.  Change of optimal solution with value t  
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TABLE V 

COMPARISON OF CONVENTIONAL AND OPTIMIZED DESIGN 

Design Method 1x  2x  3x  1( )f X  2 ( )f X  3( )f X  

Conventional method 1.0000 0.0010 0.0180 0.0024 18.4376 1.8623 

Optimization method 1.2000 0.0020 0.0200 0.0008 25.4980 5.5719 

 

Fig. 4.  Comparison of conventional method and optimization method 

Finally, we choose the optimal result of 1t = , 

1 2 3( , , ) (0.3,0.3,0.4)T Tk k k =  as the final optimization result 

of the model, and make a simple comparison with the 

conventional optimization design results, the results are 

shown in the TABLE V and Fig. 4. 

It can be seen from Fig. 4 that using MOPSO linear 

weighting method model to optimize the design of 

hydrodynamic sliding bearing can reduce the friction 

coefficient and significantly improve the bearing capacity.  

But, at the same time it also can increase a certain amount of 

heat of the model. From the numerical point of view, the 

friction coefficient is reduced by 66.6%, the bearing capacity 

is increased by 199.5%, but the calorific value is also 

increased by 38.0%. Overall, the friction coefficient of the 

model is greatly reduced, the bearing capacity is greatly 

improved, and the calorific value is slightly increased. 

However, compared with the overall improvement of the 

model is still within the acceptable range, so we can think that 

the optimization results of this model have considerable 

rationality and guiding value - in the subsequent bearing 

design, the enhancement of heat dissipation capacity is 

mainly considered to obtain smaller friction coefficient and 

significantly increased bearing capacity. 

VI. CONCLUSIONS 

In this paper, the physical background of hydrodynamic 

sliding bearing model is briefly explained. The variables, 

objective functions and constraint functions are determined, 

and a complete multi-objective optimization model is 

constructed. The pareto solution set is obtained by MOPSO 

algorithm. In the framework of linear weighting method, the 

influence of weight and index change on the optimal solution 

obtained by linear weighting method is discussed, and the 

optimization result is compared with the conventional design 

result. 
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