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Abstract—The sparsity adaptive matching pursuit (SAMP)
algorithm reconstructs the signal through multiple iterations
with a fixed stepsize, which consumes too much time. To solve
this problem, a variable stepsize sparsity adaptive matching
pursuit (VSSAMP) algorithm is proposed. The sparsity is pre-
estimated, and then the variable stepsize SAMP is used to
reconstruct the signal. Different from the SAMP algorithm,
VSSAMP algorithm determines the stepsize according to the
energy difference of two consecutive residues. The experiment
results show that the reconstruction probability of VSSAMP
algorithm is slightly slower than SAMP algorithm in one-
dimensional signal, and the reconstruction quality of VSSAMP
is basically equal to SAMP algorithm in tow-dimensional image.
Most notably, the reconstruction time of VSSAMP algorithm
is significantly lower than SAMP in reconstruction of one-
dimensional signal and two-dimensional image.

Index Terms—compressed sensing, matching pursuit, recon-
struction algorithm, sparsity adaption.

I. INTRODUCTION

ACCORDING to the Nyquist-Shannon sampling the-
orem, perfect reconstruction of a signal is possible

when the sampling frequency is greater than twice the max-
imum frequency of the signal being sampled. But generally
speaking, the hardware devices are difficult to meet the
requirement for some high-frequency signals. Compressed
sensing (CS) has attracted much attention in recent years
[1]-[5]. Compressed sensing has been a research hotspot
in the fields of image compression [6], medical imaging
[7], radar imaging [8], remote sensing satellite photography
[9], quantum state tomography [10], and a large number of
research achievements have emerged. Compressed sensing
theory include three parts: signal sparse representation, ob-
servation matrix construction and reconstruction algorithm
[11]-[12].

Consider a real-valued, finite-length, one-dimensional,
discrete-time signal x, which can be viewed as an N × 1
column vector in RN with entries x[i], i = 1, 2, ..., N . If
only K non-zero elements in x, and other elements are
zero, we can say the sparsity is K. In compressed operation,
the K-sparse signal x is transformed into M -dimensional
measurement y, where M < N . The measurement system
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can be expressed as:
y = Φx, (1)

where the observation vector y ∈ CM , the observation matrix
Φ ∈ CM×N . The observation dimension M is smaller than
sparse signal dimension N for most scenarios, that is, the
number of unknowns is greater than the number of equations.
Thus, it is impossible to obtain an accurate reconstruction of
signal x using conventional inverse transform of observation
matrix Φ. But due to the prior information of signal sparsity
K, the signal x can be recovered by ℓ0-minimization as
follows [2]:

x̂ = argmin
x

∥x∥0 s. t. y = Φx. (2)

To the best of our knowledge, solving the problem essentially
requires exhaustive searches over all subsets of column of ob-
servation matrix Φ, and the search procedure is exponentially
complexity.

If the observation matrix Φ satisfies the restricted isometry
property (RIP) [2], the signal x can be recovered by solving
the ℓ1-minimization optimization problem [13]:

x̂ = argmin
x

∥x∥1 s. t. y = Φx. (3)

The observation matrix Φ satisfies the RIP of order K if
there exists a constant δ ∈ (0, 1) such that

(1− δ) ∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δ) ∥x∥22 (4)

for any K-sparse signal x.
Up to now, the reconstruction methods of Eq. (1) mainly

include: convex optimization algorithm and greedy recon-
struction algorithm. The smoothed ℓ0 norm method [14],
alternating direction method of multipliers (ADMM) [15],
interior-point method [16], iterative re-weighted least squares
(IRLS) [17] method are typically convex optimization meth-
ods. Recently, some greedy algorithms have been proposed,
include orthogonal matching pursuit (OMP) [18], general-
ized orthogonal matching pursuit (gOMP) [19], regularized
orthogonal matching pursuit (ROMP) [20], subspace pursuit
(SP) [21], compressive sampling matching pursuit (CoSaMP)
[22], stagewise orthogonal matching pursuit (StOMP) [23],
stagewise weak orthogonal matching pursuit (SWOMP) [24],
sparsity adaptive matching pursuit (SAMP) [25], and so
on. In above-mentioned algorithms, OMP, gOMP, ROMP,
SP and CoSaMP algorithms need to know the sparsity
as prior information, while StOMP, SWOMP and SAMP
algorithms don’t have to know the sparsity. Compared with
some greedy algorithms which need to know the sparsity,
the most prominent feature of SAMP lies in the fact that it
doesn’t have to know the sparsity.

In SAMP, the signal is recovered by adopting fixed step-
size in each iteration. It consumes too much iteration time.
In order to reduce the running time, an improved SAMP
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algorithm, called variable stepsize sparsity adaptive matching
pursuit (VSSAMP), is proposed. The primary contributions
of this paper are twofold.

1) In order to speed up the running speed, we present a
new sparsity pre-estimation strategy. In the first stage,
the sparsity estimation strategy is used to per-estimate
sparsity, which avoid the iteration step by step.

2) We present an improved SAMP algorithm, which the
stepsize is changed according to the difference of two
successive residues. If the difference is large than the
preseted threshold, a large stepsize is adopted; otherwise
a small stepsize is used.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce the sparsity adaptive
matching pursuit algorithm. The proposed variable stepsize
sparsity adaptive matching pursuit algorithm is presented in
Section III. The simulation results and performance analysis
are demonstrated in Section IV. Finally, Section V concludes
this paper.

Notation: Boldface uppercase letters denote matrices,
boldface lowercase letters represent vectors. ∥·∥0, ∥·∥1, ∥·∥2
represent the zero-norm, one-norm and two-norm of a vector,
respectively; ⌊·⌉ is the operation of rounding a real number
to the nearest integer; (·)H and (·)† stand for the conjugate
transpose and pseudo-inverse of a vector or a matrix, re-
spectively; |·| denotes the module of a vector or a complex
number; A ∪ B is the union of set A and set B, card(·) is
the cardinality of a given set; R and C denote the field of
real and complex numbers, respectively.

II. SPARSITY ADAPTIVE MATCHING PURSUIT
ALGORITHM

The greedy recovery algorithms can be grouped into top-
down and down-top approaches by structure. Due to the
backtracking strategy, the top-down methods such as SP and
CoSaMP can identify the true support set accurately. The
down-up method estimates the sparsity by step by step. The
SAMP algorithm proposed in [25] is a combination of both
bottom-up and top-down principles.

The SAMP adopts a stagewise approach to expand the real
support set step by step. Meanwhile, it takes the advantage
of the backtracking strategy in SP/CoSaMP to refine the
estimation of true support set in each iteration. From practical
perspective, the most prominent feature of SAMP lies in
the fact that it does not require the sparsity K as an input
parameter. In fact, SAMP provides a general framework for
the OMP and SP/CoSaMP algorithms. When stepsize is 1, it
can be regarded as OMP with backtracking strategy. When
stepsize equals to sparsity, it becomes SP algorithm. TABLE
I represents the pseudo code of SAMP algorithm.

III. VARIABLE STEPSIZE SPARSITY ADAPTIVE

MATCHING PURSUIT ALGORITHM

SAMP algorithm adopts fixed stepsize to recover the signal
through multiple iterations, it results in too much running
time. In order to reduce the running time, we employ two
strategies. Firstly, we estimate the sparsity before iteration
operation. Next, the stepsize is dynamically changed ac-
cording to the difference between two successive residues.
If the difference is large than the predetermined threshold,

TABLE I
PSEUDO CODE OF SAMP ALGORITHM

Input: observation matrix Φ, observation vector y, stepsize s.
Initialization:

x̂ = 0 {Trivial initialization}
r0 = y {Initial residue}
F0 = ∅ {Empty finalist}
I = s {Stepsize of finalist}
k = 1 {Iteration index}
j = 1 {Stage index}
repeat

Sk = max(|ΦHrk−1|, I) {Preliminary test}
Ck = Fk−1 ∪ Sk {Make candidate list}
F = max(|Φ†

Ck
y|, I) {Final test}

r = y −ΦFΦ†
Fy {Compute residue}

if halting condition true then
quit the iteration;

else if ||r||2 ≥ ||rk−1||2 then
j = j + 1 {Update the stage index}
I = j × s {Update the size of finalist}

else
Fk = F {Update the finalist}
rk = r {Update the residue}
k = k + 1

end if
until halting condition true;

Output: x̂ = Φ†
Fy{The estimated signal x̂ of input signal}

a large stepsize is adopted, else a small one is applied.
The implementation of these two strategies ensure a faster
running speed.

In phase I, the sparsity is estimated. We compute the
absolute value of the inner product of observation matrix
Φ and observation vector y by

u =
∣∣ΦHy

∣∣ , (5)

where vector u has N entries. The threshold is calculated by

Th = a×max(u), (6)

where a is a preseted parameter, which directly determines
the threshold; where the function max(·) returns the largest
element of a array or a vector. The pre-estimated sparsity
can be expressed as:

I = card({t||ΦH
t y| > Th}), (7)

where the function card(·) finds the number of elements in
a vector.

In phase II, the revised SAMP algorithm is applied to
recover the signal. Different from the fixed stepsize of SAMP,
the revised algorithm adopts different stepsize according to
the difference between two successive residues.

The pseudo code of VSSAMP algorithm is summarized in
TABLE II.

IV. SIMULATION

In this section, the performance of the proposed algorithm
is presented and compared with above-mentioned algorithms.
In order to ensure that the per-estimated sparsity does not
exceed the real sparsity, the parameter selection experiment
is carried out. Next, we carry out the simulation in one-
dimensional signal and two-dimensional image.
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TABLE II
PSEUDO CODE OF VSSAMP ALGORITHM

Input: observation matrix Φ, observation vector y, stepsize s, param-
eter a, the threshold ε.
Initialization:

x̂ = 0 {Trivial initialization}
r0 = y {Initial residue}
F0 = ∅ {Empty finalist}
I = 0 {Stepsize of finalist}
k = 1 {Iteration index}
step 1:
Th = a×max(|ΦHy|) {Estimate the threshold of sparsity}
I = card({t||ΦH

t y| > Th}) {Obtain pre-estimated sparsity}
step 2:
repeat

Sk = max(|ΦHrk−1|, I) {Preliminary test}
Ck = Fk−1 ∪ Sk {Make candidate list}
F = max(|Φ†

Ck
y|, I) {Final test}

r = y −ΦFΦ†
Fy {Compute residue}

if halting condition true then
quit the iteration;

else if ||rk||2 − ||rk−1||2 > ε then
I = I + s {Update the size of finalist}
Fk = F {Update the finalist}
rk = r {Update the residue}
k = k + 1

else
I = I + ⌊ s

2
⌉ {Update the size of finalist}

Fk = F {Update the finalist}
rk = r {Update the residue}
k = k + 1

end if
until halting condition true;

Output: x̂ = Φ†
Fy{The estimated signal x̂ of input signal}

A. Parameter Selection Simulation Experiment

Experiment 1: In order to determine the weak matching
parameter a, it is necessary to carry out the sparsity pre-
estimated experiment. A one-dimensional sparse signal with
length N = 256 is generated randomly, and the sparsity is
K = 35. The observation matrix Φ is M × N Gaussian
matrix. The observation vector can be obtained by the
measurement system (1). The simulation curve is demon-
strated in Fig. 1, where the horizontal axis represents the
experimental repetition times, and the vertical axis denotes
the pre-estimated sparsity.

It can be seen from Fig. 1 that when the parameter a is
less than 0.5, the pre-estimated sparsity will exceed the real
sparsity; when the parameter a is greater than 0.7, the pre-
estimated sparsity is far less than the real sparsity. If the
pre-estimated sparsity is too small, the iteration times will
increase, which leads to an increase in running time. In the
following experiments, we choose parameter a as 0.5.

B. One-dimensional Signal Simulation Experiments

Experiment 2: The reconstruction probability is a func-
tion of M and K. The reconstruction probability experi-
ments are conducted with fixed M and varying K. A one-
dimensional sparse signal with length N = 512 is generated
randomly. The signal sparsity ranges from 10 to 55 with an
interval of 5. If the error between the reconstructed signal x̂
and the original signal x is less than 10−6, we consider that
the signal is reconstructed successfully. The reconstruction
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Fig. 1. Influence of parameter a on pre-estimated sparsity
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Fig. 2. The reconstruction probability vs the sparsity when the observation
dimension M = 128.

probability is the percentage ratio of the the number of
successful reconstructions to total experimental times. The
stepsize of SAMP and VSSAMP is 3, 5, 7, respectively. The
experiments are repeated 1000 times. When the observation
dimension M is 128 and 140, the simulation curves are
demonstrated in Fig. 2 and Fig. 3, respectively.

We can conclude from Fig. 2 and Fig. 3: 1) With the
increase of sparsity K, the reconstruction probability of tradi-
tional algorithms which need to know the sparsity decreases
rapidly. 2) When the sparsity K exceeds 40, the traditional
algorithms has not reconstructed the signal. However, the
SAMP and VSSAMP algorithms can still show better re-
construction performance. 3) The reconstruction probability
of VSSAMP algorithm is slightly inferior to that of SAMP
algorithm. But VSSAMP algorithm has obvious advantages
over the traditional algorithms which need to know the
sparsity.

Experiment 3: The reconstruction probability experi-
ments are conducted with fixed K and varying M . A one-
dimensional sparse signal with length N = 256 is generated
randomly. The signal sparsity range from 2K to 160. The
experiments are repeated 1000 times. When the signal spar-
sity K is 25 and 35, the simulation curves are demonstrated
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Fig. 3. The reconstruction probability vs the sparsity when the observation
dimension M = 140.
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Fig. 4. The reconstruction probability vs the sparsity when the sparsity
K = 25.

in Fig. 4 and Fig. 5, respectively.
From Fig. 4 and Fig. 5, we can draw the following

conclusions: 1) The reconstruction performance of VSSAMP
is slightly inferior to that of SAMP. 2) With the increase
of observation dimension M , the reconstruction probability
curves of SAMP and VSSAMP algorithms increase rapidly.
However, the reconstruction probability cures of traditional
algorithms increase slowly. That is, when the sparsity is
a fixed value, the SAMP and VSSAMP algorithms can
reconstruct the signal when the observation dimension is
small.

Experiment 4: To verify the effectiveness of the proposed
algorithm, the average running time of different algorithms
is compared. The length of random signal is 256, the ob-
servation dimension is 128, and the sparsity K ranges from
5 to 40 with an interval of 5. The observation matrix Φ is
M ×N Gaussian matrix. The simulation curves of average
running time vs sparsity K are shown in Fig. 6.

The simulation results reveal that the average running
time of the proposed VSSAMP algorithm is obviously lower
than that of SAMP algorithm. The process of sparsity pre-
estimation of VSSAMP algorithm reduces the whole iteration
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Fig. 5. The reconstruction probability vs the sparsity when the sparsity
K = 35.
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Fig. 6. The average running time as a function of sparsity K.

times, it makes the VSSAMP algorithm run faster than
SAMP algorithm.

From the above experiments, we can conclude that com-
pared with SAMP algorithm, the proposed VSSAMP algo-
rithm obtains higher running speed at the cost of slightly drop
in reconstruction probability. The construction probability of
VSSAMP algorithm is better than traditional algorithms, but
the running time is higher than traditional algorithms.

C. Two-dimensional Image Simulation Experiment

Experiment 5: Female image with 256×256 pixels is used
to evaluate the peak signal-to-noise (PSNR) and the running
time. Since the image is not sparse, it must be sparsely
processed using wavelet transform matrix. TABLE III gives
the PSNR comparison of SAMP and VSSAMP algorithms,
TABLE IV demonstrates the time comparison.

We can conclude from TABLE III that the PSNR of VS-
SAMP and SAMP increases with the increase of compression
ratio. That is, the larger the compression ratio, the better
the reconstruction performance. Under the same compression
ratio and the same stepsize, the PSNR of VSSAMP is
basically the same to SAMP algorithm. TABLE IV shows
that the running time of VSSAMP and SAMP increases with
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TABLE III
PSNR COMPARISON OF DIFFERENT ALGORITHMS (UNIT:DB)

M/N SAMP VSSAMP SAMP VSSAMP SAMP VSSAMP

(S=3) (S=3) (S=5) (S=5) (S=7) (S=7)

0.4 28.71 28.51 29.03 28.65 28.94 28.65

0.5 31.12 30.94 31.21 30.12 31.28 31.12

0.6 32.43 32.64 32.51 32.81 32.61 32.81

0.7 33.06 33.37 33.21 33.52 33.33 33.52

TABLE IV
TIME COMPARISON OF DIFFERENT ALGORITHMS (UNIT:MS)

M/N SAMP VSSAMP SAMP VSSAMP SAMP VSSAMP

(S=3) (S=3) (S=5) (S=5) (S=7) (S=7)

0.4 1.58 0.56 1.11 0.39 1.17 0.37

0.5 1.79 0.57 1.32 0.40 1.33 0.43

0.6 2.43 0.60 1.58 0.42 1.35 0.44

0.7 2.61 0.68 1.73 0.46 1.44 0.50

the increase of compression ratio. When adopting the same
stepsize and compression ratio, the running time of VSSAMP
algorithm is obviously less than SAMP. For example, when
the compression ratio is 0.5 and the stepsize is 5, the running
time of VSSAMP algorithm is about 30% of that of SAMP
algorithm; when the compression ratio is 0.6 and the stepsize
is 5, the running time of of VSSAMP algorithm is about 26%
of that of SAMP algorithm. The sparsity pre-estimation and
the variable stepsize strategies of VSSAMP algorithm reduce
the reconstruction time.

V. CONCLUSION

A variable stepsize sparsity adaptive matching pursuit
algorithm is proposed. In the period I of VSSAMP, the
signal sparsity is pre-estimated; the variable stepsize SAMP
is used to reconstruct the signal in the period II. Different
from the SAMP algorithm, VSSAMP algorithm determines
the stepsize according to the energy difference of two
consecutive residues. The experiment results show that the
reconstruction probability of VSSAMP algorithm is slightly
slower than SAMP algorithm in one-dimensional signal, and
the reconstruction quality of VSSAMP is basically equal to
SAMP algorithm in tow-dimensional image. What’s more,
the reconstruction time of VSSAMP algorithm is significant-
ly lower than that of SAMP algorithm in one-dimensional
signal and two-dimensional image.
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