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Abstract—This paper analyzes the behavior of the discrete
stochastic reaction-diffusion algorithm Greenberg-Hastings in a
random network with dynamic links. The main research ques-
tions of this study are: 1. Can the stochastic Greenberg-Hastings
reach an ’acceptable’ steady state in a dynamic network with
multiple topological and neighborhood variations? and 2. What
is the critical value of the relevant model parameters?. To
answer these questions, the model has been implemented by
using multiple test scenarios and, as the main constraint is
the network links variability, it has been defined in such a
manner so that the parameters take low, medium, and high
values. This paper presents some numerical experiments which
demonstrate its robustness and stability since, in many of the
scenarios experienced, the ’acceptable’ steady state has been
reached. Additionally, the critical values have been identified
by the model parameters and iterations, and the behaviors for
all the generated scenarios are described. This analysis allows
for deducing from the results obtained that, given the robustness
of the model, it is possible to conceive a stochastic control
algorithm to modify, reach and maintain the ’acceptable’ steady
state in all analyzed scenarios.

Index Terms—Reaction-Diffusion, Greenberg-Hastings, Com-
plex System, Random Networks, Dynamic Networks, Simula-
tion.

I. INTRODUCTION

THE reaction-diffusion models are used to represent
chemical, biological, or natural processes over a wide

range of temporal and spatial scales [8]. There are some of
them that are multi-scale [15] and are classified as a type of
dynamic system [1], which, according to [7] are defined as a
system whose states are specified only by a set of variables
and whose behavior is described using predefined rules.
They are generally divided into deterministic models and
stochastic models [3]. These models can be implemented
globally in continuous time and space along with differential
equations [5] or in discrete time and space [6].

The advantage of stochastic models is that it enables
better representation of systems with multiple favorable
states given that, in those cases the deterministic models fail.
The approximate solutions of stochastic models generate
fluctuations and thus allow to alternate between several
favorable states as in real life systems [3].

This article analyzes the stochastic Greenberg-Hastings
(GH) algorithm, because these types of algorithms are
efficient approximations for reaction-diffusion phenomena.
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The model is implemented on a partially connected network
with random dynamic links. Moreover, it facilitates the
description of dynamic social, and physical phenomena
considering that it executes the mobility of the agents and
the variable exchange between all of them.

This paper is organized as follows. The section II presents
the fundamental concepts to understand the analyzed model.
The section III describe the analyzed model. The results and
discussions are presents in section IV, and finally the section
V concludes the paper. The appendix show the generated
statistical graphics.

II. BACKGROUND

Greenberg-Hastings is a microscopic discrete non-
conservative reaction diffusion model which is a simple
model that presents a complex global behavior. The reaction-
diffusion models explain mathematically the evolution of a
system in which information is disseminated in an active
medium; this means that there are local reactions that modify
the phenomenon of propagation either by reinforcing it or
attenuating it. The system evolves into two possible steady
states: the first one is the total extinction of information,
and the second one is know as ’acceptable’ since it is when
a ’wave’ of information is generated along the network and
does not disappear [1].

The GH is a model that illustrates a non-conservative
reaction-diffusion system in a cellular automaton whose
time and events are discrete. For example, a dynamic
system modeled by variables that take values in a
discrete domain and that evolve through discrete and
instantaneous events [6], [2], [12], is a two-dimensional
cellular automaton which imitates formation patterns in an
excitable medium [12].

A cellular automaton is defined as a set of automatons that
is organized in a regular-rectangular grid and whose states
are simultaneously updated by a uniformly applied function
which depends on the state of the local neighborhood [7].
The model converges into two possible stationary states: the
’acceptable’ state where the information remains flowing
in the network and the ’null’ one where the information
completely disappears from the network [16].

Apparently, it is a simple model; however due to the
existent implicit dynamics, complex global behaviors are
often presented [1]. They are also robust models and allow
the comparison of the model with the system studied [13].

The model describes a reaction-diffusion process
AM + B0 → BM , meaning that a node A in the excited
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state M reacts with a node B in the neutral state 0, then
the node B changes its state from the neutral state 0 to the
excited state M [3].

According to [2] and [6] the GH model is described
mathematically as a matrix of nodes Ci,j . Each node has a
set of nodes Ci′,j′ that is know as a neighborhood; at each
time t = 0, 1, 2, ... the node Ci,j has a state St

i,j ∈ {0, 1, 2}.
The rules of evolution are defined as shown in equation 1.

St+1
i,j =


0 if St

i,j = 2

0 if St
i,j = 0 ∧ St

i′,j′ 6= 1

1 if St
i,j = 0 ∧ St

i′,j′ = 1

2 if St
i,j = 1

(1)

Generally, the GH algorithm is implemented in a static
network defined as a cellular automaton. However, there are
studies carried out on static small-world networks [10] and
free scale networks [1], and it is well known that there is
a close relationship between the stability of the reaction-
diffusion models and the network topology on which they
evolve [9]. On the other hand, dynamic networks allow the
modeling of processes and systems where nodes interact
in a temporary way. In those cases, temporary network
models can improve the understanding and predictions
made since many of the methods and models developed
in static networks cannot be applied nor need non-trivial
generalizations [14].

A dynamic network can be represented as a stream graph
S = (T, V,W,L), where V is a finite set of nodes, T a
measurable set of time instants, W a set of time nodes
W ⊆ T × V and a set of links L = T × V

⊗
V [11].

III. ANALYZED MODEL

The proposed model for the study is a microscopic
reaction-diffusion system that evolves in relation to the
stochastic GH algorithm in a space modeled as a random
undirected graph R = (V,L) and, according to the Erdös-
Rényi [4] random network model, including within it the
options of the ’null’ link. The number of nodes V are static
and the links L are dynamic, that is they change in time at
random as proposed in [17]. Since this model implements a
random network with dynamic links, the neighborhood for
each node is dynamic, therefore the number of neighbors
is variable. Each of the network nodes has a discrete set of
possible states {0, ...,M}, where 0 is the neutral state, M
is the excited state and if M > 1 (where the states between
1 and M − 1 are refractory states); a node can pass to the
M state if it is in the neutral state 0 and connected directly
to at least one node in the M state.

A. Partial Network with Random Links

Initially, a random partial network is created between
the V configured nodes considering the connectivity limit
RD, if the iteration i reaches (i mod C) = 0 then all the
links are deleted (tabula rasa) and new ones are created at

random with uniform probability distribution, respecting the
limit RD. The process can be graphically represented as
shown in the figure 1. This type of configuration creates
complex topological models combined with various types of
neighborhoods within the same execution, including circular
neighborhoods.

Fig. 1. Example of random dynamic network with N nodes and C period
(Stream Graph)

B. Propagation

The implemented model is based on the Greenberg-
Hastings stochastic algorithm proposed by [3], where
the reaction-diffusion process is described as shown in
equation 2. The node A in excited state M that reacts with
a node B in neutral state 0 can change the state of node
B depending on the individual threshold defined pT and a
random variable pc.

AM +B0 →
{
BM if pc > pT
B0 if pc ≤ pT

(2)

Regarding the classic algorithm described in [2] and [6],
the rules of evolution are changed as in [1], and is illustrated
in equation 3, where σt

c corresponds to the value state for
node c at time t and Et

c are the number of neighbors of c
in state M at time t.

∀t,∀c, σt+1
c =

 M if σt
c = 0, Et

c > 0 ∧ pc > pT
σt
c − 1 if σt

c ∈ {1, ...,M}
0 otherwise

(3)

C. Model Parameters

The model receives the values that allow set the initial
configuration of the simulation and describe the evolution of
the network and the reaction-diffusion process, all of them
are in the range of the natural numbers. The table I shows
the parameters required by the model.

The parameter (I) represents the number of nodes that
start in an active state (state=M ) in the initial iteration.
(It) is the number of iterations that are carried out in a
single execution and when there is at least one node in an
active or refractory state. (C) is the period of iterations
with which the network structure is changed. (N ) is the
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TABLE I
TABLE OF MODEL PARAMETERS

ID Description Domain
I Initially active nodes N
C Network period (Iteration change of network) [1, It] ∈ N
N Number of nodes (Static) N
It Number of iterations N
NE Number of runs N
M Total number of states N
RD Global Percentage of links (Dynamic Links) [1, 100] ∈ N
P Maximum threshold of transmission probability [1, 100] ∈ N

number of nodes that constitute the network, this number
is constant along a run. (NE) is the established number
of runs that are made in order to analyze the stochastic
results. (M ) is the total number of states defined for an
execution. (RD) represents the global total percentage of
connections that must be within the network according to
(N ). (P ) is the value over which the threshold pc is selected.

1: initialization;
2: while i < It do
3: Copy original network (links and states);
4: for n ∈ node do
5: pc ← random;
6: Propagation according to the equation 2 and based

on the original network;
7: Update state according to the equation 3 and

based on the original network;
8: end for
9: Update network (links and states);

10: if i mod C == 0 then
11: Change Network as described in the section III.A
12: end if
13: end while

Algorithm 1: analyzed model algorithm

IV. RESULTS AND DISCUSSIONS

Multiple test scenarios have been set out for analyzing and
determining the different behaviors of the model. A wide
range of values has been selected for each parameter with
the purpose of trying to obtain robustness in the variability
to be analyzed by keeping a reasonable computing time.
Table II shows the parameter values for each scenario.

TABLE II
PARAMETER VALUES FOR THE TEST SCENARIOS

Parameter ID Set of values
I {1}
C {20}
N {200}
It {300}

NE {50}
M {1, 5, 10}
RD {5, 20, 50, 80}
P {20, 40, 60, 70, 80, 100}

The parameter (I) is equal to 1 for all test scenarios,
the specific node is initialized by selecting at random from
the set of defined nodes. Given that it is a stochastic and

dynamic model, NE = 50 runs for each scenario have
be made in order to estimate more accurately the overall
behavior of the model.

For the total of runs, a set of figures of active nodes
in M state has been generated in relation to the number
of iterations grouped by the parameters M and RD.
Considering that the model is stochastic, the figures
generated are statistics that show the mean, maximum
values and minimum, and outliers of all the runs performed.

For the sets 1M xP 5RD (see figure 4), 1M xP 20RD
(see figure 5), 1M xP 50RD (see figure 6), 1M xP 80RD
(see figure 7), with P 6= 100 before the iteration 30, the
number of active nodes is ’stabilized’ around a convergence
value and the variance is smaller with a higher value
of P . As the value of the parameter P is higher, the
maximum, minimum and mean values tend to increase.
With P = 100 the behavior is different, there is not a
single convergence value. For 1M xP 5RD there are large
variance decreases, the variance is stable at 1M xP 50RD
and for 1M xP 20RD and 1M xP 80RD there are smaller
variance and the separation of the convergence values is
greater.

For the set 5M xP 5RD (see figure 8) with P < 80
in all cases, the variance is higher and is unrelated to the
value of P . As the value of the parameter P is higher,
the maximum, minimum and mean values tend to increase.
With P = 80 and P = 100, none of the execution reached
the ’acceptable’ steady state.

For the sets 5M xP 20RD (see figure 9), 5M xP 50RD
(see figure 10), 5M xP 80RD (see figure 11), with P 6= 100
before the iteration 30 the number of active nodes is
’stabilized’ around a convergence value, hence the variance
is smaller with a higher value of P . Since the value of the
parameter P is higher, the maximum, minimum and mean
values tend to increase. With P = 100 no execution reached
the ’acceptable’ steady state.

For the set 10M xP 5RD (see figure 12) in all cases the
variance is large and no execution reached the ’acceptable’
steady state.

For the sets 10M xP 20RD (see figure 13),
10M xP 50RD (see figure 14), 10M xP 80RD (see
figure 15), the variance is large in all cases; before iteration
30, the number of active nodes is ’stabilized’ around a
convergence value, consequently the variance is smaller
with a higher value of P . As the value of the parameter P
is higher, the maximum, minimum and mean values tend to
increase. For P > 40 no execution reached the ’acceptable’
steady state.

The ’acceptable’ steady state for all 50 runs and 300
iterations is reached within the following scenarios:
1M xP 5RD only with P = 70, P = 80 and P = 100,
1M xP 20RD in all cases, 1M xP 50RD in all cases,
1M xP 80RD in all cases, 5M xP 5RD only with P = 40,
5M xP 20RD, 5M xP 50RD, 5M xP 80RD with P = 20
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and P = 40. The rest of the cases reach less of 100% or
0%, the table III presents all the values.

There are 63 (87.5%) cases within the evaluated scenarios
where the generated distributions are single-modal and whose
mean moves proportionally to the value of the parameter P ,
there are 9 (12.5%) cases where the distribution is bi-modal.
On the unimodal distributions 25 (39.68%) reach 100% of
the ’acceptable’ steady state and 38 (60.31%) do not, for the
case of the bimodal distributions 4 (44.44%) reach 100% of
the ’acceptable’ steady state and 5 (55.55%) do not obtain it.

Fig. 2. Comparison of the probability of reaching the ’acceptable’ steady
state according to the parameters M, P, RD

Comparing the overall behavior of the evaluated scenarios,
the critical iterations in which the first extinctions are
presented occur between iterations 3(1%) and 25(8.33%),
being the scenarios of the set 1M of lesser value and those
of 10M of greater value, the identified critical iterations are
presented according to a multimodal probability distribution
as seen in the figure 3. The ’acceptable’ steady state does
not depend on the number of active nodes ranging from
1(0.5%) to 150(75%) in one iteration.

For each of the parameters M, P and RD individually,
as shown in the figure 2, there is a higher probability of
reaching the global ’acceptable’ steady state with fewer
states M , also when the transmission probability P is lower;
whereas with the parameter RD, the higher probability
is presented with the value 50 (25%) (this probability
depends on the size of the network, that is the number
of nodes. For this case, it is being evaluated with 200 nodes).

Table III shows that 28(38.88%) of the 72 scenarios
assessed achieve the ’acceptable’ steady state in all runs,
23(31.94%) of them do not achieve ’acceptable’ steady
state in all runs, and the remaining 21 scenarios (29.16%)
can be considered as intermediate scenarios. For PE = 1,
the minimum maximum is 46(23)% of the 5M 20P 80RD
scenario, and the maximum maximum is 173(86.5)%
of the 1M 100P 80RD scenario. In all tests performed,
a maximum of 174 active nodes have been reached in
one iteration. Therefore, the highest variance for both the
minimum value (3884.4) and the maximum value (3869.9) is

Fig. 3. Histogram for all runs. (critical iterations where the ’null’ state is
reached)

obtained with scenario 1M 100P 80RD, even in the 50 runs
the ’acceptable’ stationary state is reached. Additionally,
most of probability distributions generated are unimodal (A)
80.55%, bimodal with peaks at both ends 18.05% (U) and
bimodal with multiple peaks 1.38% (S).

V. CONCLUSION

This study has proposed, developed and researched the
behavior of the stochastic Greenberg-Hastings (GH) model
in a random network with dynamic links. The results
confirmed the robustness of the stochastic GH algorithm
confronted against the dynamic change of topology and
the complex generated neighborhoods. For most scenarios,
an emerging convergence value has been identified, which
is reached before the 10% of iterations. The evaluated
scenarios allow to conclude that the observed variability is
not enough to determine the final steady state of system. It
evidenced that the change in the values of the parameters
modify some specific characteristics such as the number
of active nodes, the convergence value for all the runs,
the variance of active nodes, the critical iteration between
the two stable states and the probability of reaching the
’acceptable’ steady state. The analysis carried out has
identified the relevant parameters M , P and RD and their
incidence in the diffusion of a permanent information wave
within a dynamic random network. Analyzing the total
of the evaluated scenarios and considering the values of
identified parameters independently, it is possible in all
cases to reach the ’acceptable’ stationary state by modifying
the behavior of the individual nodes maintain low M , P
and RD near 50% of N .

As future research could be based on the information
obtained from the analysis of the experiments and parameters
specified here for developing a static control local algorithm
and maintaining the ’acceptable’ steady state in most cases,
it is possible to make each of the nodes that constitute
the network act locally in order to modify the global
behavior of the network and make the information remain
in propagation. For example, regardless of the initial state of
the system, global stability is achieved, and the system must
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TABLE III
RESULTS FOR ALL SCENARIOS AND TOTAL RUNS. MIN - GLOBAL

MINIMUM VALUE OF ACTIVE NODES, MAX - GLOBAL MAXIMUM VALUE
OF ACTIVE NODES, VAR MIN - VARIANCE OF THE MINIMUM VALUE,

VAR MAX - VARIANCE OF THE MAXIMUM VALUE, PE - PROBABILITY
OF REACHING ’ACCEPTABLE’ STEADY STATE, TD - PROBABILITY

DISTRIBUTION TYPE (A - UNIMODAL, S - BIMODAL WITH MULTIPLE
PICKS, U - BIMODAL WITH PEAKS AT BOTH ENDS)

Scenario Name Min Max Var Min Var Max PE TD
1M 20P 5RD 5 46 18.110 9.7395 0.76 A
1M 40P 5RD 8 79 40.556 27.419 0.96 A
1M 60P 5RD 14 101 60.406 45.085 0.98 A
1M 70P 5RD 12 111 65.528 47.192 1 A
1M 80P 5RD 13 121 75.916 58.378 1 A
1M 100P 5RD 17 140 206.27 185.19 1 S
1M 20P 20RD 15 56 17.91 8.4547 1 A
1M 40P 20RD 26 82 33.548 17.887 1 A
1M 60P 20RD 34 118 51.55 32.28 1 A
1M 70P 20RD 44 135 63.645 46.109 1 A
1M 80P 20RD 41 150 78.606 52.327 1 A

1M 100P 20RD 49 172 3684.8 3673.7 1 U
1M 20P 50RD 29 54 14.213 6.5679 1 A
1M 40P 50RD 53 85 27.736 13.589 1 A
1M 60P 50RD 73 102 38.754 21.760 1 A
1M 70P 50RD 81 110 42.904 25.330 1 A
1M 80P 50RD 94 120 48.457 28.612 1 A

1M 100P 50RD 114 116 44.317 24.518 1 U
1M 20P 80RD 40 55 14.632 6.2932 1 A
1M 40P 80RD 65 87 27.495 13.793 1 A
1M 60P 80RD 75 114 39.975 22.424 1 A
1M 70P 80RD 80 122 47.508 27.320 1 A
1M 80P 80RD 75 139 57.416 41.063 1 A

1M 100P 80RD 49 173 3884.4 3869.9 1 U
5M 20P 5RD 5 29 9.2785 4.3832 0.52 A
5M 40P 5RD 9 62 26.314 7.4620 1 A
5M 60P 5RD 10 91 111.30 18.011 0.8 A
5M 70P 5RD 5 102 215.15 21.976 0.38 U
5M 80P 5RD 0 124 872.06 660.01 0 A
5M 100P 5RD 0 136 2564.5 556.27 0 A
5M 20P 20RD 13 48 11.490 3.8665 1 A
5M 40P 20RD 17 84 26.362 10.979 1 A
5M 60P 20RD 7 117 77.672 39.702 0.98 A
5M 70P 20RD 4 141 155.90 70.791 0.56 U
5M 80P 20RD 2 142 265.02 152.28 0.1 U

5M 100P 20RD 0 170 3222.8 2496.4 0 A
5M 20P 50RD 21 51 11.398 4.2575 1 A
5M 40P 50RD 14 75 22.577 11.059 1 A
5M 60P 50RD 6 104 64.957 31.675 0.96 A
5M 70P 50RD 5 107 102.01 55.630 0.66 U
5M 80P 50RD 2 123 204.56 111.22 0.18 U

5M 100P 50RD 0 112 2632.7 1653.6 0 A
5M 20P 80RD 20 46 10.962 4.7177 1 A
5M 40P 80RD 13 78 23.595 12.290 1 A
5M 60P 80RD 5 114 69.796 38.824 0.82 A
5M 70P 80RD 3 131 114.68 59.169 0.54 U
5M 80P 80RD 1 142 190.83 112.31 0.18 U

5M 100P 80RD 0 171 3681.9 2575.1 0 A
10M 20P 5RD 0 28 36.336 10.158 0 A
10M 40P 5RD 0 61 267.88 126.39 0 A
10M 60P 5RD 0 93 869.42 0.05 0 A
10M 70P 5RD 0 106 902.26 271.15 0 A
10M 80P 5RD 0 120 1335.5 275.89 0 A

10M 100P 5RD 0 136 1851.7 402.83 0 A
10M 20P 20RD 9 48 13.929 5.2799 0.92 A
10M 40P 20RD 2 88 72.959 38.993 0.06 U
10M 60P 20RD 0 124 902.12 402.91 0 A
10M 70P 20RD 0 141 1210.4 572.85 0 A
10M 80P 20RD 0 148 1306 748.42 0 A
10M 100P 20RD 0 171 2179.3 1552.4 0 A
10M 20P 50RD 11 48 11.111 5.7232 0.94 A
10M 40P 50RD 3 80 48.813 22.320 0.14 U
10M 60P 50RD 0 96 736.26 331.27 0 A
10M 70P 50RD 0 104 942.26 460.85 0 A
10M 80P 50RD 0 111 1172.9 608.39 0 A
10M 100P 50RD 0 115 1846.1 1004.9 0 A
10M 20P 80RD 12 50 13.862 5.0096 0.98 A
10M 40P 80RD 3 82 51.428 23.907 0.18 U
10M 60P 80RD 0 112 905.57 397.04 0 A
10M 70P 80RD 0 125 1106.2 559.31 0 A
10M 80P 80RD 0 139 1345.9 822.49 0 A
10M 100P 80RD 0 174 2406.9 1705.9 0 A

be modified either globally or locally before the critical
iteration identified. This model and this analysis can be
used to generate a local distribution of probability for each
node and find the incidence of number of neighbors and
their states.

APPENDIX A
FIGURES FOR ALL SCENARIOS

All the figures generated for the proposed scenarios are
shown in this section, the red points represents the outliers.
All scenarios that complete the 300 iterations converge to
a value, except the scenarios 1M-100P-20RD-1I, 1M-100P-
80RD-1I, where a stable bifurcation occurs and the scenario
1M-100P-5RD-1I that produce a convergent bifurcation.

Fig. 4. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters. 1M xP 5RD 1I

Fig. 5. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters 1M xP 20RD 1I

Fig. 6. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters 1M xP 50RD 1I
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Fig. 7. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters 1M xP 80RD 1I

Fig. 8. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters 5M xP 5RD 1I

Fig. 9. Statistical behavior for all runs (active nodes for each iteration) for
the set of parameters 5M xP 20RD 1I

Fig. 10. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 5M xP 50RD 1I

Fig. 11. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 5M xP 80RD 1I

Fig. 12. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 10M xP 5RD 1I
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Fig. 13. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 10M xP 20RD 1I

Fig. 14. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 10M xP 50RD 1I

Fig. 15. Statistical behavior for all runs (active nodes for each iteration)
for the set of parameters 10M xP 80RD 1I
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