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Abstract—With the effective adoption of EHRs in clinical 

care, an increasing number of researchers contribute to 

meaningful use of EHRs for advancing in performance of 

patient similarity. Existing approaches leverage EHRs by the 

knowledge graph representation learning techniques, which 

shows higher effectiveness than the embedding vectors 

computed from medical texts. The unique challenge in 

embedding heterogeneous medical knowledge graph from real 

world EHR data is that such accurately structured medical 

data is very sparse. To address the above challenge, we propose 

a similarity framework named PSI. Specifically, PSI constructs 

a high-quality medical knowledge graph from ICD-9 ontology, 

MIMIC-III and DrugBank. Then, we utilize graph 

representation learning models to obtain the embedding 

vectors of the entities (prescriptions, diseases and patients). 

Moreover, PSI applies the embeddings to study the similarities 

of patients, which leverages Siamese CNN with SPP. The 

excellent performance demonstrates the effectiveness of PSI in 

expressively representing patients and measuring patient 

similarity.  

 
Index Terms—Siamese CNN with SPP; Heterogeneous 

Medical Knowledge Graph Embedding; Patient Similarity;  

I. INTRODUCTION 

he accumulation of EHR data provides a valuable 

resource for identifying similar patients, including 

demographics, prescriptions, procedures, vital signs, etc. 

Patient similarity learning [1] aims at finding patients who 

have similar clinical characteristics to the patients. Patient 

similarity aims to learn a clinical distance measurement to 

compute the similarities of patients. The patient similarity 

measures are the enabling technique for various healthcare 

domains [2-4]. 

A. Motivation 

The precise patient similarity measures play an important 
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role in grouping patients into disease cohorts. Consequently, 

how to derive an effective and accurate patient similarity 

measure is a significant challenge. 

B. Challenges  

Knowledge graph as an auxiliary data source have 

recently attracted a considerable amount of interest to extract 

the valuable clinical knowledge reflecting medical facts of 

prescriptions and diseases from EHRs. Therefore, a 

high-quality heterogeneous knowledge graph enables to 

learn the better representations of patients for patient 

similarity learning. However, there are still significant 

challenges on the heterogeneous medical knowledge graph: 

(1) Computation inefficiency: Knowledge representation 

learning models based on conventional graph factorization 

have many parameters, which makes the models too 

complex to explain and requires a lot of computational cost. 

The shortcomings such as complicated training and difficult 

expansion will occur. (2) Data sparsity: Most of the 

existing works merely focus on medical entities in EHRs, 

ignoring the relationships among medical entities. Given the 

clinical data from EHRs, discovering the relationships 

among medical entities in a wider scope can provide strong 

supports for clinical decision-making. Clearly, merely 

concentrating on EHR data is not reasonable. 

C. Proposal 

To exploit knowledge graphs for patient similarity 

learning as well as to address the above challenges, a 

framework named PSI is proposed, in which it consists of 

two parts: patient similarity learning and heterogeneous 

medical knowledge graph embedding. In heterogeneous 

medical knowledge graph embedding, a high-quality 

heterogeneous knowledge graph (See Fig. 1.) is constructed 

by extracting medical entities of patients and bridge the 

entities with ICD-9 ontology [5] and DrugBank [6]. Then, 

PSI enables a graph representation model to obtain the 

embedding vectors of entities. In this way, the entity 

embeddings preserve the information from the structures of 

heterogeneous medical knowledge graphs. In patient 

similarity learning, we stack the medical concept 

embeddings up patient matrices. Given the embedding 

matrix representations of patients, we adopt Siamese CNN 

[7] to find the patients with similar features. 

C. Contributions 

The works of PSI are as follows: 

⚫ We adopt the graph representation model to obtain 

entity vectors. The learned representations of patients, 

prescriptions, and diseases can help to have a positive 

effect on evaluating the similarities of patients. 

Learning Patient Similarity via Heterogeneous 

Medical Knowledge Graph Embedding 

T 

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_03

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



 

 

⚫ We learn the dense patient representations and utilize 

Siamese CNN with SPP to compute the patient 

similarity. 

⚫ The experimental results summary that PSI achieves the 

excellent performance in patient similarity learning than 

the existing baseline methods, including the SVD-based 

matrix factorization method, Word2vec-based method, 

CNN-based method and distance metric method. 

II. RELATED WORK 

We first describe the medical knowledge graph. Then, we 

review the patient similarity learning algorithms. 

A. Medical Knowledge Graph 

Utilizing medical knowledge graphs has been 

demonstrated to effectively reflect relationships among 

clinical data. This enables to have great significance to 

improve the efficiency of doctors and reduce the burden on 

doctors. In recent years, the biomedical knowledge graphs 

have appeared, such as Bio2RDF, Chem2Bio2RDF and 

PDD [8-10]. 

B. Patient Similarity Learning 

How to measure the patient similarity has caused the 

enormous concerns. For example, Chan et al. [11] proposed 

a method named SimSVM to measure patient similarity. Sun 

et al. [12] proposed the Locally Supervised Metric Learning 

(LSML) which combines multiple similarity measures from 

multiple physicians. Reference [13] proposed a CNN-based 

deep learning framework to obtain patient representations 

which preserve the temporal information of EHRs. 

III. THE PROPOSED FRAMEWORK 

Firstly, we briefly introduce the important notations 

employed in this paper. Then, we introduce how to effectively 

represent medical entity vectors. At last, we describe how to 

utilize Siamese CNN with SPP for measuring the similarities 

of patients. The Fig. 2 illustrates the overall framework of PSI. 

A. Notations 

A patient medical record is conventionally represented as a 

medical concept sequence ranked in a temporal order, and 

medical concepts include diseases and prescriptions that the 

patients suffered from or took. The medical concepts are 

presented in the form of ICD-9 and NDC. The set of distinct 

medical concepts in EHRs is denoted as Ɛ = {c1, c2, …, c|Ɛ|}, 

where ci is the medical concept in EHRs and |Ɛ| is the total 

number of distinct medical concepts. We have a 

heterogeneous medical knowledge graph G = (E, R) available, 

which is comprised of triples in the form (eh, r, et). Here eh ϵ E 

(set of entities), r ϵ R (set of relations), and et ϵ E denote the 

head, relation and tail of a medical knowledge triple. For 

example, the triple (p1, prescribed, Cimetidine) states the fact 

that the patient p1 prescribed the prescription Cimetidine.  

B. Heterogeneous Medical Knowledge Graph Embedding 

Recently, translation-based methods have been proposed to 

train knowledge graph embeddings. Here, we use TransR [14], 

which is one of the most representative translation-based 

methods and has the excellent performance on many tasks, as 

our heterogeneous medical knowledge embedding model. 

Formally, head entity eh, tail entity et and relation r have a 

embedding respectively, i.e., eh ϵ ℝk, et ϵ ℝk and r ϵ ℝd. For 

each relation r, we use a projection matrix Hr ϵ ℝk×d to map the 

head entity eh and the tail entity et from their entity space to the 

specific relation space. The scoring function 𝑧(𝑒ℎ, 𝑟, 𝑒𝑡) is to 

correct the triplet (eh, r, et), which is defined as follows: 

𝑧(𝐞ℎ , 𝐫, 𝐞𝑡) = 𝑏 − ‖𝐞ℎ𝐇𝑟 + 𝐫 − 𝐞𝑡𝐇𝑟‖𝐿1/𝐿2 (1) 

where b is a constant. 

Then, we define the conditional probability of observing a 

triple (eh, r, et) as follows:  

Fig. 1.  An Annotated Toy Example of Heterogeneous Medical Knowledge Graph 
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𝑃(𝑒ℎ|𝑟, 𝑒𝑡) =
𝑒𝑥𝑝{𝑧(𝐞ℎ, 𝐫, 𝐞𝑡)}

∑ 𝑒𝑥𝑝{𝑧(�̂�ℎ , 𝐫, 𝐞𝑡)}�̂�ℎ∈𝐸

(2) 

In addition, 𝑃(𝑒𝑡|𝑒ℎ, 𝑟), 𝑃(𝑟|𝑒ℎ, 𝑒𝑡) are defined in the same 

way as 𝑃(𝑒ℎ|𝑟, 𝑒𝑡). The likelihood of observing a triple (eh, r, 

et) is defined as follows: 

£(𝑒ℎ, 𝑟, 𝑒𝑡) = 𝑙𝑜𝑔 𝑃(𝑒ℎ|𝑟, 𝑒𝑡) + 𝑙𝑜𝑔 𝑃(𝑒𝑡|𝑒ℎ, 𝑟)

                                                      + 𝑙𝑜𝑔 𝑃(𝑟|𝑒ℎ , 𝑒𝑡)
(3) 

Subsequently, the heterogeneous medical knowledge graph 

embedding model maximizes the likelihood of observing all 

triplets from the graph G = (E, R): 

£𝐺 = ∑ £(𝑒ℎ, 𝑟, 𝑒𝑡)

(𝑒ℎ,𝑟,𝑒𝑡)∈𝐺

(4) 

Optimization. To learn the effective medical 

entity/relation embeddings, we maximize the logarithm 

likelihood of the objective function: 

£(𝑇) = £𝐺 + 𝛾𝛩(𝑇) (5) 

where T is the medical entity/relation embeddings, 𝛾 is a 

hyper-parameter, which is defined as follows: 

𝛩(𝑇) = ∑[‖𝑒‖ − 1]+ +

𝑒∈𝐸

∑[‖𝑟‖ − 1]+

𝑟∈𝑅

(6) 

where [𝑥]+ = 𝑚𝑎𝑥(0, 𝑥) denotes the positive part of 𝑥. 

Optimizing the objective function Equation (4) in 

Equation (5) are computationally expensive. To address this 

problem, we use NEG to transform the original objective.  

For Equation (4), we should transform 𝑙𝑜𝑔 𝑃(𝑒𝑡|𝑒ℎ, 𝑟), 

𝑙𝑜𝑔 𝑃(𝑟|𝑒ℎ, 𝑒𝑡) , 𝑙𝑜𝑔 𝑃(𝑒ℎ|𝑟, 𝑒𝑡)  in Equation (3). Taking 

𝑃(𝑒ℎ|𝑟, 𝑒𝑡)  as an example, we maximize the following 

objective function instead of it: 

𝑙𝑜𝑔 𝜎(𝑧(𝐞ℎ , 𝐫, 𝐞𝑡))

                  + ∑
�̃�ℎ

𝑖 ~𝑧𝑛𝑒𝑔({(�̃�ℎ,𝑟,𝑒𝑡)}) [𝜎 (𝑧(�̃�ℎ
𝑖 , 𝐫, 𝐞𝑡))]

𝜇

𝑖=1

(7) 

where 𝜇  is the number negative examples, 𝜎(𝑥) =
1/(1 + 𝑒𝑥𝑝 (−𝑥)) is the sigmoid function. {(�̃�ℎ, 𝑟, 𝑒𝑡)} is 

the invalid triple set, and zneg is a function randomly 

sampling instances from {(�̃�ℎ, 𝑟, 𝑒𝑡)}.  

C. Patient Similarity Learning 

Siamese CNN structure, inspired by the success of 

Siamese LSTM model in tackling the text similarity problem, 

can measure the patient similarity. Unfortunately, the 

fixed-size input of CNN limits the aspect ratio of the patient 

embedding matrices. When applying the patient embedding 

matrices of arbitrary sizes to the CNN, most of the existing 

methods via cropping or warping to fit the fixed-size input 

required by the CNN. But the cropping operation cannot 

fully consider the relationship, while the warping operation 

may result in stretching and deformation. To address the 

constraint, we add an SPP layer [15] behind the 

convolutional layer and before the fully-connected layer. 

Specifically, we obtain the patient matrix representations by 

stacking the medical concept embeddings. The patient 

matrix representations contain the disease information and 

prescription information. Through Siamese CNN with SPP, 

patient matrix representations are mapped to the fixed-size 

embeddings. Afterwards, we calculate the Euclidean 

distance between the fixed-size vectors. 

1) Patient Matrix Representation 

We describe how to obtain the patient matrix 

representations based on the learned embeddings and given 

patient medical records. In the existing related works, 

usually the patient representation is as simple as converting 

all medical concepts in his/her medical records to medical 

concept vectors, then summing all those vectors to obtain a 

single representation vector. Unfortunately, this kind of 

patient representation will loss the temporal information in 

EHRs. Instead, we utilize a novel patient representation 

method which stacks all medical concept embeddings 

appearing in a patient medical record into a matrix. 

2) Siamese CNN with SPP 

The Siamese CNN consists of two identical CNN-based 

sub-networks that join together at their output levels. The 

parameters and weights in the two Siamese sub-networks are 

shared. Because the dimensions of the patient matrix 

representations are different, we apply the spatial pyramid 

pooling strategy to extract the fixed-size spatial feature from 

patient matrix representations of arbitrary sizes. The main 

advantage of Siamese CNN with SPP is to overcome the 

defect brought by the patient matrix representations of 

arbitrary sizes and improve the performance of patient 

similarity learning. 

a) The Architecture of Siamese CNN with SPP 

Fig. 3 shows the schematic diagram of Siamese CNN with 

SPP. We assume that X1 = [c1, c2, …, cM]T and X2 = [c1, 

c2, …, cN]T are embedding matrix representations of two 

patients p1 and p2 respectively, where M and N are the total 

number of medical concepts appearing in their medical 

records respectively, and ci is the embedding vector of 

medical concept ci. A pair of patient matrix representations 

X1 and X2 are taken as the input of Siamese CNN with SPP 

and each of the two identical CNN-based sub-networks 

respectively handles one patient matrix representation from 

the patient pair. Through the operations of two Siamese 

Fig. 3.  Patient Similarity Learning Using Siamese CNN with SPP 

 

Weighted Matrix W 

 

CNN 

with SPP 

CNN  

with SPP 

X1 

X2 

 Similarity = 

||FW(X1), FW(X2)|| 

FW(X1) 

FW(X2) 

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_03

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



 

 

sub-networks, we can obtain the feature vectors FW(X1) and 

FW(X2) of the pair of input patients. The output of Siamese 

CNN with SPP is the similarity between the feature vectors 

FW(X1) and FW(X2) of input patients X1 and X2, denoted 

𝐷𝑖𝑠𝐖 = ‖𝐅𝐖(𝐗1) − 𝐅𝐖(𝐗2)‖. The goal of Siamese CNN 

with SPP is to make the input patients of the same disease 

cohort as close as possible in the vector space, while the 

input patients of different disease cohorts are as far away as 

possible in the vector space. 

b) Loss Function Used for Siamese CNN with SPP 

Let X1 and X2 be a pair of inputs, which represent the 

embedding matrix representations of two patients, 

respectively. Let W be a shared weighted matrix, and FW(X1) 

and FW(X2) be two low-dimension vectors of X1 and X2. The 

contrastive loss [16] function are defined as follows: 

𝐷𝑖𝑠𝐖(𝐗1, 𝐗2) = ‖𝐅𝐖(𝐗1) − 𝐅𝐖(𝐗2)‖2 (8) 

If X1 and X2 belong to the same disease cohort, the 

contrastive loss function should be small. Otherwise, the loss 

should be large. In detail, the loss function can be formed as: 

𝐿(𝐖, 𝑌, 𝐗1, 𝐗2) =
𝑌

2
𝐷𝑖𝑠𝐖(𝐗1, 𝐗2)2

+
1 − 𝑌

2
(𝑚𝑎𝑥{0, 𝑚 − 𝐷𝑖𝑠𝐖(𝐗1, 𝐗2)})2

(9) 

where 𝑚 > 0 is a margin and 𝑌 is a binary label assigned 

to the pair of input patient matrix representations. 𝑌 = 1 

shows that the two patient matrix representations belong to 

the same disease cohort, which is indicated as positive 

patient pairs. Otherwise, 𝑌 = 0 shows that the two patient 

matrix representations belong to the different disease cohorts, 

which is indicated as negative patient pairs. 

When 𝑌 = 1, the second term of Equation (9) is zero, and 

the first term of Equation (9) is called 𝐿𝐷  which is the 

partial loss function for a pair of input patients belonging to 

the different disease cohorts. Otherwise, the first term of 

Equation (9) is zero, and the second term of Equation (9) is 

called 𝐿𝑆 which is the partial loss function for a pair of 

input patients belonging to the same disease cohort. 

D. Patient Similarity Identification—PSI 

Algorithm 1 displays the steps of our proposed patient 

similarity learning framework PSI written in pseudo code. 

Specifically, A batch of medical fact triplets (eh, r, et) are 

selected from the heterogeneous medical knowledge graph 

G, and we random generate 𝜇 negative triplets based on the 

positive samples (Steps 2-5). To update the embeddings of 

medical entities and relations, we further conduct SGD 

algorithm in the learning process. In addition, given a patient 

𝑝, we can obtain the embedding matrix 𝐗𝑝  of patient 𝑝 by 

stacking the embedding of medical concepts orderly that 

appear in his/her medical record (Steps 7-8). Then, we train 

Siamese CNN with SPP using the patient embedding 

representations as the input to measure the clinical 

similarities of all patient pairs (Step 9). Lastly, for each 

patient, we select the patient corresponding to the highest 

similarity score (Steps 10-16). 

Algorithm 1 Patient Similarity Identification—PSI 

Input: Patient set 𝑃, patient medical record set D, heterogeneous medical 

knowledge graph G, medical entity set E, relation set R and number 

of negative samples 𝜇 

Output: The most similar patient set �̂� 

1:  repeat 

2:    Sample a batch of triples from 𝐺𝑏𝑎𝑡𝑐ℎ from 𝐺 

3:   for (𝑒ℎ , 𝑟, 𝑒𝑡) ∈ 𝐺𝑏𝑎𝑡𝑐ℎ do 

4:    Update 𝐞ℎ , 𝐫, 𝐞𝑡 by using Equation (1-4) with negative sampling 

5:    end for 

6:  until Convergence 

7: foreach 𝑝 ∈ 𝑃 do 

8:     Obtain the embedding matrix 𝐗𝑝 according to the medical record 𝐷𝑝 

      of patient 𝑝 

9: Train Siamese CNN with SPP to measure the similarities of patients 

10:  �̂� ← {} 

11:  foreach 𝑝𝑖 ∈ 𝑃 do 

12:    foreach 𝑝𝑗 ∈ 𝑃\𝑝𝑖 do 

13:       Compute the similarity score between 𝑝𝑖 and 𝑝𝑗 

14:    Rank the similarity score 

15:    Select the patient 𝑝𝑗 corresponding to the highest similarity score 

16:    �̂� ← 𝑝𝑗 

17:  Return �̂� 

IV. EXPERIMENTS 

We conduct the experiments to demonstrate the 

effectiveness of PSI. Firstly, we introduce several real-world 

datasets and baseline methods to be compared. Then, we 

evaluate the performance of PSI on six data mining tasks: 

top-k most similar patients, patient similarity analysis, 

visualization of patient, disease cohort classification, patient 

clustering and parameter sensitivity analysis. 

A. Experimental Settings 

1) Datasets 

⚫ MIMIC-III [17] is a free and open intensive care 

medical information database, which collects clinical 

data of the Beth Israel Deaconess Medical Center 

between 2001 and 2012. 

⚫ ICD-9 ontology contains 13,000 international standard 

codes of diagnoses and their hierarchical relationships. 

⚫ DrugBank is a database that integrates bioinformatics 

and cheminformatics, and provides detailed drug data, 

drug target information and comprehensive molecular 

information about its mechanism. The database contains 

10,971 drugs information and 4,900 protein targets 

information. 

2) Construction of Heterogeneous Medical 

Knowledge Graph 

We introduce the process of constructing the heterogeneous 

medical knowledge graph from EHR data MIMIC-III and two 

medical knowledge bases (ICD-9 ontology and DrugBank). 

Furthermore, we present how to extract the patients and their 

medical concepts from MIMIC-III. 

a) Patient Extraction 

According to the studies in [13], we carry out the selection 
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of disease cohort, including Atherosclerosis, Heart Failure, 

Kidney Failure, Intestinal Diseases, Liver Diseases, 

Pneumonia, Septicemia, Respiratory Failure and Gastritis. 

Each disease cohort consists of a set of case patients who are 

confirmed with one of the nine diseases according to their 

diagnosis information in MIMIC-III and discharged from the 

hospital before 2200/1/1, and each patient medical record 

comes with more than three medical concepts including 

diagnosis and prescription information, etc. As a result, the 

remaining dataset contains 26,009 patients. 

b) Medical Concept Extraction 

In the process of generate a high-quality heterogeneous 

medical knowledge graph, we focus on discovering the 

medical fact triples indicating that a patient is diagnosed with 

a disease, a patient takes a prescription, or a prescription cures 

a disease. Consequently, we need to extract two types of 

medical concepts from MIMIC-III (prescriptions and 

diagnoses), and generate the medical fact triples used in 

heterogeneous medical knowledge graph embedding. To 

make use of MIMIC-III and avoid biases and noise, we 

remove medical concepts occurring less than 30 times. Totally 

7,821 distinct medical concepts are finally selected for 

construction of the heterogeneous medical knowledge graph. 

c) Linking EHRs to Medical Knowledge Bases 

To generate a high-quality medical knowledge graph, we 

need to link EHRs with two knowledge bases. In the linking 

process, the sameAs links becomes an obstacle. For example, 

the prescription names are various and contain some noisy 

words (10%, 200ml, glass bottle, etc.). To address this 

problem, we adopt an entity linking method [10] to link 

prescription names to DrugBank. Table I shows the result of 

medical entities from MIMIC-III, ICD-9 ontology and 

DrugBank, and Table II shows the result of the relationships 

between medical entities in the heterogeneous medical 

knowledge graph. 

3) Baselines 

We compare PSI with the baselines for patient similarity 

measurment, in which the first baseline is Word2Vec-free 

while the rest are all Word2Vec-aware methods. 

⚫ PCA [18], or Principal Component Analysis, is used to 

retain some important features of high-dimensional data, 

and remove noise features. 

⚫ CSM [19] represents a patient by summing up all its 

medical concept vectors, absolutely eliminating the 

sequential structure of medical concepts. 

⚫ Deep Embedding is a deep learning framework based 

on CNN, which computes the clinical similarities 

between patients. 

⚫ RV is an unsupervised method [13] that utilizes RV 

coefficient to estimate the clinical similarity between 

patient matrix representations. 

⚫ dCor is an unsupervised method [13] that uses dCor 

coefficient to measure linear and non-linear relations 

between the pairwise embedding matrices. 

4) Evaluation Metrics 

Precisely, we adopt two popular metrics [20] hospital 

readmission rate (𝐻𝑅𝑅) and incident rate difference for 

mortality (𝐼𝑅𝐷𝑀) for evaluating the similarities of patients. 

We evaluate the performance of patient clustering by using 

two popular criteria: Rand Index (𝑅𝐼) [21], 𝑃𝑢𝑟𝑖𝑡𝑦 [22] 

and Normalized Mutual Information (𝑁𝑀𝐼) [23]. All the 

metrics except 𝐼𝑅𝐷𝑀 are preferred to be higher to present 

better performance. Their definitions are listed as follows. 

a) Hospital Readmission Rate (HRR) 

Assume 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁}  is the collection of 

readmission statuses of 𝑁  patients and 𝑆𝑃 =
{𝑝1

′ , 𝑝2
′ , … , 𝑝𝑁

′ } is the collection of readmission statuses of 

the most similar patients of 𝑁 patients. 𝐻𝑅𝑅 is computed 

as follows: 

𝐻𝑅𝑅 = ∑ 𝜔(𝑃[𝑖], 𝑆𝑃[𝑖])

𝑁

𝑖=1

/𝑁 (10) 

where 𝜔(𝑃[𝑖], 𝑆𝑃[𝑖]) = {
0, 𝑃[𝑖] ≠ 𝑆𝑃[𝑖]

1, 𝑃[𝑖] = 𝑆𝑃[𝑖]
. 

b) Incidence Rate Difference for Mortality (IRDM) 

Assume 𝑃 = {(𝑡1, 𝑑1), (𝑡2, 𝑑2), … , (𝑡𝑁 , 𝑑𝑁)}  is the 

collection of tuples (discharge date, death date) of 𝑁 

patients, where 𝑡𝑖 is the discharge date, and 𝑑𝑖 is the death 

date. The incidence rate of the collection of 𝑁 patients is 

computed as follows: 

𝐼𝑅(𝐶𝑎𝑠𝑒) =
𝑐𝑜𝑢𝑛𝑡(𝑑𝑒𝑎𝑡ℎ)

∑ (𝑑𝑖 − 𝑡𝑖)
𝑁
𝑖=1,𝑑𝑖≠𝑛𝑢𝑙𝑙 + ∑ (𝑑𝑛𝑢𝑙𝑙 − 𝑡𝑖)

𝑁
𝑖=1,𝑑𝑖=𝑛𝑢𝑙𝑙

                                                                                                     (11)

 

where 𝑐𝑜𝑢𝑛𝑡(𝑑𝑒𝑎𝑡ℎ) is the number of patients which have 

the death dates and 𝑑𝑛𝑢𝑙𝑙  is 2200/1/1. 

Similarly, we can compute the incidence rate of the most 

similar patients of 𝑁  patients, called 𝐼𝑅(𝑆𝑃) . 𝐼𝑅𝐷𝑀  is 

computed as follows: 

𝐼𝑅𝐷𝑀 = |𝐼𝑅(𝐶𝑎𝑠𝑒) − 𝐼𝑅(𝐶𝑜𝑛𝑡𝑟𝑜𝑙)| (12) 

TABLE II 

STATISTICS OF RELATIONS 

Relations # Cardinality 

Patient-Diagnosis 

Patient-Medication 

Diagnosis-Diagnosis 

Medication-Medication 

Medication-Diagnosis 

sameAs 

283,976 

695,089 

6,037 

36,768 

763,265 

8,117 

Total 1,793,252 

 

TABLE I 
STATISTICS OF MEDICAL ENTITIES 

Medical Entities # Cardinality 

Patient 

Diagnosis 

Medication 

Diagnosis-related 

Medication-related 

26,009 

4,759 

3,062 

4,759 

1,500 
Total 40,089 
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c) Rand Index (RI) 

𝑅𝐼 is an evaluation metric that measures the pros and 

cons of data clustering. 𝑅𝐼 is computed as follows: 

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

(𝑛
2

)
(13) 

where 𝑇𝑃  is the number of times a pair of patients 

belonging to the same cohort who are grouped into one 

single cluster. 𝑇𝑁 is the number of times a pair of patients 

from different cohorts who are grouped into different 

clusters. 𝑛 is the total number of patients. 

d) Purity 

𝑃𝑢𝑟𝑖𝑡𝑦 is a simple and transparent evaluation measure 

for data clustering, which can be computed as follows: 

𝑃𝑢𝑟𝑖𝑡𝑦(𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝐶𝑜ℎ𝑜𝑟𝑡) =
1

𝑛
∑ max

𝑗
|𝑝𝑖 ∩ 𝑞𝑗|

𝑖

(14) 

where n is the total number of patients, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =
{𝑝1, 𝑝2, … , 𝑝𝐼} is the set of patient clusters, and 𝐶𝑜ℎ𝑜𝑟𝑡 =
{𝑞1, 𝑞2, … , 𝑞𝐽} is the set of disease cohorts.  

e) Normalized Mutual Information (NMI) 

𝑁𝑀𝐼 is an evaluation metric used to measure the degree 

of agreement between two data distributions. 𝑁𝑀𝐼  is 

computed as follows: 

𝑁𝑀𝐼(𝑋, 𝑌) =
2 ∙ 𝐼(𝑋, 𝑌)

[𝐻(𝑋) + 𝐻(𝑌)]
(15) 

where 𝐼(𝑋, 𝑌) is Mutual Information, which is the relative 

entropy of the joint distribution 𝑝(𝑥, 𝑦) and the product 

distribution 𝑝(𝑥)(𝑦), whose formula is: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦𝑥

(16) 

𝐻(𝑋) is the information entropy, and the formula is: 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) 𝑙𝑜𝑔 𝑝(𝑥𝑖)

𝑖

(17) 

5) Parameter Settings 

The latent dimension sizes of medical entity embedding 𝑘, 

relation embedding 𝑑 are both set to 100. The fixed learning 

rate 𝛼 for TransR is set to 0.025. The number of negative 

samples 𝜇 is set to 10. The hyper-parameter 𝛾 is optimized 

from {0, 1E-7, 1E-5, 1E-3, 1E-1}. The margin 𝑏 is set to 8.0 

and the distance function is set to L1-norm. 

We set learning rate to be 0.001 and use 𝑓 = 100 for the 

number of convolutional filters in the CNN. We set the 

dropout rate at the fully connected layer as 0.6 and use 0.0009 

for the regularization parameter. The margin 𝑚  for the 

contrastive loss function is tuned from {0.5, 1.0, 1.5, 2.0, 2.5}. 

Our proposed framework PSI is implemented on TensorFlow. 

B. Experimental Results 

We present experimental evaluation results of the 

proposed framework PSI. We argue that PSI can produce 

meaningful patient representations for patient similarity 

learning by fully taking advantage of knowledge 

representation learning. 

1) Top-k most similar patients 

TABLE III 

TOP-3 SIMILARITY PATIENTS (PCA) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

14216 

19916 

2156 

11560 

20703 

211 

5398 

9542 

17399 

5433 

3434 

9232 

16407 

8554 

5919 

 

TABLE IV 

TOP-3 SIMILARITY PATIENTS (CSM) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

15383 

18604 

422 

9016 

24941 

2996 

5516 

3781 

25206 

22098 

13202 

11644 

2878 

21253 

25213 

 
TABLE V 

TOP-3 SIMILARITY PATIENTS (DEEP EMBEDDING) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

22146 

115 

24855 

10332 

24768 

6904 

21746 

9675 

495 

1338 

15383 

9950 

422 

21946 

18959 

 

TABLE VI 

TOP-3 SIMILARITY PATIENTS (RV) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

18878 

10416 

14441 

4112 

14791 

11150 

19211 

422 

19241 

22098 

18401 

5516 

11003 

1802 

18037 

 
TABLE VII 

TOP-3 SIMILARITY PATIENTS (DCOR) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

20234 

10416 

10449 

14348 

25086 

18401 

903 

2896 

25206 

14665 

12912 

12139 

2842 

2087 

10569 

 

TABLE VIII 
TOP-3 SIMILARITY PATIENTS (PSI) 

Patient 

(ID) 

1st Patient 

(ID) 

2nd Patient 

(ID) 

3rd Patient 

(ID) 

876 

454 

1064 

7747 

23147 

25042 

2728 

16258 

164 

20305 

20723 

16980 

15007 

23726 

23901 

20438 

12116 

8546 

24447 

21641 
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In this experiment, we first choose 5 patients at random, 

and then run our proposed framework PSI and all baseline 

methods to obtain the top-k (k = 3) most similar patients. 

Table III, IV, V, VI, VII and VIII summary the top-3 most 

similar patients obtained by PCA, CSM, Deep Embedding, 

RV, dCor and PSI. We can see that the results of PSI and all 

baseline methods have nothing in common. This is probably 

due to the fact that PSI utilizes graph representation models 

to learn the low-dimensional and continuous feature 

representations of medical entities, which considers the 

structure of medical knowledge graph. However, the result 

of CSM has a lot in common with that of RV and dCor. For 

example, with respect to the patient ID 1064, the 1st patient’ 

ID obtained by CSM is the same with the 2nd patient’ ID 

obtained by RV. For patient ID 454, the 1st patient’ ID 

obtained by RV is the same with the 1st patient’ ID obtained 

by dCor. This is mainly because these three patient 

similarity learning methods leverage the Skip-gram model to 

learn the medical concept vectors. In addition, the result of 

Deep Embedding has a little in common with that of CSM 

and RV. For example, with respect to the patient ID 876, the 

3rd patient’ ID obtained by Deep Embedding is the same 

with the 1st patient’ ID obtained by CSM. For patient ID 

1064, the 3rd patient’ ID obtained by Deep Embedding is the 

same with the 2nd patient’ ID obtained by RV. 

2) Performance Comparison of Patient Similarity 

Learning 

We use 𝐻𝑅𝑅  and 𝐼𝑅𝐷𝑀  as our evaluation metric in 

patient similarity analysis task. The experimental results of 

𝐻𝑅𝑅 and 𝐼𝑅𝐷𝑀 are shown in Table IX and X respectively. 

From the Table IX and X, we can observe that proposed PSI 

significantly outperforms even all the baselines, which 

indicates that the performance of patient similarity learning 

can be improved better through the medical knowledge 

graph embedding techniques. Compared to the best 

performing baseline Deep Embedding, PSI achieves an 

improvement from 0.737 to 0.792 in 𝐻𝑅𝑅 and 0.298 to 

0.267 in 𝐼𝑅𝐷𝑀.  

Among the five baseline methods, the PCA based 

approach achieves the lowest 𝐻𝑅𝑅 and 𝐼𝑅𝐷𝑀. The reason 

we consider is that PCA learns low-dimensional 

representations directly from the correlation matrix while 

not considering the contextual correlations between medical 

concepts. CSM, Deep Embedding, RV and dCor instead 

employ Word2Vec to embed medical concepts in EHRs, 

which preserves the semantic information of medical 

contexts. Deep Embedding combines CNN with 

distributional medical events embeddings from Word2Vec 

to derive the similarity scores for pairs of patients, which 

performs better than CSM, RV and dCor. The result is not as 

good as our proposed framework PSI. This is probably due 

to ignoring the structural information of knowledge graphs. 

The superior performance of PSI indicates that capturing the 

structural information of knowledge graphs can help the 

similarity learning of patients. Overall, the experiment 

results on patient similarity indicate that PSI is effective in 

improving the performance of patient similarity learning. 

3) Clustering Results 

Fig. 4 summaries the results of patient clustering. As we can 

see, the prop osed PSI is clearly superior to others. Measured 

by 𝑅𝐼 , it can achieve the performance of 0.808, which 

outperforms the second best one with 0.749 in a light margin. 

The superiority of PSI is illustrated in 𝑃𝑢𝑟𝑖𝑡𝑦 and 𝑁𝑀𝐼  as 

well. Measured by 𝑃𝑢𝑟𝑖𝑡𝑦 , PSI can achieve 0.821, which 

outperforms others with a wide margin. Measured by 𝑁𝑀𝐼, 

PCA, CSM, Deep Embedding, RV, dCor and PSI achieve 

0.0493, 0.178, 0.702, 0.268, 0.281 and 0.759 separately. On 

one hand, compared with PCA, CSM, Deep Embedding, RV 

and dCor can only improve 261%, 1324%, 444% and 470% on 

𝑁𝑀𝐼  respectively. On the other hand, the proposed PSI 

achieves about more than 1440% improvement over them.  

As a reasonable explanation, we view that the proposed PSI 

can be divided into two stages. During the first stage, the 

clinical features of patients are summarized in the 

heterogeneous medical knowledge graph embedding, 

achieving the better performance than Word2Vec. Next, 

global features are learned by leveraging Siamese CNN with 

SPP. In such a way, the learned patient representations make 

continuous improvement, which leads to an ultimate 

expression of patients.  
Fig. 4.  Performance of Patient Clustering 

PCA 

CSM 

RV 
dCor 

PSI 

TABLE IX 

HOSPITAL READMISSION RATE (𝐻𝑅𝑅) 

Methods Technique 𝐻𝑅𝑅 

PCA 

CSM 

Deep Embedding 

RV 

dCor 

PSI 

Non-embedding 

Word2Vec 

Word2Vec-CNN 

Distance metrics 

Distance metrics 

HKGE 

0.593 

0.684 

0.737 

0.691 

0.693 

0.792 

 

TABLE X 

INCIDENCE DIFFERENCE FOR MORTALITY (1E-5) 

Methods Technique 𝐼𝑅𝐷𝑀 

PCA 

CSM 

Deep Embedding 

RV 

dCor 

PSI 

Non-embedding 

Word2Vec 

Word2Vec-CNN 

Distance metrics 

Distance metrics 

HKGE 

0.420 

0.336 

0.298 

0.359 

0.363 

0.267 
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4) Visualization of Patients 

One way of assessing the quality of the patient embedding 

representations is through visualization. We conduct 

visualization experiments to compare the performance of PSI 

with PCA, CSM and Deep Embedding on patients. The patient 

embedding representations are fed as features into t-SNE [24], 

which mapped all points into a 2D space, where the patients of 

the same disease cohort are highlighted with the same color.  

From Fig. 5, we can see that the visualization of outputs 

from PCA and CSM shows unclear boundaries and diffuse 

clusters. Deep Embedding is much better. Although Deep 

Embedding is superior to PCA and CSM, in the results we can 

see the points of different colors are still intermixed in the 

center of the visualization. PSI is the clear winner.  

5) Disease Cohort Classification 

We further investigate the effectiveness of the proposed PSI 

on disease cohort classification task. In the experiment, we 

successfully transform the patients of EHRs into the 

low-dimensional representations using different patient 

similarity learning methods including PCA, CSM, Deep 

Embedding and PSI, and apply AdaBoost classification on the 

learned patient representations in order to correctly diagnose 

the diseases suffered by the patients. In addition, we use 

Macro Area Under The Curve (Macro-AUC), accuracy and 

Macro-F1 to evaluate the performance of disease cohort 

classification task, and use 10-fold cross-validation in which 

we randomly select 80% of the patients for learning and the 

remaining 20% of patients for testing the AdaBoost 

classification.  

Comparative results of different patient similarity learning 

methods for disease cohort classification task are shown in 

Table XI. We observe that our proposed PSI achieves 

Macro-AUC of 0.854, accuracy of 0.911, and Macro-F1 of 

0.619, which outperforms all the other methods, and Deep 

Embedding achieves the second highest performance. It is 

reasonable that the structural information of the 

heterogeneous medical know ledge graph plays a more 

important role than the semantic information of medical 

concepts in deriving meaningful representations of patients 

from EHRs.  

C. Parameter Sensitivity 

Fig. 6 (a) shows the parameter sensitivity analysis on the 

hyper-parameter 𝛾  used for maximizing the logarithm 

likelihood of the objective function. We evaluate five different 

values in hyper-parameter 𝛾 . From the results, we find the 

performance is continuously improved when the value of the 

hyper-parameter 𝛾  is increased until a turning point. If the 

value of hyper-parameter 𝛾  is too large, the performance 

starts to degrade since it is easily overfitted to the training set. 

For instance, the performance of patient similarity learning 

starts to degrade after the value of hyper-parameter 𝛾 is larger 

than 1E − 5.  

Fig. 6 (b) shows the parameter sensitivity analysis on the 

margin 𝑚 used to optimize the contrastive loss in Siamese 

CNN with SPP. We evaluate five different values in the 

margin 𝑚, including 0.5, 1.0, 1.5, 2.0 and 2.5. From the results, 

we observe that neither a too small nor a too big value of 

margin 𝑚 results in optimal performance. On one hand, a too 

small value of margin 𝑚 could learn a bad network easily in 

the learning process, thus leading to degraded performance. 

On the other hand, a too large value of margin 𝑚 easily leads 

to separating the data from different cohorts but makes it 

difficult to train the network in the learning process, resulting 

Fig. 6.  Parameter Sensitivity Analysis 

 
(a) Hyper-parameter 𝛾 

 
(b) Margin 𝑚 

TABLE XI 

DISEASE COHORT CLASSIFICATION RESULTS 

Method Technique Macro-AUC Accuracy Macro-F1 

PCA Principal Component Analysis 0.604 0.738 0.417 

CSM 

Deep Embedding 

PSI 

Word2Vec 

Word2Vec-CNN 

KGE 

0.726 

0.807 

0.854 

0.792 

0.875 

0.911 

0.446 

0.521 

0.619 

 

    
(a) PCA  (c) Deep Embedding (b) CSM (d) PSI 

Fig. 5.  Visualization of patients. Each point indicates one patient. Color of a point indicates the cohort of the patient 
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in suboptimal performance. For instance, the performance of 

𝑚 = 2.0 is worse than that of 𝑚 = 1.0 in patient similarity 

learning. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we present a general framework named 

Patient Similarity Identification (PSI) for learning similarity 

between patient pairs. PSI enables a translation-based 

embedding model to learn the medical entity representations, 

which automatically captures the structural information of the 

heterogeneous medical knowledge graph. Meanwhile, a deep 

learning model named Siamese CNN with SPP is designed to 

automatically learn the correlation degree between patients. 

Extensive experiments conducted on three datasets 

demonstrate that PSI significantly outperforms existing 

patient similarity learning approaches, including both 

traditional and Word2Vec-based ones. 
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