
 

  

Abstract—This article presents the implementation and 

evaluation of a heterogeneous processing model (multi-

core/many-core) to estimate the parameters of a binary logistic 

regression model using the Fisher scoring algorithm. The 

model was implemented on a heterogeneous CPU/GPU 

platform employing CUDA and was evaluated with five 

datasets of different sizes (ranging from 10000 to 30000 

records). The evaluation results showed a speed-up of up to 

6.09X without affecting the quality of the estimate when 

compared to sequential implementation. The implementation is 

available in the following repository: https://github.com/Parall-

UD/ParallelFischerScoring_binomial. 

 
Index Terms—Binary logistic regression model, Fisher 

scoring algorithm, heterogeneous computing, parallel 

computing. 

 

I. INTRODUCTION 

OGISTIC regression is a statistical model for 

estimating the probability of a categorical variable, that 

is, a variable that can take a limited number of categorical 

values, which can be explained by a set of variables called 

independent or predictor variables. The model is called 

binary logistic regression when the categorical variable is a 

dichotomous variable, i.e. it has only two categories [1]. 

Logistic regressions are generally implemented as part of 

the procedure and in the final part of different machine 

learning algorithms applied in classification tasks; for 

example, it is very common to find activation functions 

based on logistic regression in the output layers of 

convolutional neural networks [2]-[4]. 

Logistic regression analysis can be considered a special 

case in the theory of generalized linear models, so the 

estimation of its parameters can be conducted with a 

classical approach as well as with the employment of 
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maximum likelihood estimation by using the Fisher scoring 

algorithm [5]; this algorithm is an adaptation of the Newton-

Raphson method [6], which has greater robustness to poor 

initial values [7] and advantages in terms of convergence, 

especially due to its low dependence on specific data values 

[8]. 

II. BINARY LOGISTIC REGRESSION 

Let Y  be a binary dependent variable which can take two 

possible values, namely 0, 1. Consider observations 

1 2 3, , ,..., py y y y  of Y and let 
1 2 3, , ,..., pX X X X , be the 

explanatory variables with assigned observations 

1 2 3, , ,...,i i i ipx x x x  associated to each iy ; also consider that 

1ix  usually takes the value of 1. Then, the  binary logistic 

regression for Y can be expressed as follows: 
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where 
j

  are the model parameters with 1, 2, 3, ...i n=  

and 1, 2,3,...j p= . The purpose of the regression is to 

estimate the model parameters that best fit the functional 

expression of the model. 

III. GENERALIZED LINEAR MODELS 

The referential framework of this proposal is inspired by 

the theory and methodologies on generalized linear models, 

developed by Nelder [9], McCullagh [10], Cepeda [11], and 

Dobson [12]. 

Let Y  be a variable called dependent variable, or 

explained variable, with observations 1 2 3, , ,..., py y y y , 

and let variables 
1 2 3, , ,..., pX X X X  be explanatory 

variables. Observations 
1 2 3, , ,...,i i i ipx x x x  are associated to 

each observation iy , with 1ix  usually being equal to 1. 

Therefore, a generalized linear model for , explained by 

1 2 3, , ,..., pX X X X  is said to be a model consisting of three 

components: the random component, the systematic 

component, and the link function component. 

(i) The random component identifies the dependent 

variable  and its probability distribution. The probability 

density function for any  of Y is as follows: 
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where ( ) ( ) ( ),y b y a bE Var       = =   = , and ( )a   

is called dispersion function. Parameter   is called 

canonical parameter. 

 

(ii) The systematic component specifies the explanatory 

variables through the following relationship: 

 

 =  Xβ                                (3) 

 

where, 
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 is known as a linear predictor. 

 

(iii) The link function component is a function , of the 

expected value of the dependent variable that is equated to 

the linear predictor, i.e. ( )g  = ; in other words, for each 

 as a random variable, 

 

1( )
p
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The generalized linear model is, therefore, as follows: 
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IV. BINARY LOGISTIC MODEL AS A GENERALIZED LINEAR 

MODEL 

The binary logistic model is a particular case of a 

generalized linear model, that is: if Y  is a random 

Bernoulli-type variable with parameters   and  0,1Y = , 

the associated probability function belongs to the 

exponential family, since 
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The following binary logistic model is obtained by 

solving for 
i : 
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V. CLASSIC PARAMETER ESTIMATION IN A GENERALIZED 

LINEAR MODEL 

Based on generalized linear models, the value of the 

maximum likelihood estimator β̂ , can be determined by 

maximizing the likelihood function 

1 1
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Newton-Raphson method. The resulting likelihood 

equations are as follows: 
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with 1,2,3...,j p= . If 
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and  is the Hessian matrix such that: 
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Then, in using the maximum likelihood estimation of , 

applying the Newton-Raphson method, the   

iteration will be as follows: 

 

( 1) ( ) ( ) ( )1( )
k k k k

H
+ −

= − qβ β                  (16) 

 

The Fisher scoring algorithm is proposed as a variant of 

the Newton-Rapshon method; this algorithm uses 
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Newton-Raphson iteration onwards, where  and   are 

integer values ranging from 1 to p . In other words, the 

proposal involves replacing the H−  matrix of the Newton-

Raphson method with the I  information matrix. Explicitly, 

the procedure is as follows. Given that, 
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is defined, where 
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The ( 1)k +  iteration to obtain β̂  is as follows: 

 

                    (20) 

 

which is the same as 

 
( 1) ( ) ( ) 1 ( )( )k k k kI+ −= + +β β q                      (21) 

 

Moreover, this last expression is equivalent to: 
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which is the same as 
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where 
( )KZ  is a matrix representing the ( )k th−  iteration 

of matrix Z. Matrix Z is of order 1n   such that, 
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which, in matrix terms, is the same as: 

 

1
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−
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Considering the binary logistic model as a special case of 

the generalized linear model, derived from the Bernoulli 

probability distribution with parameter , for this case: 

 

 (1 ) : 1, 2, , ...,i iW diag i n = − =                       (26) 

 

VI. HETEROGENEOUS PROCESSING MODEL FOR 

IMPLEMENTING THE FISHER SCORING ALGORITHM 

A heterogeneous computing platform is defined as a 

system comprising at least two different types of processors 

for incorporating specialized processing capabilities to 

perform particular tasks [13], [14]. A heterogeneous system 

typically consists of one or more CPUs acting as the main 

processing unit (usually called host) and one or more other 

processing devices, such as GPUs (Graphics Processing 

Units), DSPs (Digital Signal Processors), and FPGAs (Field 

Programmable Gate Arrays), acting as accelerators. It is also 

possible to find the integration of two or more types of 

processors on a single chip; for example, an APU 

(Accelerated Processing Unit) is a microprocessor that 

integrates a multi-core CPU and a GPU by means of a high-

speed bus. 

The efficient use of these heterogeneous platforms 

requires the adaptation of the algorithms to a processing 

model that allows the best use of each architecture. In this 

work, the Fisher scoring algorithm was adapted to a 

heterogeneous processing model based on convenient 

 
Fig. 1.  Schematic heterogeneous processing model for implementing 

Fisher scoring algorithm. 
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segmentation and distribution of tasks between multi-core 

and many-core architectures (see fig. 1). The convenience of 

the sectioning processes and the way processes are served 

by GPU was based on three criteria: (1) the computational 

requirement of the process, (2) the nature of the process 

(which could be adaptable to massive parallel processing), 

and (3) the impact in terms of data transfer (a high transfer 

of data between architectures may not be required). 

VII. RESULTS AND DISCUSSION 

The heterogeneous processing model (multi-core/many-

core) for estimating the parameters of a binary logistic 

regression model through the Fisher scoring algorithm was 

implemented by using Python and CUDA for a CPU/GPU-

type platform. The implementation was evaluated by 

simulating a binary logistic regression model with two 

explanatory variables, that is, a model of the form 

1 2 1 3 2
Y X X  = + + , , which yields 

the estimators of parameters s . 

The evaluation was twofold. A computational 

performance evaluation was first conducted to measure the 

speed-up gain obtained after applying the heterogeneous 

processing model (CPU/GPU vs. CPU) to the Fisher scoring 

algorithm. Evaluation of the parameter estimation error was 

also conducted (the error of s  estimators) by comparing 

the predictions of the binary logistic regression model with 

the observed data and computing the corresponding Root 

Mean Square Error (RMSE). 

Computational performance evaluation consisted in 

measuring the time required by the heterogeneous 

implementation (CPU/GPU) of the Fisher algorithm, when 

computing the linear regression, and compare it to the time 

spent by the homogeneous (CPU) counterpart. This 

comparison was conducted for 5 datasets involving 10000, 

15000, 20000, 25000 and 30000 entries. Table 1 shows that 

the speed-up gains lie between 2X a 6X, which evinces the 

improved performance obtained from the heterogeneous 

processing proposal with its corresponding parallelization 

patterns. Moreover, an almost-linear relation can be 

observed between the speed-up gain and the size of the 

dataset, indicating that the heterogeneous processing 

proposal achieves more significant improvements as the size 

of the dataset grows. 

For the evaluation of errors in the estimation of the 

regression coefficients, RMSE was computed for both the 

predictions of the model using the values of s  obtained 

with the Fisher scoring algorithm and the predictions 

obtained from other 9 logistic regression models. The 9 

models used for comparison involved a variety of 

coefficient types, e.g. positive and negative coefficients as 

well as small-valued (between 0 and 1) and large-valued 

(between 1 and 10) coefficients; also, some of the models 

employed combinations of coefficient types. For this error 

evaluations, the models were applied to two datasets of 

different sizes, namely datasets with 1000 and 20000 

entries. It was observed that the estimated values of the 

parameters remained unaltered when implementing the 

heterogeneous processing proposal based on the Fisher 

scoring. This observation indicates that the use of large-

scale parallel computation does not affect the values 

obtained from the algorithm. Tables II and III show values 

of RMSE ranging from 0.005 to 0.089, which support the 

choice of the Fisher scoring algorithm as a convenient 

solution, along with heterogeneous computation, to the 

problem of parameter estimation in binary linear regression 

models. The results indicate that the proposed solution is 

convenient in terms of both computational performance and 

parameter estimation quality. Moreover, Tables II and III 

TABLE I 

PROCESSING TIMES AND SPEED-UP 

Size(records) Time(s)-

CPU 

Time(s)-

CPU/GPU 

Speed-up 

10000 11.89 4.88 2.23x 

15000 28.34 7.65 3.70x 

20000 41.71 7.89 5.28x 

25000 85.78 15.22 5.63x 

30000 115.8 18.99 6.09x 

 

 

TABLE II 
OBSERVED MODEL VS. ESTIMATED MODEL 

DATA SET SIZE = 1000 RECORDS  

co
ef

fi
ci

en
ts

 

Observed 
coefficients 

Estimated  
coefficients 

Model 
Global 
RMSE 

       

s+ 0,1 0,9 1,2 0,0996 0,7914 1,0655 0,020 

l+ 5 6 4 4,8169 5,2559 3,347 0,050 

sl+ 0,3 0,1 4 0,1359 0,6047 4,3672 0,062 

s- -0,2 -0,6 -1,5 -0,0373 -0,619 -1,4539 0,030 

l- -2 -3 -4,5 -3,1226 -4,1853 -6,3169 0,045 

sl- -0,2 -3 -0,4 -0,2433 -3,4479 -0,4089 0,022 

s+- 0,2 -0,7 -1,5 -0,012 -0,7176 -1,7855 0,045 

l+- 2 -3 4,5 1,834 -3,1106 5,9161 0,078 

sl+- -0,2 3 0,4 -0,3889 2,2636 0,7393 0,089 

s -> s: small; l: large; +: positive; -: negative  

        

 TABLE III 

OBSERVED MODEL VS. ESTIMATED MODEL 

DATA SET SIZE = 20000 RECORDS  
co

ef
fi

ci
en

ts
 

Real 
coefficients 

Estimated  
coefficients 

Model 
Global 
RMSE 

f1 f2 f3 f1 f2 f3  

s+ 0,15 0,5 0,1 0,1333 0,5042 0,1145 0,0051 

b+ 4 3 2 3,2583 2,1177 1,3994 0,0052 

sb+ 4 1 1,5 3,9412 0,9977 1,3485 0,0126 

s- -1 -0,8 -0,7 -1,027 -0,821 -0,709 0,0054 

b- -5 -3 -9 -4,616 -2,29 -8,4886 0,0044 

sb- -3 -0,8 -1,5 -2,982 -0,749 -1,4952 0,0045 

s+- -1 1 -1 -0,9892 1,0254 -1,0067 0,0052 

b+- -5 3 -8 -5,1719 3,054 -8,4938 0,0139 

sb+- -3 0,8 1,5 -2,9958 0,856 1,4656 0,0072 

s -> s: small; l: large; +: positive; -: negative 
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show that the values of RMSE have an inverse relation with 

the size of the dataset, while a direct relation can be 

observed with the values of s ; however, there is no 

apparent relation between the values of RMSE and the sign 

of the values of s .   

Figures 2 and 3 show the values of probability predicted 

by the model compared to the empirical probability of the 

observations for two regression models, namely the models 

with the best and worst values of RMSE, respectively. 

VIII. CONCLUSIONS 

The estimation of the parameters of a binary logistic 

regression model, employing the Fisher scoring algorithm, is 

a process with a computation time depending exponentially 

on the size of the input data set. This is a significant obstacle 

for its implementation since regression problems usually 

require large data sets. This project has shown that 

heterogeneous computing represents a real and efficient 

solution to such an exponential dependence. The proper 

integration of many-core elements (based on massive 

parallelization), which shows better performance as the data 

set increases, allows this dependence to have a favorable 

linear behavior. 

The heterogeneous processing model described in this 

article allows an efficient implementation of the Fisher 

scoring method with large data sets, without affecting the 

precision of the estimated , when compared to a 

homogeneous sequential implementation (CPU). 

ACKNOWLEDGMENT 

The authors would like to thank Universidad Distrital 

Francisco José de Caldas and the GICOGE and GEFEM 

research groups for supporting the development and testing 

of the project. 

REFERENCES 

[1] Cox, D. R., The regression analysis of binary sequences, journal of 

the royal statistical society: Series B (Methodological), 20(2), 215-

232 (1958). 
[2] Gulli, A. and Pal, S., Deep learning with Keras, Packt publishing Ltd, 

India (1958). 

[3] Muhammad Aqeel Aslam, Cuili Xue, Manhua Liu, Kan Wang, and 
Daxiang Cui, "Classification and prediction of gastric cancer from 

saliva diagnosis using artificial neural network," Engineering letters, 

vol. 29, no.1, pp10-24, 2021 
[4] Kazuya Kishida, Kei Hasegawa, and Kiyotaka Kamata, "Construction 

of classifier of myoelectric signals by using ANNs," Lecture notes in 

engineering and computer science: Proceedings of the world congress 
on engineering and computer science 2019, 22-24 october, 2019, San 

Francisco, USA, pp356-361 

[5] Ypma, T. J., Historical development of the Newton–Raphson method, 
SIAM review, 37(4), 531-551 (1995). 

[6] Longford, N. T., A fast scoring algorithm for maximum likelihood 

estimation in unbalanced mixed models with nested random effects, 
Biometrika, 74(4), 817-827 (1987). 

[7] Jennrich, R. I. and Sampson, P. F., Newton-Raphson, and related 

algorithms for maximum likelihood variance component estimation. 
Technometrics, 18(1), 11-17 (1976). 

[8] Schworer, A. and Hovey, P., Newton-Raphson versus Fisher scoring 

algorithms in calculating maximum likelihood estimates, mathematics 
day - Electronic proceeding, University of Dayton, United States 

(2004). 

[9] Nelder, J. A., W. W. M. , Generalized linear models, journal of the 
royal statistical society, 3, 370 - 384 135 (1972). 

[10] McCullagh, J., N. J. , Generalized linear models, Chapman - Hall, 3, 

London (1972). 
[11] Cepeda, E., Modelagem da variabilidade em modelos lineares 

generalizados, doctoral thesis, Universidade Federal do Rio de 

Janeiro, Brasil (2001). 
[12] Dobson, A. J., An introduction to generalized linear models, doctoral 

thesis, CRC Press (2010). 

[13] Amar Shan, Heterogeneous processing: a strategy for augmenting 
Moore’s law, Linux J., 142, 1-7 (2006). 

[14] Hejun Xuan, Shiwei Wei, Xuelin Zhao, Yang Zhou, Xingpo Ma, 

Daohua Liu, and Yanling Li, "Unavailable time aware scheduling of 
hybrid task on heterogeneous distributed system," IAENG 

International Journal of Applied Mathematics, vol. 50, no.1, pp133-

146, 2020 
 

 

Castillo-Méndez Luis Eduardo. He is a PhD candidate and magister in 

statistics from the Universidad Nacional de Colombia. Professor and 

researcher at the Universidad Distrital Francisco José de Caldas (Bogotá, 
Colombia). Director of the GEFEM research group. 

 

Vera-Parra Nelson Enrique. Professor and coordinator of the master’s 
program in information and communication sciences at the Universidad 

Distrital Francisco José de Caldas (Bogotá, Colombia), Doctor of 

engineering from the same University, electronic engineer from the 
Universidad Surcolombiana (Neiva, Colombia), Researcher in parallel 

computing, high performance computing, science data and bioinformatics. 

 
Medina-Daza Rubén Javier. Ph.D. in computer science, emphasis on 

geographic information systems, Universidad Pontificia de Salamanca 

Madrid-España campus. accredited in research proficiency – Diploma 
Advanced Studies (DEA) – in geographic information systems, 

Universidad Pontificia de Salamanca Madrid-España campus. Master in 

teleinformatics, specialist in software engineering, Specialist in geographic 
information systems and bachelor of mathematics from the Universidad 

Distrital Francisco José de Caldas (Bogotá, Colombia). Full professor time 

complete assigned to the faculty of engineering from the same University, 
teacher of the curriculum Project cadastral engineering and geodesy, 

master’s in information sciences and communications and the doctorate of 

engineering of the faculty of engineering of the same University. 
 

 

 

Fig. 2.  Probability predicted vs probability observed. Best case ( =-3, 

=-0.8, =-1.5; size data set = 20000; RMSE=0.005,) 
  

 

Fig. 3.  Probability predicted vs probability observed. Worst case ( =-

0.2, =3, =0.4; size data set = 1000; RMSE=0.089)  
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