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Abstract—Detection of white blood cells on a microscope 

slide using image processing technology has been widely used 

in health-related research for over a decade. However, most of 

the proposed research is performed on blood cells with color-

stained images. These images are obtained by capturing 

microscope slide images that have been previously stained with 

various substances. Unfortunately, this task is very rigorous 

and time—and—cost inefficient. This study attempted to 

eliminate the staining phase in the preprocessing stage and 

aimed to develop an automatic system to detect white blood 

cells from unstained microscopic images. A modification of the 

watershed segmentation method was applied to the developed 

system to differentiate white blood cells from other cells. First, 

a preprocessing stage which applies various image 

enhancement techniques was performed to improve the image 

quality, and the red blood cell areas were subsequently 

eliminated using the modified watershed segmentation method. 

The final result was determined by the area size and aspect 

ratio of the segmented area. Experimental results showed that 

the average detection accuracy for locating white blood cells 

from unstained images was 65.42%, while 94.82% average 

detection accuracy was achieved for color-stained images. 

Several experiments using the same datasets were also 

executed by applying the Convolutional Neural Network 

(CNN) method. The obtained average detection accuracies for 

the CNN method were 65.33% and 74.85% for the unstained 

images and the color-stained images, respectively. The 

comparison of the two methods showed that the developed 

system can effectively perform blood cells detection without 

using the color-stained images.  

 
Index Terms—Segmentation, White blood cell, Unstained 

microscopic image, Area detection. 
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I. INTRODUCTION 

HITE blood cells constitute the  human blood cell 

compositions and play major roles in the human 

immune system. The analysis of the white blood cell has 

become one of the main procedures for medical diagnosis. 

Therefore, several types of research have been conducted to 

integrate new technologies for automatic detection and 

analysis of blood cells. Several works put focus on detecting 

the white blood cells using some image pre-processing 

techniques, such as processing the color features [1][2], 

scaling and smoothing of cell images [3], correcting color 

space of cells [4], removing noise using convolution masks 

[5], performing morphological analysis [6], extracting color 

from mean intensity of the cell images [7], enhancing image 

color of the blood cells [8], and implementing various image 

domain transformation [9][10]. Moreover, various methods 

have been proposed to develop a blood cell detection 

system, such as the location transformation [11], the Active 

Contour Model [12][13], and the Edge Strength Cue [14].  

Recently, artificial neural network and deep learning 

methodologies are preferred when performing various 

health-related analysis, such as blood cell detection using 

the modified deep residual neural network [15] and the 

combination of neural network and Support Vector Machine 

[16]. A popular method of deep learning is the 

Convolutional Neural Network (CNN). CNN has been 

employed for various applications, such as leukemia 

diagnosis [16][17], blood cell recognition [18][19][20], 

segmentation of pigmented skin lesion [21], and lesion-

infection detection of Covid-19 [22].  

Related work by Kutlu et. al. [23] showed successful 

classifications of the white blood cell types using low-

resolution images The results of the classification system 

showed that the CNN method was more accurate than the 

SVM method. Another work that used the deep learning 

approach to peripheral leukocyte recognition was conducted 

by Wang et al. [24]. In their proposed system, the Single 

Shot Detector (SSD) method and the You Only Look Once 

(YOLO) method were applied. The system was claimed to 

have good performance with YOLO outperforming the 

SSD.  

A common property of the existing research is in the use 

of stained images as input. The staining process is usually 

performed manually by laboratory technicians to color the 

blood smear on the microscope slides prior to the image 

capturing stage. A stained blood smear is subsequently 

photographed to produce digital blood cell images. The 
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blood cell types in the stained images can be distinguished 

easily by both human and computer vision. Thus, they could 

give high accuracy to the system. However, a major 

disadvantage of using stained images in blood cell detection 

or recognition systems is the inefficiency of the image 

manufacturing  process.  

In this study, the white blood cell detection system is 

performed on the unstained microscopic images. The 

unstained images are almost transparent and unrecognizable 

to the human eyes. The input of the proposed system is 

unstained microscopic images, which contain red and white 

blood cells. Thus, the image preparation step in the 

proposed system is more efficient because it does not 

require coloring process of the microscope slides. The main 

process for white blood cell detection consists of two stages, 

i.e., the image enhancement subsystem and the image 

segmentation using the modified watershed method. The 

target of the proposed system is to obtain the white blood 

cell area and mark them automatically. This study is 

organized as follows: the proposed system with a block 

diagram is discussed in Section 2, followed by experimental 

results in Section 3, and conclusion in Section 4.  

II. PROPOSED WORK 

The proposed system is designed to receive input of 

microscopic images from unstained blood cells. In the first 

stage, various image enhancement procedures, such as color 

extraction, image smoothing, image thresholding, and 

morphological operations are performed. Subsequently, the 

main segmentation process is conducted by applying the 

modified watershed segmentation method to estimate the 

positions of the white blood cell areas. The final 

segmentation decision is obtained by matching the 

prediction area to a certain size and ratio criteria. The block 

diagram of the proposed system is presented in Fig. 1. 

A. Image Enhancement 

In the first stage, several image enhancement methods are 

performed to improve the image quality and ensure the 

display of texture features. Fig. 2(a) shows the input sample 

of an unstained microscopic image in RGB domain. 

Because the cell areas in the input image are quite invisible, 

a color domain transformation of the input images is 

necessary. In this study, the RGB images are transformed to 

HSV to expose the color features of the blood cells. Fig. 

2(b) shows the image result in HSV color domain.  

In HSV color domain, the red blood cell areas are 

exposed perfectly. However, the white blood cell areas 

remain concealed. In this stage, the Saturation Value scores 

in HSV color space are extracted to obtain the texture. The 

empty spaces with shallow dots in Fig. 2(b) are the possible 

white blood cell areas. 

Furthermore, the image smoothing and sharpening 

processes are conducted to eliminate additional noise and 

sharpen the texture of the blood cells. The popular Gaussian 

kernel and Laplacian kernel are subsequently applied. 
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Figure 1. Proposed detection system from unstained blood cell images 
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(a)                        (b) 

Figure 2. Image samples of unstained microscopic images in (a) RGB, (b) HSV 

 

         
(a)                           (b)                 (c) 

Figure 3. Image samples after (a) smoothing, (b) sharpening, and (c) grayscaling 

The general formula for Gaussian kernel is as follows: 
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where G(x,y) is the Gaussian kernel in (x,y) position and  is 

the deviation standard of the Gaussian distribution. After the 

smoothing and sharpening steps, the image result is then 

converted into a grayscale image to ensure a faster process. 

The image smoothing, sharpening, and grayscaling samples 

are shown in Fig. 3. 

Additionally, a thresholding process is conducted to 

convert grayscale images into binary images. In this study, 

the Otsu method which can automatically determine the 

threshold value based on the histogram data of the image is 

performed. The Otsu thresholding algorithm begins with the 

construction of the image’s histogram. Based on the 

obtained histogram intensity, the probability of each pixel Pi 

is calculated using the following equation: 

N

n
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i       (2) 

where ni is the number of pixels with i intensity and N is the 

total number of pixel in the image. The cumulative sum 

(k)  and the cumulative mean (k) for each gray level 

values are then calculated using (3) and (4), respectively, as 

follows: 
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After processing the values for each pixel intensity, the 

between class variance is calculated by the following 

equation: 
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where  is input using this formula: 
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Next, the threshold value T is defined according to the 

maximum value from (5). Finally, a general comparison to 

the defined threshold value is applied to the whole image 

area using the following equation:  
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The image sample result of Otsu thresholding is shown in 

Fig. 4(b). The morphological operation is a process using 

certain mathematical equations on a series of pixels to 

improve aspects of shapes and structures. The main purpose 

of implementing morphological operations in this stage is to 

fill the holes and empty spaces inside a cell area using 

dilation; or to remove small objects that do not constitute a 

white blood cell using erosion. 

The dilation step is also known as a thickening process. It 

is often used to combine background points into an object 

based on the defined structuring element (SE). In this 

proposed system, a dilation operation is used to thicken the 

red blood cell areas to become one intact region and to 

combine the dots area, which possibly is a segment of a 

white blood cell. The dilation operation follows this 

formula: 

                    SEyxfyxg  ,,              (8) 
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Another operation used in this study is erosion, which 

implements the following equation: 

    SEyxfyxg  ,,        (9) 

Erosion is the opposite of the dilation operation. Erosion is 

used to delete or reduce pixels or size of an object. In this 

proposed system, the erosion process is expected to remove 

noises and eliminate speckled areas before the segmentation 

stage is carried out. The final result of both the dilation and 

erosion steps is depicted in Fig. 4(c). 

A. Image Segmentation 

After implementing the image enhancement techniques, 

the segmentation process is conducted based on the 

watershed transformation method. The watershed 

transformation method is a powerful region-based 

segmentation tool, which combines the region growing and 

the edge detection techniques to partition the image into two 

different sets, i.e., the object and the background. 

The main concept of the watershed transformation is to 

assume that an image is a three-dimensional form, 

consisting of the pixel position (x,y ) and the color level z. 

The positions of x and y are set to be the base field, while 

the position of z becomes the height. If the pixel color is 

white, then the z value has the maximum height; while if the 

pixel color is similar to black, the z value has the minimum 

height (zero score). 

In the detection stage, the watershed segmentation 

method is applied on the preprocessed images which have 

been eroded using the erosion operation. The target of the 

detection step is to detect the areas of the white blood cells. 

The detection results are then marked and stored in a new 

array. The marked positions are subsequently used to 

segment the original input image. Thus, the results obtained 

from this process are image-patches which contain only the 

white blood cell areas. 

Before implementing the watershed segmentation 

algorithm, some parameters need to be assigned to the 

system. Let M1, M2, ..., MR denote the coordinates in the 

regional minima of an image g(x,y ); where g(x,y ) is the 

pixel value of coordinate (x,y ). Then, define C(M i )  as the 

coordinates associated with regional minimum Mi. Finally, 

let T [n] be the set of coordinates (s , t ) for which   ntsg ,  

as follows: 

}),(|),{(][ ntsgtsnT       (10) 

Then, compute the following formula: 

    ][nTMCMC iin       (11) 

If (x,y ) is in C(M i )  and T [n], then C n (M i )  = 1 at location 

(x,y ); otherwise C n (M i )  = 0. Continue with setting an 

incremental value of n where 1 nn .  

Moreover, derive the set of connected components in 

T [n ]  denoting as Q. For each connected component q in 

Q [n ] :  

1) if the intersection of q with C [ n - 1 ] is empty, the 

connected component q is incorporated into C [ n - 1 ] to 

form C [n ]because it represents a new minimum. 

2) if the intersection of q with C [ n - 1 ] contains one 

connected component of C [ n - 1 ], the connected 

component q is incorporated into C [ n - 1 ] to form C [n ]  

because it lies within the regional minimum.  

3) if the intersection of  with C [ n - 1 ] contains more than 

one connected component of C [ n - 1 ], the points of the 

ridge which separates two or more parts should be located. 

Finally, construct C [n ]  according to equation 11 and set n 
=  n + 1 .  

The above steps are repeated until n reaches the maximum 

value. 

 

            
(a)                                        (b)                           (c) 

Figure 4. Image samples of (a) grayscaling, (b) Otsu thresholding, and (c) morphological processing 

 

 
(a)            (b)                          (c)                                      (d) 

Figure 5. Image samples of (a) morphological processing, (b) watershed segmentation, (c) dilation process, and (d) the final detection result 
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  (a)       (b)                  (c)          (d)         (e) 

 

         
  (f)       (g)                  (h)          (i)          (j) 

Figure 6. Image samples of (a) morphological processing, (b) watershed segmentation, (c) dilation process, (d) the final detection result 

 

In this study, a modified watershed segmentation method 

is introduced to enable the implementation of the algorithm 

using a binary image input. First, the binary image is 

transformed into a gradient image by calculating the 

distance between pixels using the Euclidean Distance 

Transform (EDT). The formula for calculating EDT is as 

follows: 
2

22

2

11 )()( yxyxD      (12) 

The result of the EDT is a grayscale image that is similar 

to the input image, except that the gray level intensity of 

points inside the foreground regions are changed. After this 

operation, the resulting images are used as input in 

watershed segmentation using the algorithm described 

above. The result sample of the modified watershed 

segmentation is depicted in Fig. 5(b). 

The last step is to determine whether the resulted dot 

areas are white blood cells. For this purpose, a dilation 

formula is used to thicken the dots area to ensure the 

adjacent spotted object can be interconnected into one 

whole region. Moreover, two features are extracted, namely, 

1) the area value of total non-zero pixels in a region, and 2) 

the aspect ratio of the selected area. The aspect ratio is 

calculated by comparing the width and height of the selected 

region.  

For the whole image, each possible area is compared with 

predetermined threshold values. In this system, a threshold 

value range of 4450 < areai < 11400 and an aspect ratio 

value with range of 0.5 < ratioi < 2.3 are determined. 

These values are defined based on the average dimension of 

a white blood cell. Normally, the dimension of a white 

blood cell is bigger than the red blood cell size in a 

microscopic image. Using these criteria, the system 

determines whether the segmented area is a white blood cell 

or not. The developed system then marks the white blood 

cell area by constructing a rectangle box on the image. The 

image samples of the image segmentation process are shown 

in Fig. 5. 

III. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed system, 

several experiments were conducted. The authors collected 

and built a novel database to provide a pairing set of the 

unstained and the color-stained images. Because the white 

blood cells in the unstained images are hardly detected by 

human eyes, it is necessary to verify the obtained results by 

comparing them to the stained version of the same locations. 

The developed database consisted of two datasets with the 

first dataset containing a microscopic image with unstained 

blood cell images, while the second dataset contained   

microscopic images with color-stained blood cell images, 

which follows a standard coloring procedure. The numbers 

of image proportion used in the experiments for each dataset 

are shown in Table I. From Table I, it can be observed that 

the training images for each dataset were different. 

However, the testing images were pairs of unstained and 

stained images of the same blood cell locations. Therefore, 

the same numbers of testing images for both datasets are 

presented in Table I. The total number of unstained images 

used in Dataset 1 was 458 images, which consists of 264 

images for training and 194 images for testing. For Dataset 

2, the system had 528 stained images for training and 194 

stained images for testing.  

Fig. 6 shows the paired image samples for each dataset. 

The samples of the unstained images are depicted in Figs. 

6(a) and 6(e), while Figs. 6(f) and 6(j) show the samples of 

the stained images. It can be seen in Figs. 6(a) and 6(e) that 

for the unstained images, the locations of the blood cell 

areas were difficult to detect with the human eye. Thus, 

green rectangles were added to mark the white blood cell 

areas for easier visibility. However, in the experiments, only 

the plain version of the unstained images, with no green 

rectangle marks, were inputted into the system. On the 

contrary, the blood cells in the stained images were easily 

detectable by the human eye, as shown in Figs. 6(f) and 6(j). 

Thus, it is obvious that detecting white blood cell areas 

using stained images is easier and can achieve a fairly high 

degree of accuracy. 

In the first experiment, we developed the white blood cell 

detection system using the modified watershed method. The 

developed system followed the steps depicted in Fig. 1 and 

used the dataset explained in Table I. The detection 

accuracy of the developed system was calculated based on 

the number of correctly detected images divided by the total 

number of images that have been tested. Note that there 

were occurrences where images had zero or more than one 

white blood cell; therefore, the system was designed to 

detect more than one white blood cell area in an image. The 

white blood cell detection accuracy and the average 

processing time for the two datasets are shown in Table II. 
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Meanwhile, the detailed detection accuracy for each white 

blood cell type along with its image sample are shown in 

Table III. 

 

Table I. Number of image proportion used in the 

experiments  

Data 
Dataset 1 – 

unstained images 

Dataset 2 – 

stained images 

Train 264 528 

Test 194 194 

 

 

Table II. Detection accuracy of the proposed system 

Scenario 
Detection 

Accuracy (%) 

Average 

Time (sec) 

Dataset 1 –  

Unstained images 
65.72 0.515 

Dataset 2 –  

Color-stained images 
94.82 0.502 

 

 

Based on Table II, the proposed system achieved 65.72% 

detection accuracy for Dataset 1 for the unstained blood cell 

images, with an average detection time of 0.515 seconds, 

while the experimental result on Dataset 2 shows a detection 

accuracy of 94.82% for the proposed system detecting the 

color-stained images. The average processing time for 

Dataset 2 is 0.502 seconds.  

Table III shows the detection accuracy and image sample 

of each white blood cell type. The detection accuracy 

obtained for Neutrophil was 52.63%, 83.33% for 

Eosinophil, 100% for Basophil, 75% for Monocyte, and 

17.65% for Lymphocyte. It is shown in Table III that 

Basophil and Eosinophil are white blood cell types that can 

be easily detected by the system. Meanwhile, Lymphocyte is 

the most difficult to be detected. A reason for the difficulty 

in detection of Lymphocyte is its dimension similarity with 

the red blood cells. Thus, the Lymphocytes are often left 

undetected.  

Furthermore, we conducted some experiments using the 

Convolutional Neural Network (CNN) method. The CNN 

method was calculated after performing the same pre-

processing stage as in the previous experiment, as shown in 

Fig. 2. Next, the bounding box regressors were used to 

locate white blood cells in suspected regions. In this 

experiment, the used datasets were similar, as explained in 

Table I. The CNN method consisted of the training stage 

and the testing stage. In the training stage, the CNN model 

was built using a pre-trained model, namely the VGG16.  

The detailed configuration of the VGG16 architecture 

used in the experiment can be seen in Table IV. The applied 

VGG16 architecture had 18 layers, consisting of 13 

convolution layers and 5 layers for pooling. The obtained 

model from the training stage was subsequently tested using 

various epoch configurations. Three different epoch 

configurations were determined— 30, 100, and 200 epochs. 

The purpose of this experiment was to determine the most 

optimal model for the trained dataset. During training, the 

samples were split into two internal sub-datasets: the actual 

training data and the validation data.  

The accuracy and validation accuracy values for each 

epoch configuration for Training Set 1 (unstained images) 

and Training Set 2 (stained images) are shown in Fig. 7. The 

accuracy result for Training Set 1 with 30 epochs is depicted 

in Fig. 7(a), while Fig. 7(c) and Fig. 7(e) represent the 

results for Training Set 1 with 100 epochs and 200 epochs, 

respectively. Meanwhile, Fig. 7(b), Fig. 7(d), and Fig. 7(f) 

cover the accuracy results for Training Set 2 for 30 epochs, 

100 epochs, and 200 epochs, respectively. 

 

 

Table III. Detection accuracy and image sample of each of 

the white blood cell type using watershed segmentation 

White Blood 

Cell Type 

Image 

Sample 

Detection 

Accuracy (%) 

Neutrophil 

 

52.63 

Eosinophil 

 

83.33 

Basophil 

 

100 

Monocyte 

 

75 

Lymphocyte 

 

17.65 

 

 

 

Table IV. VGG16 Architecture 

Layer Parameter Value Output Shape 

Conv2D 64, (3,3), Relu (None,224,224,64) 

Conv2D 64, (3,3), Relu (None,224,224,64) 

MaxPool2D (2,2) (None,112,112,64) 

Conv2D 128, (3,3), Relu (None,112,112,128) 

Conv2D 128, (3,3), Relu (None,112,112,128) 

MaxPool2D (2,2) (None,56,56,128) 

Conv2D 256, (3,3), Relu (None,56,56,256) 

Conv2D 256, (3,3), Relu (None,56,56,256) 

Conv2D 256, (3,3), Relu (None,56,56,256) 

MaxPool2D (2,2) (None,28,28,256) 

Conv2D 512, (3,3), Relu (None,28,28,512) 

Conv2D 512, (3,3), Relu (None,28,28,512) 

Conv2D 512, (3,3), Relu (None,28,28,512) 

MaxPool2D (2,2) (None,14,14,512) 

Conv2D 512, (3,3), Relu (None,14,14,512) 

Conv2D 512, (3,3), Relu (None,14,14,512) 

Conv2D 512, (3,3), Relu (None,14,14,512) 

MaxPool2D (2,2) (None,7,7,512) 
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   (a)                            (b) 

   
   (c)                            (d) 

   
   (e)                            (f) 

Figure 7. Accuracy and validation accuracy results for (a) Training Set 1 with 30 epochs, (b) Training Set 2 with 30 epochs, (c) Training Set 1 with 100 

epochs, (d) Training Set 2 with 100 epochs, (e) Training Set 1 with 200 epochs, and (f) Training Set 2 with 200 epochs 

 

 

Table V. Accuracy and loss values for various epoch 

configurations for Training Set 1 for unstained images  

Epoch 
Accuracy 

(%) 
Loss 

Validation 

Accuracy (%) 

Validatio

n Loss 

30  79.89 0.3719 73.31 0.4853 

100 92.75 0.2519 78.12 0.5476 

200 96.79 0.0931 78.12 0.6744 

Table VI. Accuracy and loss values for various epoch 

configuration for Training Set 2 for stained images  

Epoch 
Accuracy 

(%) 
Loss 

Validation 

Accuracy (%) 

Validatio

n Loss 

30 94.89 0.2247 84.62 0.5289 

100 99.05 0.0370 85.38 0.5132 

200 100 0.0076 86.15 0.6162 
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Table VII. Accuracy values for various epoch configuration 

for both testing sets 

Epoch 

Accuracy (%) 

Testing Set 1 – 

unstained images 

Testing Set 2 – 

stained images 

30 56.25 53.83 

100 48.43 40.76 

200 48.43 48.76 
 

Table VIII. Results of Accuracy, Precision, Recall and F1-

Score for both testing set 

Dataset 
Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1-Score 

(%) 

Testing Set 1– 

unstained images 
53.85 52.94 59.38 56.72 

Testing Set 2 – 

stained images 
54.69 59.24 69.23 60 

 

Table IX. Detection accuracy of each white blood cell type 

using CNN 

White Blood 

Cell Type 

Detection Accuracy (%) 

Testing Set 1 - 

unstained images 

Testing Set 2 – 

stained images 

Neutrophil 65 71.42 

Eosinophil 66.67 60 

Basophil 100 100 

Monocyte 75 71.42 

Lymphocyte 20 66.67 

 

From Fig. 7, it can be observed that for both training sets, 

the results reached the highest accuracies with epoch 200, 

depicting a 96.79% accuracy value for unstained images and 

100% accuracy value for stained images. The detailed 

accuracy and loss values for both training sets are presented 

in Tables V and VI. From Table V, it can be seen that the 

accuracy and validation accuracy results for Training Set 1 

for unstained images increased along with the use of higher 

epoch values. On the contrary, the loss values decreased 

with the use of higher epoch values. These results fulfill the 

classic “high accuracy and low loss” behavior that we 

expected. However, the validation loss values slightly 

increased for higher epochs. These phenomena also 

occurred for Training Set 2 for stained images in Table VI. 

Additionally, we conducted the experiments for images in 

Testing Set 1 and Testing Set 2. Table VII presents the 

accuracy rates for each epoch configuration for both testing 

sets. In contrast with the training results where the 200 

epochs model gave the highest accuracy, for the testing set, 

the 30 epochs model achieved the best accuracy rates for 

both the unstained and stained test images. However the 

obtained accuracy values dropped significantly for all epoch 

configurations.  The highest accuracy value for Testing Set 

1 for the unstained images was 56.25%, while Testing Set 2 

achieved a lower value of 53.83%. Considering the poor 

accuracy results for both testing sets, the model was 

suspected of overfitting.  

Subsequently, the confusion matrix evaluation technique 

was implemented to measure the performance of the 

proposed system. Based on the results presented in Table 

VII, the experiments were conducted using the trained 

model with 30 epoch configurations, 64 batch sizes, and 

Adam's optimizer. The obtained results were then classified 

based on these categories: True Positive (TP), False Positive 

(FP), True Negative (TN), and False Negative (FN). The 

classification of each category was set as follows: TP is the 

number of images which contained white blood cells and 

were correctly detected, while FP is the number of images 

without any white blood cell, yet the system incorrectly 

detected some white blood cell areas. TN is the number of 

images with no white blood cells and no white blood cell 

area detection, and FN is the number of images which 

contained white blood cells, yet the system was unable to 

detect any area of the white blood cells. The results of each 

category were subsequently used for calculating the 

system’s accuracy, precision, recall, and F1-score with the 

following formula: 

%100*
FNFPTNTP

TNTP
Accuracy






    (13) 

 

TP

TP FP?



      (14) 

 

                       %100*Re
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
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


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Table VIII shows the results of Accuracy, Precision, 

Recall and F1-Score for both testing sets. Based on the 

evaluation in Table VIII, Testing Set 1 which contained 

unstained images had an accuracy rate of 53.85%, a 

precision level of 52.94%, a recall rate of 59.38%, and an 

F1-score of 56.72%. Whereas for Testing Set 2, which 

processed the stained images, had a slightly higher accuracy 

rate of 54.69%, a precision level of 59.24%, a recall rate of 

69.23%, and an F1-Score of 60%. Several factors, such as 

overfitting issue, nonoptimal layer configurations, and high 

similarity in size of the blood cells were suspected to cause 

the low accuracy score of the CNN method. 

A detailed analysis of the detection accuracy of the 

system using CNN for each white blood cell type is 

presented in Table IX. Note that the accuracy values shown 

in Table IX singularly consider the detection results from 

images that contain white blood cells only because the 

images with no white blood cells could not be classified by 

its type. For Testing Set 1, the detection accuracy obtained 

for Neutrophil was 65%, 66.67% for Eosinophil, 100% for 

Basophil, 75% for Monocyte, and 20% for Lymphocyte; 

while for Testing Set 2, the achieved accuracy was 71.42% 

for Neutrophil, 60% for Eosinophil, 100% for Basophil, 

71.42% for Monocyte, and 66.67% for Lymphocyte. A 

similar phenomenon can be seen from the results obtained 

from the developed system using the modified watershed 

segmentation method and the CNN method that presented 

the lowest detection accuracy for Lymphocyte. Based on the 

experimental results shown in Tables III and IX, it is shown 

that the developed system using the modified watershed 

algorithm obtained similar results to that of the CNN 

method for the same testing data. Both methods in the 

proposed system provide an effective means of performing 

blood cells detection without employing the staining 

process. 
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Figure 8. Accuracy and loss values for various epoch in testing set 1 – unstained images 

 

 
Figure 9. Accuracy and loss values for various epoch in testing set 2 – stained images 
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Table X. YOLO Architecture 

Layer Kernel, Stride Output Shape 

Conv2D (3,3), 1 (448, 448, 16) 

MaxPool (2,2), 2 (224, 224, 16) 

Conv2D (3,3), 1 (224, 224, 32) 

MaxPool (2,2), 2 (112, 112, 32) 

Conv2D (3,3), 1 (112, 112, 64) 

MaxPool (2,2), 2 (56, 56, 64) 

Conv2D (3,3), 1 (56, 56, 128) 

MaxPool (2,2), 2 (28, 28, 128) 

Conv2D (3,3), 1 (28, 28, 256) 

MaxPool (2,2), 2 (14, 14, 256) 

Conv2D (3,3), 1 (14, 14, 512) 

MaxPool (2,2), 1 (7, 7, 512) 

Conv2D (3,3), 1 (7, 7, 1024) 

Conv2D (3,3), 1 (7, 7, 1024) 

Conv2D (1,1), 1 (7, 7, 125) 

 

 

Furthermore, we improved the developed model with the 

You Only Look Once (YOLO) v3 algorithm [25] using 

DarkNet-53 framework. In this experiment, the input layer 

was a typical CNN which had convolutional layers and 

max-pooling layers. The detailed construction of the YOLO 

architecture is described in Table X.  

We also conducted several experiments using various 

epoch sizes as depicted in Figs. 8 and. 9. It is shown in Fig. 

8 that the average loss value of the system was 0.0833 with 

87% highest accuracy value for testing set 1. Testing set 1 

consisted of untrained and unstained white blood cell 

images. Fig. 9 shows the accuracy and loss values for 

various epochs in testing set 2. The white blood cell images 

in testing set 2 were previously colored with Wright stain. It 

is shown in Fig. 9 that the loss value of the system was 

0.0397 with 100% highest accuracy value. The major 

contribution of this research is that the developed model 

could give high recognition results of white blood cells from 

unstained images, which are barely recognized by the 

human eye. 

Finally, the samples of correct detection of white blood 

cells are shown in Fig. 10.  Figs. 10 (a) and 10(b) show a 

pair of images showing blood cells at the same location, 

while Figs. 10(c) and 10(d) show another pair for color-

stained and unstained conditions. The green rectangle in 

each image in Fig. 10 marks the white blood cell areas 

detected by the developed system.  

On the contrary, Fig. 11 shows incorrect detections by the 

system towing to noise existence. The figure further shows 

paired images for both stained and unstained images of the 

same blood cells areas. Based on Figs. 11(a) and 11(b), it 

can be seen that the pair of images produced false detection 

results. The same observation is present  in the pairs in Figs. 

11(c) and 11(d). The cause of detection errors in unstained 

images is because the cells could not be seen clearly by the 

human eye. However, the stained images show some noise 

spots for each detected area, which are most likely the cause 

of incorrect detection.  

 

   
       (a)               (b)        

   
       (c)               (d) 

Figure 10. Samples of correct white blood cells detection (shown in pairs a-

b and c-d) 

 

 

  
        (a)              (b)      

   
       (c)               (d) 

Figure 11. Incorrect detections of white blood cells towing to noise 

existence (shown in pairs a-b and c-d) 

  

IV. CONCLUSION 

This study initiates the elimination of the use of color-

stained images in a white blood cell detection system. The 

staining process itself is time-consuming and inefficient. 

Therefore, an automatic white blood cell detection system 

from unstained images was developed, and a modification 

of the watershed segmentation method was applied to the 

developed system to locate the white blood cells areas from 

unstained images. Several experiments were conducted on 

the unstained images and the results were compared with 

that of the stained images. Experimental results showed that 

the proposed system using the modified watershed method 

achieved 65.42% detection accuracy for detecting the white 

blood cells from the unstained images, while 94.82% 

detection accuracy was achieved for color-stained images. 

Other experiments were also conducted with the CNN 

method for comparison. In these experiments, the system 

obtained 65.33% and 74.85% detection accuracies for the 

unstained images and the color-stained images, respectively. 

Based on the experimental results, it can be concluded that 

the developed system provides an effective means of 

performing blood cells detection without requiring the use 

of color-stained images. 

In the future, several improvements, such as the use of 

dynamic parameters for thresholding, the application of 

sharpening functions for enhancing the image texture, and 

the use of various layer configurations and hyperparameters 

in neural network methods will be considered.   
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