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Abstract—Multi-agent planning is a challenging but largely
understudied planning problem. In the cooperative assumption,
past techniques either used a backtrack-based solution to build
a globally consistent plan or created local plans first and sub-
sequently merged them. Local planning amongst agents, on the
other hand, is in most cases incompatible and contradictory, and
developing a globally consistent plan in this scenario is time-
consuming and laborious. Since exact planning is intractable
with the agents’ local planning, we present an approximate
planning algorithm that initially ignores the internal nodes and
considers solving only the external nodes. Theoretical analysis
and experimental results show that compared to a state-of-the-
art multi-agent planning algorithm, our approach can efficiently
address the multi-agent planning problems with tight coupling.

Index Terms—Multi-agent System, Intelligence Planning,
Causal-Links, Graph Structure

I. INTRODUCTION

MULTI-AGENT-RELATED problems are both interest-
ing and meaningful in artificial intelligence, which

has recently drawn increasing attention of both domes-
tic and foreign researchers. Multi-agent-related technology
is widely used a variety of applications in many indus-
tries including disaster relief scenarios[1], mobile robot au-
tonomous exploration[2], public safety[3], unmanned sur-
face vessels[4], cloud computing[5], social network[6] and
automatic web service composition[7]. Moreover, there are
many practical application scenarios for the cooperation of
agents to complete tasks. Typically, these instances have
certain characteristics; each agent, for instance, has a unique
capacity to conduct and develop individual’s plans while
maintaining separation. To fulfill the global goals, the agents
must plan individually and communicate with other agents.
As a result, techniques for efficiently achieving global objec-
tive for multi-agent planning problems must be developed.

Many strategies have been developed to address multi-
agent planning problems. Jamroga, for instance treated the
various links between the agents’ local planning using a
planning graph[8]. Cheng proposed a Teaching-Learning-
Interactive Learning-Based Optimization (TLILBO) to find
a collision-free planning path of mobile robots[9]. Several
research efforts have focused on developing the multi-agent
plan coordination technique[10][11]. In the planning of many
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agents, Dimopoulos and Moraitis handled coordination and
collaboration[12]. Other research looked at how to employ
partial order planning in multi-agent planning[13][14]. To
handle multi-agent replanning problems, Zhang et al. inte-
grated graph planning with distributed constraint satisfac-
tion approaches[15], or employed causal-links graphs for
theoretical research only[16]. Brafman and Domshlak pre-
sented a revolutionary multi-agent planning concept called
CSP+Planning[17], which was eventually evolved to a fully
distributed multi-agent planning system called Planning-
First[18]. Although the great progress achieved by multi-
agent planning research efforts to date, most of the exist-
ing work has focused on separate individual planning and
collaboration, and did not consider the causal links between
these sub-goals and goals. In these studies, the consistency of
local planning was determined through continual exchange
of messages and backtrack-based solution. As a result, these
efforts either implement a pseudo-distributed multi-agent
planning or share information resources via memory.

In this work, we describe a unique strategy to address
multi-agent planning problems that is based on an iterative
backward search. Unlike existing multi-agent planning tech-
nologies, our technique can efficiently address the closely
linked multi-agent planning problem while saving limited
computing and communication resources. Our core approach
is to first establish the causal-links for the multi-agent plan-
ning problem, and then enable agents to iteratively explore
their realistic objectives throughout the backward planning
search. We also determined the sequence of actions that can
be performed consistently between agents and use the struc-
ture graph to achieve efficient planning. Furthermore, We
enable agents to perform in a fully distributed environment
in which other agents do not have access to their personal
information. The main achievements, including contributions
in this work are summarised as follows. First, we present
a novel multi-agent planning algorithm based on the itera-
tive learning graph structure through using a goal-oriented
procedure. Second, we demonstrate that this technique can
handle multi-agent planning problems with tight coupling
effectively. Finally, our approach of exploring the inner
structures and the causal links between these structures may
also be beneficial for inspiring new concepts and methods
for multi-agent community.

II. PROBLEM STATEMENT

The cooperative multi-agent model is built on the STRIPS-
style language formalism, and has been used successfully in
the problem of fully observable external environment and
deterministic planning domains. The definitions and syntax
in multi-agent planning problems that we will use in the rest
of this work are briefly introduced in the following sections.
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We explore planning for multi-agent system, in which agents
must coordinate their actions in order to satisfy a set of global
objectives. The multi-STRIPS formalism is the emphasis
of this paper, although it may easily be extended to the
STRIPS representation of the classical planning language. It
was obvious that a multi-agent planning problem is made
up of several(≥ 2) agents, with all agents collaborating
to accomplish the global objective. Multi-agent planning
problems, by definition, involve more than one autonomous
agent, each of whom must design and coordinate their
own local plans in order to achieve global objective within
the constraints imposed by their starting state and actions.
Moreover, each agent may only plan its own activities and
for its immediate surroundings.

In the MA-STRIPS framework, the states information
of the surrounding environment are defined by a limited
subset of propositions and action is described as tuples
a = ⟨eff(a), pre(a)⟩ where eff(a) and pre(a) express
the effect(add and delete effect) and the precondition of the
action, respectively. If pre(a) ⊆ s, then there exists an action
a that can be performed given state s. Theoretically, The
representation of our multi-agent programming algorithm
is substantially based on Souliman and Shleyfman’s MA-
STRIPS framework, which was initially described by [13],
and employs the following concepts and notation.

Definition 1 A quadruple Γ = ⟨F , {Ai}li=1, I,G⟩ is used
to represent an MA-STRIPS problem Γ with a set of planning
agents {φi}li=1.

• F is a limited subset of propositions, I ⊆ F is the
initial information of the surrounding environment, and
G ⊆ F is the specified goal situations,

• For 1 ≤ i ≤ l,Ai is the limited subset of actions avail-
able for agent φi to perform. Each action a ∈ A = ∪Ai

is is represented by the symbol above, which follows the
STRIPS semantics and syntax[19].

pgh-airport

airplane1

pgh-truck

pgh

ny-airport

ny-po

ny-truck

ny

abc-airport

abc-truck

abc

def-airport

def-po

def-truck

def

pgh-pop1

abc-po
p2

Fig. 1. An example of the multi-agent planning problem

When l = 1 and the individual agent holds private
knowledge that no one else knows, the MA-STRIPS model
becomes completely equal to the STRIPS framework. Prior
to explaining our characterisation for the multi-agent plan-
ning issue, a quick introduction of relevant definitions, such
as the basic concept of public and internal actions of agents,
is required. In an MA-STRIPS scenario, the interdependence
between local planning for agents provide numerous signifi-

cant properties. To begin, we may use the set of propositions
Fi = ∪a∈Aipre(a) ∪ eff(a) to designate which portion
of propositions pertain to agent φi, assuming we already
have the multi-agent planning model formulation. The above-
mentioned propositions may then be subdivided into he
subsets F⊗

i = Fi \ F⊙
i and F⊙

i = Fi \ ∪φj∈Φ\{φi}Fj that
represent its public propositions and internal propositions,
respectively. Actions Ai of agent φi can be partitioned into
A⊗

i and A⊙
i as its public and internal actions respectively, as

a direct result of the concept of agent’s internal propositions.
We utilize employ a scenario from the well-known logis-

tics industry as a sample example of a multi-agent planning
problem to better comprehend the MA-STRIPS framework.
The goal is to deliver a collection of goods from their starting
points to their final destinations. The vehicles (trucks or
airplanes) can transport a package from one area on the
map to another. Each vehicle is limited to moving along
a subset of the roadmap segments within or between cities.
As illustrated in Fig.1, we assume that there are initially
five agents in the roadmap, with four trucks(agents) capable
of transporting goods across a roadmap in each city and
one airplane(agent) capable of transporting items between
two cities. The agents’ final overall goals are to transport
the goods p1 from the beginning location pgh-po to the
target position def-po and the goods p2 from abc-po to
ny-po. Each truck may do three distinct actions: load and
unload the goods in the carriage, as well as travel through
the city’s roadmap. In this MA-STRIPS planning example,
there are many public actions (e.g., load(p1, ny-truck, ny-
airport), unload(p2, ny-truck, ny-airport), load(p1, def-truck,
def-airport) and unload(p2, def-truck, def-airport)) that serve
as coordination points. There are other actions that are only
available to an agent, which including move(ny-truck, ny-
po, ny-ariport) or fly(airplane1, abc-airport, def-ariport). It
is worth noticing that the agents’ public actions depend
on the specific multi-agent planning problem. The Logistics
planning problem poses significant difficulty for the multi-
agent algorithm. It is tightly coupled and on average, more
than half of the actions of each agent are public actions. In a
multi-agent planning system, ”tightly linked” indicates that
the activities of the agents frequently need to interact with
one another.

III. THE PROPOSED METHOD
As previously stated, we categorize the propositions and

actions of the multi-agent planning issue into two types:
private and public. The crucial milestones in the collabo-
ration amongst the agents to attain the global objective are
coordination points, which are public propositions or actions.
In general, the state of propositions and the actions in the
planning graph correlate one to one. As a result, In the
strategy of solving multi-agent planning problems, we can
obtain state propositions based on actions (or vice versa).
We employ the actions in the causal-links graph to help with
representation and analysis. The three agents’ local plans
include eleven internal points β1, β2, · · · , β11 and five coor-
dination points α1, α2, · · · , α5, as illustrated in Fig.2. These
coordination points are in the order of < α1, α2, · · · , α5 >
(for example, execute α1 before α2). All of the sub-plans
comprise a solution < γ1, γ2, · · · , γn > for the multi-agent
planning problem. A monotonic mapping function f exists
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that maps the action αi in the public coordination points into
< γ1, γ2, · · · , γn >, such that rf(i) = ai.

A major challenge is determining the coordination points
and their execution sequence. Furthermore, These elements
are also beneficial in resolving the agents’ local plans. In
this case, we propose using a “goal-oriented” method for
constructing the planning causal graph, which is essential for
resolving the problem of agent collaboration in the multi-
agent planning problem. To put it another way, the “goal-
oriented” technique is to devise a strategy for achieving the
specified goal state, and carrying out that strategy requires
the relevant conditions.

Coordination Points

Sub-plans 1 Sub-plans 2 Sub-plans 3

1
α

1
β

2
α

3
α

4
α

5
α

1
α

2
α

3
α

4
α

5
α

3
β

2
β

4
β

5
β

6
β

7
β

8
β

9
β

1 0
β

1 1
β

Coordination Point

Internal Point

Fig. 2. The coordination points of actions

Prior to introducing the “goal-oriented” technique, it is
first necessary to describe how the causal-links formal rep-
resentation is used in this paper. We then use some of its
useful derivations in the subsequent solution to the multi-
agent planning problem. The simplest form of Causal-links
is sub-plan1 → sub-goal1 → goal1 → sub-plan2 → goal.
This causal link demonstrates that executing sub-plan1 is uti-
lized to reach sub-goal1, the objective of which is to enable
sub-plan2 to obtain the goal. A finite execution sequence
sub-plan1 → sub-goal1 → goal1 → · · · → sub-goalm →
sub-plan2 → sub-goal2 → goal2 → · · · → goaln is
the most prevalent kind of causal-links, where the sub-link
sub-goal1 → sub-goal2 indicates that sub-goal1 is used for
obtaining sub-goal2 without the requirement for performing
other public actions. Moreover, if goal2 is conjunctive, then
sub-goal1 or sub-goal2 can be one of its conjuncts.
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Fig. 3. The simplified causal-links graph

To use causal-links to build causal graph, we must consider
the causal-links sub-plan1 → sub-goal1 → goal1 →
· · · → sub-goalm → sub-plan2 → sub-goal2 → goal2 →
· · · → goaln in the two special cases. The first case is that
sub-goal is true without the need to carry out a further local
plan. Then, we simply add a dummy operation “start∗”,
that takes precedence to all other items in the causal-
links. Therefore, we can obtain the form of causal links
as start∗ → sub-plan1 → sub-goal1 → goal1 → · · · →
sub-goalm → sub-plan2 → sub-goal2 → goal2 → · · · →
goaln. The second case is that goaln is the ultimate objective
of this causal-links. Again, we add another dummy operation
“finish∗”, and the causal links changes into the following
form start∗ → sub-plan1 → sub-goal1 → goal1 → · · · →

sub-goalm → sub-plan2 → sub-goal2 → goal2 → · · · →
goaln → finish∗ → goaln. After the procedures above,
we can easily derive and implement the related theories
based on the causal-links. There are several causal-links with
different sub-goals that are used to achieve the global goal
for multi-agent planning problem. If these causal-links do
not give rise to destructive interference with each other, we
can merge them into a causal-links graph. We can simply
understand “destructive interference” as the destruction of the
preconditions of other agents’ actions, and we will formally
state this definition below. Fig. 3 is a simplified causal-
links graph with three agents’ sub-plans, where the blue and
green dotted lines represent the causal-links of Agents 2 and
3, respectively. The key point is to determine the order of
execution of the five coordination points that are marked by
red circles. Since the internal nodes can be solved by the
Agent itself, here we adopt the strategy of ignoring internal
nodes and only considering the solution for external nodes.

Destructive interference: Given a multi-agent planning
solution < α1, α2, α3, α4, · · · , αn >, if only α1 provides
α4 with the precondition p, and some βi have an effect
p(∼ p ∈ add(βi)) during their execution.

Consider this extreme multi-agent planning problem; its
goal conditions are already true in the initial state, and we
can obtain the solution of the multi-agent planning problem
without any planning steps. This empty planning solution is
what we call the null-plan, and its causal-links has the form
of start∗ → goal → finish∗ → goal. Our “goal-oriented”
technique employs null-plan to verify whether the objective
has been reached when dealing with multi-agent planning.
Then there’s Generate-null-plan, which has the following
statements.

Generate-null-plan: During solving process of the “goal-
oriented” method, if exploring for the objective that is already
reached, then create a null-plan for obtaining the objective.

The “goal-oriented” technique is given a formal formula-
tion in this paper. To attain a particular objective G, we must
execute local planning PL under the constraint C. The “goal-
oriented” technique is denoted by PL/C I G. Supposing PC

is a sub-plan for achieving constraint C, we build the new
execution sequence PN as follows:

• Inserting a new execution sequence PL behind the sub-
plan PC ,

• Sorting all of the actions that occur in the local planning
PL after the sub-plan PC , and

• Modifying the causal-links accordingly.
When a “goal-oriented” approach is used in multi-agent

planning, the goal G commonly has the conjunctive form
in problem-solving techniques. Then, we may split G into
multiple a conjunctive form composed of multiple proposi-
tions, namely G = G1 ∧ G2 ∧ · · · ∧ Gn. Each proposition
denotes a sub-goal Gi to be satisfied. Moreover, consider the
most basic conjunctive form G = G1 ∧ G2, then we may
further split the form PL/C I G into PL1/C1 I G1 and
PL2/C2 I G2. Suppose P1 and P2 is planning to achieve
G1 and G2, respectively, their corresponding causal-links are
sub-plan1 → sub-goal1 → · · · → G1 → finish∗ → G1

and sub-plan2 → sub-goal2 → · · · → G2 → finish∗ → G2

respectively. P1 + P2 is their joint planning for achieving
the conjunctive goal G. Then, we apply the necessary ad-
justments to the form of their causal-links that becomes the
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following form sub-plan1 → sub-goal1 → · · · → G1 →
G1 ∧ G2 → finish∗ → G1 ∧ G2, sub-plan2 → sub-goal2 →
· · · → G2 → G1 ∧ G2 → finish∗ → G1 ∧ G2. P1 + P2

can attain the objective G if there is no detrimental interfer-
ence between the synthetic planning. We get the following
statement of ”Solve-conjunctive-goal” in more detail.

Solve-conjunctive-goal: For a given conjunctive objective
G = G1 ∧ G2, if there are plans P1 and P2 to reach the sub-
goal G1 and G2, respectively, and these plans don’t interfere
with each other. Then, we present the plan P1 + P2 for
achieving the objective G.

It is vital to make each local planning solution consistent
while handling global planning problems. As a result, we
establish the following limitations.

(R1) Causal-links Restriction
A complete causal-links composed of n coordination

points < α1, α2, · · · , αn > satisfies (R1) iff, for 1 ≤ i ≤ n,
PLi/Ci I Gi, and αi ∈ PLi , the following statements are
correct:

a) i = 1, and agent φi who performs PLi can provide the
condition Ci;

b) 1 < i < n−1, and PLi can achieve Gi that is either Gn

or a conjunction of Gn, and for i < j ≤ n, PLj/Cj I∼ Gi

does not hold;
c) i = n, and PLn can achieve Gn, and the sub-plans

{PLj}(1 < j < n − 1) which produce a series of actions
< α1, α2, · · · , αn−1 > can supply Cn;

(R2) Local-planning Restriction
The agents’ sub-plans Pi, (1 ≤ i ≤ l) satisfy (R2)

iff, for each Pi =< αi1, αi2, · · · , αik >, The local plan-
ning problem with action landmarks < Fi, A

⊙
i , I ∩ Fi, ∅, <

αi1, αi2, · · · , αik >> can be solved.
The causal-links restriction (R1) assures that the local

plans are consistent and do not conflict with one another.
This external limitation allows for conflict-free local planning
among the various agents. The Local-planning Restriction
(R2) assures that each agent is capable of carrying out the
coordination points and meeting their preconditions. In other
words, the agent φi develops local plans to create specific
internal preconditions for its public actions.

IV. FRAMEWORK AND THEORETICAL ANALYSIS

In this section, we first introduce our GCLΓ algorithm
framework, and then analyze its specific implementation pro-
cess in detail. Furthermore, we analyze GCLΓ theoretically.

A. Framework of our algorithm

An overview of our GCLΓ algorithm is shown in Al-
gorithm 1. To use the goal-oriented approach, it is easy
to introduce a dummy agent φd with only one action that
produces the completed state. First, we will initialize multi-
agent planning problem Γ, including the previously described
actions that include both public and private types. Agent
φd produces the global goal G to insert an open queue
that records whether to achieve the goals or sub-goals.
In Step 7, we use the “goal-oriented” method presented
above to solve the subgoal Gi. Further, we also combine the
relaxed plan heuristics[20] and action landmark information
in the local planning[21]. For the information that has been
solving local planning, we will record the minimum cost

path. In Step 8, different sub-goals may cause destructive
interferences between internal or external, and then we try
to adjust to the local plan, if not for an external adjustment.
Furthermore, we introduce appropriate ordering-constraints
to repair destructive interferences. In Step 9, agent φi uses
the broadcast communication method to obtain the necessary
information. In Step 13, once a globally consistent solution
for Γ is found, planning is terminated, and the plan P returns.
Otherwise, there is no solution plan.

Algorithm 1 Framework of our GCLΓ algorithm
1: Input F , I, G, and {φi}li=1

2: Initial the multi-agent planning problem Γ;
3: While ∃Gi ∈ subgoals(G) do;
4: If Gi is the conjunctive goal then;
5: Solve-conjunctive-goal(Gi);
6: End if;
7: Use the “goal-oriented” method to solve Gi;
8: Check and resolve destructive interferences;
9: Agent φi communicates with the others {φj}(i ̸= j);
10: If Gi is true then;
11: Generate-null-plan(Gi);
12: End if;
13: If achieving G or no solution then;
14: Break;
15: End if;
16: End while;
17: Return plan P .

B. Theoretical analysis

We verify the accuracy characteristics of our GCLΓ

algorithm theoretically below.
Theorem 1 (Soundness) Given a multi-agent planning

problem Γ = ⟨F , {Ai}li=1, I,G⟩, if there exists a causal-
links of n coordination points < α1, α2, · · · , αn > that
reaches the global goal G, then we can extend it into a
completed plan P for Γ.

Proof Theorem 1 is proved in a straightforward manner.
(R1) Causal-links restriction can achieve the sub-goals, and
solve the sub-goals whose execution requirements are pro-
vided by the agents’ local planning, while these requirements
are validated by (R2) Local-planning Restriction.

Theorem 2 (Completeness) Given a multi-agent planning
problem Γ = ⟨F , {Ai}li=1, I,G⟩ that can be solved, GCLΓ

can surely find a solution P for Γ.
Proof The procedures for proving theorem 2 are identical

to those for proving theorem 1. The identical proof portion
is no longer a tautology, and the difference is that GCLΓ

executing local planning will try to loosen the constraints
first, requiring the legal plan P to be in.

V. EXPERIMENTAL EVALUATION

In this section, we compare our GCLΓ algorithm to the
state-of-the-art algorithm (PF) to illustrate the advantage of
GCLΓ. We evaluate these two algorithm in the three bench-
mark domains from the International Planning Competition
(IPC), and analyze the reasons why algorithm PF cannot
effectively solve the multi-agent planning problem Γ.

A. Multi-agent planning domains

We performed the experiments on three domains (Logis-
tics, Statellite, and Rovers) developed from the transport field
or NASA missions to evaluate our approach. In the previous

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_07

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



sections, we have already described the Logistics domain
in which the agents can fly or move between locations,
and transport goodss to specified locations. The Statellite
domain has one or more satellites that make observations by
turning to the target directions, and each is equipped with
instruments that can support different shooting modes. In
the Rovers domain, rovers equipped with instruments can
travel to different waypoints to obtain and store data and
transmit the soil or rock information to a lander. We note that
the planning problems from the Logistics domain are more
tightly coupled than the those of the Rovers and Satellites
domains because in these domains most of their actions
are generally public actions. For the Rovers and Satellites
domains, we design various kinds of multi-agent planning
problems with different degrees of complexity. That is, we
generalize the loosely coupled planning multi-agent problems
with weak interactions between the agents to the tightly
connected problems where not only many agents, but also
many coordination points must be addressed.

Table 1. Comparison of PF and GCLΓ

NO. |φ| |A⊗
a | PF GCLΓ

Time Cost Msg T ime Cost Msg
Logistics domain

1 3 2 0.87 11 10 0.43 11 8
2 3 3 0.90 16 12 0.47 16 11
3 4 4 × × × 1.08 14 12
4 4 6 × × × 1.28 24 22
5 5 4 × × × 1.60 24 23
6 5 6 × × × 1.91 27 23
7 6 4 × × × 35.00 24 25
8 6 5 × × × 38.09 32 32
9 7 5 × × × 44.21 38 45

10 7 6 × × × 73.14 40 59
11 8 8 × × × 435.68 42 61
12 10 8 × × × 1590.16 49 70
13 12 10 × × × 2126.59 53 82
14 14 10 × × × 3272.16 56 95

Rovers domain
1 3 1 0.31 35 6 0.30 35 5
2 3 2 0.40 42 6 0.33 42 6
3 3 3 × × × 1.69 51 8
4 4 1 0.38 46 10 0.28 45 8
5 4 2 0.55 53 10 0.44 53 9
6 4 3 × × × 1.81 71 12
7 5 1 1.34 54 15 0.45 54 13
8 5 2 × × × 0.75 77 15
9 5 3 × × × 1.83 118 19

10 5 4 × × × 3.25 151 22
11 6 4 × × × 3.59 170 30
12 6 5 × × × 4.35 183 36
13 7 6 × × × 5.58 196 42
14 8 6 × × × 10.66 322 54
15 10 8 × × × 16.21 356 72
16 12 10 × × × 20.78 384 86

Statellite domain
1 2 1 0.14 6 3 0.14 6 3
2 2 2 0.19 7 3 0.18 7 3
3 3 2 0.22 12 9 0.19 12 7
4 4 1 0.33 13 10 1.18 13 5
5 4 2 9.58 15 20 0.24 14 9
6 5 2 27.62 33 28 3.21 32 14
7 5 3 × × × 3.50 43 17
8 5 4 × × × 3.71 57 21
9 6 4 × × × 4.75 61 23

10 6 5 × × × 5.89 66 26
11 7 5 × × × 8.10 75 31
12 7 6 × × × 9.12 79 50
13 8 6 × × × 10.22 96 65
14 8 7 × × × 11.65 148 102
15 9 8 × × × 25.29 185 126
16 10 8 × × × 46.66 231 143
17 12 10 × × × 456.92 311 156
18 14 12 × × × 1073.60 392 212

B. Results and discussion

We also report the performance of the baseline algorithm
PF to evaluate the effectiveness of our algorithm. All of
our experiments were run on an Intel Core 2 Dua 2.0 GHz
processor with the memory usage limited to 1024 MB.
We also set the cutoff time to 3600 seconds to prevent
the algorithm from running indefinitely. The reported times
are given in seconds, and does not include the time of
initialization. To simulate the agents’ planning, we employ
asynchronous threads that may interact and work with one
another by sending and receiving messages. As is common
in the multi-agent planning context, we assume that each
agent knows certain individual facts of the initial state and
the global goal conditions. For each multi-agent planning
domain, we produce more than a dozen different planning
problems in each planning domain by increasing the number
of agents and public actions. We also change the scene to
guarantee that the planning problems have a certain degree
of coupling.

Table 1 shows the results of the two multi-agent planning
algorithms that provide a clear picture of the performance
obtained by the PF and GCLΓ algorithms. |φ|, |A⊗

a |, Time,
Cost, and Msg denote the number of agents, the number
of public actions, the planning cost and the total number
of messages passed, respectively. × represents that the PF
algorithm can solve the problems within a limited time. In the
Logistics domain, the execution times vary within a certain
range when given the same scale of planning problems. The
Rovers and Satellites domains’ results illustrate that the run-
time complexity of multi-agent planning methods varies with
the scale of the multi-agent planning problems.

An examination of the data presented in Table 1 reveals
that the running time increases as the scale of the planning
problem grows higher. If the agent needs other agents to
determine the possible solution repeatedly, the PF algorithm
will become exponentially harder. Moreover, when the num-
ber of agents and coordination points increase to a certain
level, the PF algorithm cannot return a solution within a
time limit. By contrast, the planning time of our GCLΓ algo-
rithm grows only linearly with the increase in the complexity
of the problem. Table 1 clearly shows that the performance
of the LGS algorithm perform is much better than that of
PF . This justifies our initial intuitive understanding. We also
evaluate the network load by counting the total number of
the messages passed for the multi-agent planning problems.
It is clearly obsessed that total number of messages required
for our algorithm increases slightly with the complexity of
the problem. To summarize, these experimental results and
analysis show that our algorithm significantly outperformed
PF .

Agent 1 Agent 2 Agent 3

 = 1

 = 2

 = 3

 = 4

Range

Fig. 4. PF increments the length of δ in each iteration
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Here we analyze the reasons why the PF algorithm cannot
effectively solve the multi-agent planning problem. When
solving the multi-agent planning problem, the PF algorithm
does not know the value of δ (δ indicates the number of
public actions needed ) necessary to reach the global goals
for each agent. As a result, PF assumes that all agents
have the same δ, and incremenst the length of δ in each
iteration until it finds the solution. As shown in Fig. 4, at
each iteration, each agent φi will determine an abstract time
point t(t ∈ Range(1, δ ∗ l) to perform α(α ∈ A⊗

i ). Only the
combination of these time points can reach δ(δ∗l) orders of
magnitude! When the multi-agent planning problem becomes
closely linked, it is challenging to achieve consistency in
coordination points and internal planning. Furthermore, the
execution time of the agents’ public actions cannot be easily
predicted in advance. Therefore, it is not surprising that PF
is inefficient, and even cannot solve the problems in the
limited time.

VI. CONCLUSION

In this research, we describe a novel method for handling
multi-agent planning problems in the MA-STRIPS model
using a completely distributed circumstances that is more
efficient. Our GCLΓ algorithm is capable of dealing with
a wide range of multi-agent planning problems, including
those involving complicated agent interactions.

Our GCLΓ algorithm uses the goal-oriented procedures
that iteratively produce the coordination points. These points
are useful to build the causal-links constraints in the multi-
agent planning. The constraints ensure that the local partial
plans are coherent and work together to generate consistent
executable actions. In addition, all of the relevant agents
interact with other agents by exchanging local planning
information required by the other agents. We incorporate
and adapt the newest planning technologies into a multi-
agent planning algorithm, which is more significant. To put
it another way, we employ a relevant partial-order causal
link approach to create constraints between distinct agents,
and we apply reachability analysis to detect and fix implicit
contradictions as soon as possible. We also suggested that
the cause graph can be used to facilitate performance im-
provement and cost saving. Finally, we utilize the cause
graph to find the execution time points using the breadth-
first approach. Our practical and theoretical findings reveal
that our approach outperforms the state-of-the-art PF multi-
agent planning algorithm in terms of both performance and
planning cost. In deterministic planning domains, we cur-
rently assume that numerous agents cooperate. We’d want to
expand our method in the future to include non-cooperative
and nonderministic scenarios[22].
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