
 

 

Abstract: In the development of sustainable transportation, 

traffic safety is a significant matter, and predicting the severity 

of traffic accidents is still a critical problem in the traffic safety 

field. However, the utilized road traffic accidents (RTAs) 

datasets suffer from imbalance distribution. This problem leads 

to a decrease in classification performance, specifically in 

predicting the minority classes. This paper aims to treat the class 

imbalance problem through Synthetic Minority Over-sampling 

Technique (SMOTE), Support Vector Machine-SMOTE (SVM-

SMOTE), Borderline-SMOTE(BL-SMOTE), and Adaptive 

Synthetic (ADASYN), along with proposing an accurate 

predictive model for accident severity. Different accident 

severity models are employed, namely Random Forest (RF), K-

Nearest Neighbor (KNN), Naïve Bayes (NB) classifiers, Decision 

Tree (DT), and Extra Trees (ET). These models are tested 

using real-world datasets. Several evaluation metrics are used to 

evaluate the proposed model. Experimental results show that 

the proposed model significantly improves predicting both the 

minority and majority classes. These results indicate the 

robustness and reliability of the proposed predictive model in 

enhancing road traffic safety and management. 

 
Index Terms— Accident severity prediction, ADASYN, 

borderline-SMOTE, class imbalance problem, decision tree, 

extra trees, k-nearest neighbor, naïve Bayes, random forest, 

SMOTE, SVM-SMOTE. 

I. INTRODUCTION 

n promoting sustainable transport safety, traffic safety is a 

significant problem. The impact on society of road 

accidents will be adverse, including victims, traffic jams and 

environmental pollution which do not lead to healthy and 

good growth in the transport system. Several public 

authorities and the transport sector have developed intelligent 

transport systems to promote sustainable transport 

development by increasing the automated information 

system. Accurate methods are necessary for predicting the 

severity of traffic accidents to improve traffic safety 

monitoring and control. In recent years, the rapid progress of 

science and technology has enhanced new technologies for 

transport in unprecedented ways.  However, there are no 

precise traffic accident reduction characteristics for these 

technologies. The World Health Organization (WHO) 

published Save LIVES- A road safety technical package 

2017, stating that more than one million deaths  

 
Manuscript received June 11, 2021; revised December 25, 2021.   

Solwan M. Mostafa is a Teaching Assistant and a Master Student of 

Computer and Systems Department, Faculty of Engineering, Helwan 
University, Cairo 11792, Egypt (corresponding author to provide e-mail: 

solwan_mohamed@h-eng.helwan.edu.eg). 

Sameh A. Salem is a Professor of Computer and Systems Department, 
Faculty of Engineering, Helwan University, Cairo 11792, Egypt (e-mail: 

sameh_salem@h-eng.helwan.edu.eg). 

Shahira M. Habashy is an Associate Professor of Computer and Systems 
Department, Faculty of Engineering, Helwan University, Cairo 11792, 

Egypt (e-mail: shahira_heikal@h-eng.helwan.edu.eg). 

 

have been recorded in road accidents. Over 50 million people 

are suffering non-fatal injuries worldwide every year, 

estimated to be the ninth-largest death cause in the world for 

each group of age[1]. Road traffic accidents can happen all 

the time but are predictable and avoidable. Therefore, each 

traffic research scientist is responsible for reflecting on the 

causes of accidents in traffic and helping the administration 

solve the risk of accidents. Over the years, scientists from 

different backgrounds have explored other models of traffic 

accident severe study. The modeling analysis is intended to 

examine the connection between the severity of the accident 

and its factors, the most commonly used being the discreet 

Logit or Probit model selection model (e.g.[2],[3],[4],[5],[6]).   

These results demonstrated that the accurate prediction of 

traffic accident severity has a valuable role in improving 

traffic safety management. Since the influential factors of the 

high-risk segments might be defined to provide helpful ideas 

for improving road safety, the study's findings will help build 

or enhance an efficient traffic safety framework within a 

sustainable transportation system. This framework is crucial 

for assisting government managers in implementing timely 

proactive traffic accident prevention strategies and improving 

road traffic safety. 

According to the number of casualties, deaths generally are 

considerably lower than ownership damage. So, the 

investigation of the accident severity is significant. Mostly, 

accident datasets are not balanced that causes a problem in 

the classification, which is named the class imbalance 

problem. The class imbalance generally occurs because 

datasets include occasional occurrences that cause skewness 

of the used classifier: Thus, as the more the classifiers become 

accurate in the prediction of the majority class, the less the 

accuracy in prediction of the minority class [7],[8],[9],[10]. 

Skewed classifications pose a challenge to predictive 

modeling since most classifiers assume an equal number of 

samples for each class. Many research efforts have been 

dedicated to resolving this problem, yielding many solution 

approaches. Approaches are broadly classified into three 

types: 1. techniques of data-level, 2. techniques of algorithm-

level, and 3. techniques of cost-sensitive. Techniques of data 

level are more widely employed because they do not depend 

on any classifier and can be flexibly combined with other 

techniques [11]. As a result, these techniques may yield more 

balanced data than other techniques [12],[13]. 

The main objective of this paper is to handle the imbalance 

problem in accident datasets and develop an accurate 

predictive model for accident severity. The Synthetic 

Minority Over-Sampling Technique (SMOTE), Support 

Vector Machine-SMOTE (SVM-SMOTE), Borderline-

SMOTE(BL-SMOTE), and Adaptive Synthetic (ADASYN) 

are adopted for balancing the dataset, which overcomes the 

minority class classification problem. Comparisons with 
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other competitive prediction methods [14],[15] are carried 

out. Also, further analysis using 10-folds Cross-Validation 

(CV) and the Holdout methods are carried out for model 

training. In this paper, Random Forest (RF), K-Nearest 

Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT), and 

Extra Trees (ET) classifiers are applied. Experimental results 

show that the proposed predictive model effectively predicts 

the minority class and enhances the overall classification 

performance.  

The main contribution of this paper is proposing an 

accurate predictive model for enhancing road traffic safety 

and management. The proposed model solves the class im-

balance problem in datasets and improves classification 

performances for predicting minority classes. Experimental 

results show that the proposed model achieves classification 

accuracies greater than 83%, compared with recently 

developed models that achieve classification accuracies up to 

60% [14]. Also, the results show excellent performance in 

predicting majority and minority classes compared with 

[14],[15]. These results indicate the reliability of the proposed 

model for getting accurate prediction of traffic accident 

severity which improves traffic safety management. 

The paper consists of five sections. Section 1 explores the 

paper introduction, followed by related work in section 2. 

Section 3 presents the methodology utilized in this paper, 

whereas the experimental results are demonstrated in Section 

4. Finally, the paper is ended with the conclusion and 

references. 

II. RELATED WORK 

As reported by several researchers, several classification 

algorithms are employed in predicting and analyzing the 

severity of vehicles' accidents and classifying the patterns of 

the accidents. Furthermore, we used the great potential of 

classifiers in preventing and controlling the safety problems 

related to road accidents. 

  This section tackles some related works that utilized 

classification algorithms to predict and analyze road 

accidents in urban areas, particularly smart cities, to predict 

and analyze the severity of road traffic accidents (RTAs). 

 Lécué et al. [16] introduced a Semantic Traffic Analysis 

while Beshah et al. [17] employed Classification and 

Adaptive Regression Trees (CART), RF, TreeNet, and hybrid 

ensemble methodology. According to the comparative 

results, the Ensemble technique outperformed all other 

classifiers (single classifiers). The accuracy of TreeNet was 

94.54%, CART was 93.52%, and RF was 90.75%, whereas 

that of ensemble methodology was 95.47%. 

Beshah et al. [17] employed different data mining 

techniques. They used the same dataset size utilized in other 

research [18],[19]. Still, there were differences in the results, 

referring to the differences in values of class label that were 

(injury, non-injury, or fatal) [17], whereas in [18],[19] were 

(non-injury and injury). 

Beshah et al. [18] extended their works using the exact size 

of dataset 14,254 accident records which included 48 

attributes [19]. Their study added TreeNet, CART, and RF to 

their work [19] for analyzing accident data collected by the 

Addis Abab traffic office through a tool named " Salford 

Predictive Miners (SPM)." The results of their work indicated 

that TreeNet outperformed the other techniques as its 

accuracy reached 98.94% compared with the other two 

techniques, which have accuracies (86.59% and 84.5%) for 

RF and CART, respectively.  

We utilized K-Nearest Neighbors, Decision tree (J48), and 

Naïve Bayes classification techniques for establishing a 

model capable of predicting and analyzing the factors related 

to road accident severity. The dataset included 18288 

accidents in the city of Addis Ababa. The accuracies of these 

techniques were 80.8281%, 80.221%, and 79.9967% for K- 

Nearest Neighbors, Decision tree (J48), and Naïve Bayes, 

respectively. Another algorithm (PART), with the help of the 

WEKA tool, is utilized for setting the obtained knowledge in 

the form of rules [20].    

In Hong Kong, Krishnaveni & Hemalatha used a 

prospective analysis of 34,575 road traffic accidents [21]. 

They utilized RF, J48, PART, AdaBoostM1, and Naive 

Bayes classifiers for predicting and detecting the severity of 

injury and reasons beyond the accidents. To obtain minimal 

dimensionality of the Accident dataset, they used Genetic 

Algorithm (GA) to select the features. RF outperforms all 

other algorithms according to the comparative results of the 

classifiers. No percentages are obtained. 

Regarding the real-time analysis of the data related to the 

accidents, a Real-time Transportation Data Mining 

(RTransDmin) technique is proposed by [22]. This technique 

is also able to predict information related to traffic accidents. 

In the same study, Decision tree ADTree and J48 algorithms 

with the help of WEKA and DTREG tools are utilized for 

building a model related to a dataset that included 1385 

accident records. This dataset is obtained from the department 

of transport in England. Confusion matrices resulting from 

the DTERG are characterized by accuracies 87.2 and 85.9 % 

for training and testing datasets, respectively, and the scatter 

plot is obtained by WEKA.  

The study of Perone [23] is one of the significant studies 

used to evaluate the injury severity through utilizing Naive 

Bayes, RF, Support Vector Machine (SVM), LR, and KNN, 

for constructing the prediction models. The used dataset 

included 20798 accident records obtained from the traffic 

department in Porto Alegre/RS (Brazil). Pandas library is 

used to analyze data, whereas Scikit-learn framework is 

utilized for preprocessing operations. The results of Area 

Under the ROC Curve (AUC) indicated that the best-obtained 

scores are 0.94 for both LR and SVM. However, the RF, 

KNN, and Naïve Bayes scores are 0.93, 0.9, and 0.83, 

respectively. F-measure is also employed for evaluating the 

used algorithms. The results obtained indicated the same 

measures for LR and SVM (0.89), (0.88) for RF, (0.85) for 

KNN, and (0.43) for Naïve Bayes.  Some criticisms are 

directed to this study, as the used dataset does not include 

information about drivers, victims, and vehicles, and thus the 

author did not use feature selection techniques. 

   The SVM, Gaussian RBF kernel, and the polynomial kernel 

investigated driver injury severity patterns. A two-year 

dataset of accidents in New Mexico is collected and used in 

this study. The study results indicated that reasonable 

prediction is obtained from applying the SVM model, 

whereas the performance of the polynomial kernel algorithm 

is better than the Gaussian RBF Kernel [24]. 

RF, Artificial Neural Network (ANN), and SVM are 

employed for predicting the severity of accidents in the UK. 

The used dataset size was 79751 records in 2014. The ANN 

with an accuracy of 61.4 %, and then SVM with an accuracy
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of 54.8% [25]. The superiority of RF is confirmed by 

S.Ramya et al. [26]. 

Haynes et al. [15] used an imbalanced dataset from the UK 

to find the factors affecting the number of accidents and the 

accompanied mortalities. They used RF, KNN, Decision 

Tree, and Gaussian for predicting the accidents' severity. The 

results indicated that RF outperformed the other techniques. 

This study is used as a base for comparing the results of our 

current study. 

Fiorentini et al. [14] focused on exploring the influence of 

a balancing technique, namely random under-sampling the 

majority class (RUMS), to solve the class imbalance problem 

in datasets and improve the performance of the classifiers in 

predicting the minor classes. Classifiers models such as the 

random tree, KNN, LR, and RF are used in this study. The 

study results indicated that attained accuracies were very low 

(~ <60%). Also, this study is used as a base for comparing the 

results of our current study. 

Crash accidents are implemented on a dataset in Ghana 

through the employment of PART, MLP, and SimpleCART 

to evaluate the classifiers' performance and determine the 

significant factors for the crash of motorcycles. Weka tools 

are used for comparing and analyzing datasets. For selecting 

the most influential factors, the InfoGainAttributeEval 

technique is employed. The highest performance is obtained 

through the SimpleCART classifier [27]. 

III. THE METHODOLOGY 

This section presents the block diagram of the proposed  

predictive model phases, as shown in Fig. 1. 

A. Data Splitting Phase 

     This paper employed 10-folds Cross-Validation and 

Holdout (training data 70% and testing data 30%) to break 

these datasets into training and testing datasets. 

  In the 10-folds CV method, the dataset is separated into 

ten distinct subsets. We used nine subsets to build the 

predictive model and quit the tenth subset as test data. The 

model is averaged against each of the folds. In the holdout 

method, the dataset is separated into only two subsets. 

B. Balancing Phase 

 Many techniques have been suggested in recent years to 

address the weak performance of imbalanced datasets [28]. 

They are divided into three main categories: 1. techniques of 

data-level (resampling). 2. techniques of algorithm-level. 3. 

techniques of cost-sensitive. 

1. Data-Level Techniques (Resampling)    

These techniques adjust the training samples to balance the 

class distribution, enabling classifiers to work similarly to 

standard classification. The three principal techniques used to 

handle imbalanced datasets are under-sampling, over-

sampling, and synthetic data generation (e.g., synthetic 

minority oversampling). These techniques have the 

advantage of being independent of any classification 

algorithm. On the other hand, one of the most significant 

disadvantages of these techniques is deciding how much 

sampling to employ. The over-sampling technique involves 

adding samples to the minority class. These samples can be 

produced by copying the minority class samples or generating 

new synthetic samples. 

In contrast, the exact copies of the sample cause the over-

fitting problem. The under-sampling technique involves 

randomly removing the majority class samples. These lead to 

the loss of valuable information, so we must select the under-

sampling removing percentage carefully [29]. More 

sophisticated techniques have been developed to solve these 

problems, e.g. (SMOTE, BL-SMOTE, SVM-SMOTE, and 

ADASYN)  

SMOTE [12] is an oversampling technique in which 

synthetic samples are created for the minority class. It creates 

new samples of the minority class by randomly interpolating 

pairs of the closest neighbors in the minority class. The steps 

of this technique are shown in Fig. 2. 

Borderline-SMOTE [13] is a modification in which 

samples of the minority class far from the majority class 

boundary may contribute less to the classifier than samples 

near the border. As a result, the Borderline-SMOTE 

preferentially generates synthetic samples along the decision 

border. Borderline is a region where the samples of minority 

classes are near the majority. The steps of this technique are 

shown in Fig. 3. 

SMOTE-SVM [29] generates new samples near the 

decision boundary. SMOTE-SVM, like borderline-SMOTE, 

considers that the decision border is the optimum area to 

generate new samples. SMOTE-SVM employed support 

vectors to detect decision boundaries. The steps of this 

technique are shown in Fig. 4. 

ADASYN [30] sets weight for each minority sample based 

on their learning difficulties. The distribution of each sample 

is used to estimate the number of synthetic samples required. 

We generate extra data points for the hard-to-learn minority 

samples. ADASYN adjusts the decision boundary to let the 

classifier focus on the hard-to-learn data. The steps of this 

technique are shown in Fig. 5. 

In the balancing phase, SMOTE, borderline-1-SMOTE, 

SVM-SMOTE, and ADASYN are adopted due to their 

advantages.

 

 
 Fig. 1.  The Block Diagram of the Proposed Predictive Model 
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Fig. 3.  The Flow Chart of BL-SMOTE Technique 

 

 

 

 

Fig. 2.  The Flow Chart of SMOTE Technique 
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Fig. 4.  The Flow Chart of SVM-SMOTE Technique 

 

 

 
Fig. 5.  The Flow Chart of ADASYN Technique 
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2. Algorithm-Level Techniques 

They focused on adapting the classification algorithms 

approach to be more attuned to class imbalance problems. 

They are non-flexible and reliant on the classifier [31]. 

3. Cost-Sensitive Techniques. 

These techniques assess the cost of misclassifying samples. 

They do not result in a balanced distribution of data. These 

techniques use cost matrices to highlight the imbalanced 

learning problem, which illustrates misclassification cost. 

The cost of misclassification is unknown from the data; 

therefore, defining costs is problematic [32],[33]. 

C. Classification Phase 

Supervised classification algorithms aim to use just training 

data to separate problem classes (with as wide a margin as 

possible) [34].  

1. Random Forest Classifier 

Breiman [35] is considered the first to propose the random 

forest classifier. This classifier is utilized as a data mining 

tool for solving problems related to classification and 

regression. The accuracy of the classifier is increased when 

the classification is determined using voting. Also, growing 

an ensemble of trees leads to an increase in the accuracy of 

the classifier. Random vectors are created to grow these 

ensembles. Each random vector generates one tree. For 

classification and regression, RF is composed of trees. By 

canvassing the outcomes of trees, the class of the sample is 

determined.  Since over-fitting does not occur in large RFs, 

the generalization error merges to a limiting value when 

adding more trees to the RF. The higher accuracy requires the 

availability of low skewness and correlation. It is necessary 

to have no clipping for trees and randomize the variables in 

each node to obtain low skewness and correlation [36],[37]. 

2.  K- Nearest Neighbor Classifier 

Cover and Hart are the first to propose the KNN classifier. 

It is a machine learning algorithm called a lazy learning 

algorithm because of its low computational cost and ease of 

implementation. It attempts to classify a sample by examining 

the nearest k samples in the feature space. The majority class 

of the k closest samples belongs to is chosen as the class of 

the new sample. As a result, KNN assigns the class of the k 

nearest set of previously classified points to an unclassified 

sample point [14],[38]. 

3. Naive Bayes Classifier 

The Naive Bayes (NB) classifier is a Bayesian network 

specifically developed for classification problems [39]. This 

simple probabilistic classification model computes the 

likelihood of a class variable given specific instances of 

feature variables and then predicts the class of the class 

variable with the highest posterior probability. This 

computation is effectively conducted by making the strong 

independence assumption that all of the feature variables are 

conditionally independent given the value of the 

class variable. The fundamental advantage of NB over other 

machine learning models is its computational simplicity. 

4. The Decision Tree Classifier 

The Decision Tree (DT) Classifier divides observed data 

into mutually exclusive categories and then uses that tree 

structure to make decisions.  Each node is split into child 

nodes to build the tree, starting with the root node. It is 

possible to split DT algorithms using different criteria. The 

most widely used decision tree algorithms are ID3, CART, 

and C4.5, which use impurity-based splitting criteria to 

reduce impurities [40]. 

5. The Extra Trees Classifier  

The Extra Trees (ET) classifier refers to the extremely 

randomized trees classifier [41].  The extra trees classifier 

relies on building multiple unpruned top-down decision 

trees and integrating the results. A majority vote solves the 

classification problem. ET is a Random Forest modified 

version. Unlike RF, which uses bootstrap sampling, Extra 

Trees uses the entire training sample to build the trees. The 

ET classifier also differs from Random Forest in that the 

cut-point for each tree node is estimated randomly, 

independent of the target feature. K number features are 

randomly selected to build randomized trees. The optimum 

value of K depends upon the problem characteristics and 

the percentage of irrelevant features that decrease the 

model's performance. ET may reduce model variance 

slightly more than RF in terms of overfitting. 

D. Evaluation Phase 

The reason for using multiple metrics is that accuracy does 

not always express the classifier's optimal performance, 

especially in imbalanced data. This problem is called the 

accuracy paradox problem. Accuracy is not considered a 

good metric because data imbalance may cause classifier 

accuracy to appear high, although there is a mistake in 

classifying the minor classes.  Precision and recall are better 

measures in such cases [42],[43]. 

The following metrics are used for evaluating the model 

performance: False Positive Rate (FPR), accuracy, True 

Positive Rate (TPR) or recall, Area Under the ROC Curve 

(AUC), F-measure, Kappa statistic, Matthews Correlation 

Coefficient (MCC), and the training time of the model. 

The objective of the classifier's accuracy is to represent the 

overall performance of the classifier [44]. The ratio of False 

Positive with respect to all negative samples is expressed by 

FPR [45]. The TPR or recall can be defined as the ratio of 

positive samples detected correctly [44]. The precision 

indicates the goodness of positive predictions [44]. The F-

measure is expressed by the harmonic mean of both precision 

and recall, and its significant advantage is its ability to 

combine two metrics into a more compact one [44]. AUC is 

obtained by calculating the area under the ROC (Receiver 

Operating Characteristic) curve. This curve results from the 

relation between FPR and TPR [44]. The essential advantage 

of AUC is to judge the capability of the classifier to 

discriminate between classes. The Kappa statistic measures 

the degree of inter-rater agreement. Its value is estimated 

according to Table I. The Interpretation of agreement degree 

[45] is illustrated in Table II. MCC measures the differences 

between actual values and predicted values [46]. It can be 

defined in terms of a confusion matrix C for K classes. 

Finally, we calculated the time spent in building the model of 

each classifier. 

 
TABLE I 

2×2 CONTINGENCY TABLE 
 

RATER 1 RATER 2 TOTAL 

 1 2  

1 P11 P12 P1 

2 P21 P22 P2 

TOTAL P1 P2 1 
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TABLE II 
KAPPA STATISTIC INTERPRETATION [45] 

 

KAPPA Statistic Degree of Agreement 

< 0.00 Poor-Degree 

0.00-0.20 Slight-Degree 

0.21-0.40 Fair-Degree 
0.41-0.60 Moderate-Degree 

0.61-0.80 Substantial-Degree 

0.81-1.00 Almost perfect-Degree 

 

 

Equations (1) – (7) express the accuracy, FPR, TPR or the 

recall, the precision, F-measure, Kappa statistic, and MCC. 

 

 

 

where: 

• TP (True Positive): expresses the number of correctly 

classified positive samples; 

• TN (True Negative): expresses the number of correctly 

classified negative samples; 

• FP (False Positive): denotes the number of false 

predictions negative samples; 

• FN (False Negative): denotes the number of false 

predictions positive samples. 

• 𝑝0=  𝑝11+ 𝑝22 = (TP + TN) / (TP + FN + FP + TN) 

• 𝑝𝑒= 𝑝1𝑝1 + 𝑝2 𝑝2  with 

    𝑝1𝑝1 = (TP + FN) (TP + FP) /(TP +  FN +  FP +  TN)2 

   𝑝2 𝑝2 = (FP + TN) (FN + TN) / (TP +  FN +  FP +
      TN)2 

• c= ∑ ∑ 𝐶𝑖𝑗
𝐾
𝑗

𝐾
𝑖  : the total number of elements correctly 

predicted 

• s= ∑ 𝐶𝑘𝑘
𝐾
𝑘  : the total number of elements 

• 𝑝𝑘 = ∑ 𝐶𝑘𝑖
𝐾
𝑖  : the number of times that class k was 

predicted  

• 𝑡𝑘 = ∑ 𝐶𝑖𝑘
𝐾
𝑖  : the number of times that class k truly 

occurred (row total) 

 

IV. RESULTS AND DISCUSSIONS  

This section presents the utilized real-world datasets and 

discusses the experiments and the results of the proposed 

predictive model. 

The experiments are performed using two real-world 

datasets. The obtained results are compared with the obtained 

results in [14],[15]. [15] employed imbalanced training data 

to train the classifiers, then added some features to enhance 

the classifier's performance. [14] employed imbalanced 

training data to train the classifiers and then used RUMS-

based training data. Different comparisons and analyses are 

discussed to show the performance of the proposed predictive 

model in predicting traffic accident severity. 

A. Real-World Datasets 

Two real-world datasets are used in this paper [47]. The first 

one is the dataset for RTAs in the UK during 2016, with a 

total number of accidents of 136,621. The second one is the 

dataset for RTAs in York, Great Britain, from 2005 to 2018, 

with a total number of accidents of 6515. 

We chose only the most effective RTA features that can be 

used to train predictive models to learn patterns and thus 

predict the severity of accidents based on RTA historical data, 

as demonstrated experimentally in [14],[15]. Table III shows 

the features used in building the predictive model in [15]. 

Table IV shows other additional features used to build the 

predictive model in [14]. Table V shows the class label 

description, the number of instances belonging to each class, 

and its percentage in the dataset. 

 
 

TABLE III 

DATASET-1 FEATURES 

Feature Value Description 

Road surface 

conditions 

1 

2 

3 

4 

5 

6 

7 

-1 
 

Dry 

Wet or damp 

Snow 

Frost or ice 

Flood over 3cm. deep 

Oil or diesel 

Mud 

Data missing or out of range 
 

Weather 

conditions 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-1 
 

Fine no high winds 

Raining no high winds 

Snowing no high winds 

Fine + high winds 

Raining + high winds 

Snowing + high winds 

Fog or mist 

Other 

Unknown 

Data missing or out of range 
 

Light 

conditions 

  1 

  4 

  5 

  6 

  7 

  -1 
 

 Daylight 

Darkness - lights lit 

Darkness - lights unlit 

Darkness - no lighting 

Darkness - lighting unknown 

Data missing or out of range   

 

 
Accuracy =

TP + TN

TP + FP + FN + TN
 

 

(1) 

 
FPR =

FP

TN + FP
 

 

 

(2) 

 

 
TPR(Recall) =  

 TP

TP + FN
 

 

(3) 

 

 
Precision =

𝑇𝑃

TP + FP
 

 

(4) 

 

 
𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

2 ∗ (Recall ∗  Precision) 

Recall +  Precision
 

 

(5) 

 

 
Kappa statistic =  

  (p0 – p𝑒)

(1 – p𝑒)
 

 

(6) 

 

 
𝑀𝐶𝐶 =

c ∗ s − ∑ 𝑝𝑘 ∗ 𝑡𝑘
𝐾
𝑘

√(𝑠2 − ∑ 𝑝𝑘
2𝐾

𝑘 )(𝑠2 − ∑ 𝑡𝑘
2𝐾

𝑘 )

 
(7) 
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TABLE III 

DATASET-1 FEATURES CONTINUED
 

 
Feature  Value Description 

Day of week   1 

  2 

  3 

  4 

  5 

  6 

  7 
 

Sunday 

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 
 

1st road class 1 

2 

3 

4 

5 

6 
 

Motorway 

A(M) 

A 

B 

C 

Unclassified 
 

Urban or rural   1  

  2  

  3   

Urban 

Rural 

Unallocated 
 

Speed limit 20 

30 

40 

50 

60 

70 

-1 
 

20 MPH 

30 MPH 

40 MPH 

50 MPH 

60 MPH 

70 MPH 

Data missing or out of range 
 

Number of 

vehicles 

Ex: 
1,2,3… 

Vehicles number in the accident 

Time 
Ex: 8:15 The time when the accident occurred  

Longitude 
Ex:  

-0.279 

The coordinate where the accident 

occurred 

Latitude 
Ex: 
51.584 

The coordinate where the accident 
occurred 

 
 

TABLE IV 
ADDITIONAL FEATURES OF DATASET-2 

 

Feature Value  Description 

Junction 

Detail 

0 

1 

2 

3 

5 

6 

7 

8 

9 

-1 
 

Not at junction or within 20 meters 

Roundabout 

Mini-roundabout 

T or staggered junction 

Slip road 

Crossroads 

More than 4 arms (not roundabout) 

Private drive or entrance 

Another junction 

Data missing or out of range 
 

Pedestrian 

Crossing-

Human 

Control 

0 

1 

2 

-1 
 

None within 50 meters  

Control by school crossing patrol 

Control by another authorized person 

Data missing or out of range 
 

Pedestrian 

Crossing-

Physical 

Facilities 

0 

1 

4 

 

5 

7 

8 

-1 
 

No physical crossing facilities within 50 m 

Zebra 

Pelican, puffin, toucan, or similar non  

junction pedestrian light crossing 

Pedestrian phase at traffic signal junction 

Footbridge or subway 

Central refuge 

Data missing or out of range 
 

Special 

conditions at 

the site 

0 

1 

2 

3 

4 

5 

6 

7 

-1 
 

None 

Auto traffic signal-out 

Auto signal part defective 

Road sign or marking defective or obscured 

Roadworks 

Road surface defective 

Oil or diesel 

Mud 

Data missing or out of range 
 

Carriageway 

Hazards 

0 

1 

2 

3 

4 

5 

6 

7 

-1 
 

None 

Vehicle load on road 

Another object on road 

Previous accident 

Dog on road 

Another animal on road 

Pedestrian in carriageway - not injured 

Any animal in carriageway (except ridden horse) 

Data missing or out of range 
 

2nd Road 

Class 

0 

1 

2 

3 

4 

5 

6 
 

Not at junction or within 20 meters 

Motorway 

A(M) 

A 

B 

C 

Unclassified 
 

Road Type   1 

  2 

  3 

  6 

  7 

  9 

12 

-1 
 

Roundabout 

One way street 

Dual carriageway 

Single carriageway 

Slip road 

Unknown 

One way street/ slip road 

Data missing or out of range 
 

Number of 

casualties 

Ex: 
1,2,3… 

Casualties number in the  
accident 

 

TABLE V 

                         CLASS LABEL DESCRIPTION 

 

Accident 
Severity  

Value Number of instances  
in dataset-1 

Number of 
instances in 

dataset-2 

Fatal 

(Class1) 

1 1695 (1.24%) 64(0.98%) 

Serious 

(Class2) 

2 21,725 (15.9%) 855(13.12%) 

Slight  
(Class3) 

3 113,201 (82.85%) 5593(85.85%) 

  Total= 136,621(100%) Total= 6515(100%) 
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B. Experiments and Results 

After splitting the datasets, they are analyzed using different 

classifiers, RF, KNN, NB, DT, and ET, to predict accident 

severity. In this experiment, the classifiers are used on the two 

datasets separately. The datasets are balanced using 

oversampling techniques, SMOTE, SVMSMOTE, 

BLSMOTE, and ADASYN. Table VI reports the evaluation 

results (accuracy, training time, and Kappa statistics) of the 

proposed predictive model using different classifiers and data  

splitting methods. In all the cases, the proposed predictive 

model-SMOTE-RF (10-folds CV) performs better than the 

others based on accuracy and Kappa statistics. The KNN and 

NB are the fastest during training the model. ET has moderate 

accuracy, but it is very slow to learn. DT and NB perform 

worse than the others based on accuracy and Kappa statistics.  

Dataset-1 is bigger than dataset 2. This criterion leads to an 

increase in models' performance. Table VII shows the 

evaluation results of each class and a comparison for the 

proposed predictive models with RF classifier using Dataset 

1. It shows that the imbalanced data train the RF classifier 

after adding additional features as recorded in [15] the 

balanced data train the RF. [15]  employed holdout (70%, 

30%) for data splitting, whereas we employed holdout (70%, 

30%) and 10-folds CV. From the confusion matrix in [15],  

TRP, FPR, precision, and F-measure are computed to 

compare the result. Although the accuracy of the Imbalanced 

dataset-RF is moderate, the results of TPR, precision, and F-

Measure of Imbalanced dataset-RF are very low for minor 

classes (fatal and serious) and bias to the major class (slight). 

This bias is because the distribution of the original dataset is 

imbalanced. The accuracy paradox problem occurs when the 

classifier is trained using an imbalanced dataset. After 

oversampling the dataset using different techniques, SMOTE, 

SVM-SMOTE, borderline1-SMOTE, and ADASYN, the RF 

classifier achieves a significant enhancement in predicting all 

classes and increasing the accuracy as shown in Table VII. In 

comparing those models, the proposed model-SMOTE-RF 

obtained superiority according to the evaluation metrics used. 

 

TABLE VI 

EVALUATION RESULTS OF THE PROPOSED PREDICTIVE MODELS USING DIFFERENT CLASSIFIERS 

 

Oversampling Data Splitting 

 

Classifier Accuracy 

 

Training Time 

 

Kappa Statistics 

    Dataset-1 

 

Dataset-2 Dataset-1 

 

Dataset-2 Dataset-1 

 

Dataset-2 

SMOTE 10-folds CV  RF 92.80 % 86.04% 69.44 Sec 
 

3.65 Sec 0.890 0.7904 

KNN 90.14 % 81.60 % 

 

0.09 Sec 

 

0.01 Sec 0.8512 0.7249 

NB 77.25 % 67.82 % 0.04 Sec 0.06 Sec 0.6464 0.5170 

 DT 73.55% 77.80% 5.14 Sec 0.70 Sec 0.6032 0.6672 

 ET 84.66% 81.81% 78.71 Sec 24 Sec 0.7700 0.7273 

Holdout 
 

RF 92.60% 84.90% 78.22 Sec 4.57 Sec 
 

0.8879 0.7735 

KNN 90.18 % 80.42% 0.07 Sec 0.04 Sec 

 

0.8518 0.7076 

NB 76.70 % 67.47 % 0.04 Sec 0.01 Sec 0.6384 0.5115 

  DT 73.69% 80.00% 0.51 Sec 0.08 Sec  0.6053 0.6702 

  ET 84.62% 82.32% 8.78 Sec 2.21 Sec 0.7693 0.7350 

SVMSMOTE 10-folds CV 

 

RF 85 % 82.85 % 102.60 Sec 5.79 Sec 0.7646 0.7358 

KNN 78.44 % 80.24 % 0.02 Sec 0.01 Sec 0.6703 0.697 

NB 66.10 % 67.89 % 0.44 Sec 0.01 Sec 0.4879 0.5059 

 DT 77.34% 79.79% 4.96 Sec 0.56 Sec 0.6501 0.6886 

 ET 85.86% 84.08% 65.13 Sec 19.87 Sec 0.7812 0.7542 

Holdout 

 

RF 82.77% 82.11% 44.46 Sec 4.12 Sec 0.7415 0.725 

KNN 77.51 % 79.64 % 0.06 Sec 0.02 Sec 0.6563 0.688 

NB 66.34 % 67.33 % 0.03 Sec 0.01 Sec 0.4896 0.4998 

  DT 77.25% 80.00% 0.47 Sec  0.06 Sec 0.6486 0.6919 

  ET 85.72% 84.12% 5.80 Sec 1.71 Sec 0.7791 0.7550 

BLSMOTE 10-folds CV  RF 86.08% 82.08 % 114.79 Sec 5.58 Sec 0.7912 0.7311 

KNN 79.02% 79.47 % 0.04 Sec 0.01 Sec 0.6853 0.692 

NB 66.54 % 62.05% 0.05 Sec 0.01 Sec 0.4927 0.4307 

 DT 78.28% 79.50% 5.24Sec 1.19 Sec 0.6743 0.6928 

 ET 86.63% 82.94 64.53Sec 21.22 Sec 0.7995 0.7442 

Holdout 

 

RF 85.44% 80.64 % 52.51 Sec 5.1 Sec 0.7817 0.7096 

KNN 77.29 % 78.49 % 0.04 Sec 0.01 Sec 0.6594 0.6776 

NB 64.26 % 62.05% 0.05 Sec 0.01 Sec 0.4646 0.4307 

  DT 78.16% 79.54% 0.52 Sec 0.07 Sec 0.6725 0.6934 

  ET 86.87% 83.20% 7.31 Sec 2.53 Sec 0.8031 0.7481 

ADASYN 10-folds CV  RF 85.29% 82.85% 91.68 Sec 18.29 Sec 0.779 0.7429 

  KNN 75.15% 77.68% 9.17 Sec 5.87 Sec 0.626 0.6657 

  NB 51.63% 40.82% 0.44 Sec 0.11 Sec 0.274 0.1064 

  DT 76.18% 79.55% 5.40 Sec 1.01 Sec 0.6428 0.6935 

  ET 86.35% 83.32% 77.39 Sec 24.11 Sec 0.7951 0.7501 

 Holdout 

 

RF 84.67% 82.61% 5.27 Sec 0.92 Sec 0.7699 0.7393 

  KNN 75.14% 74.73% 0.45 Sec 0.01 Sec 0.6260 0.6220 

  NB 51.63% 40.83% 0.03 Sec 0.01 Sec 0.2743 0.1064 

  DT 76.11% 80.20% 0.62 Sec 0.06 Sec 0.6414 0.7034 

  ET 86.48% 83.63% 7.31 Sec 1.97 Sec 0.7970 0.7545 
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TABLE VII 
EVALUATION RESULTS AND COMPARISON FOR THE PROPOSED PREDICTIVE MODELS WITH THE RF CLASSIFIER -DATASET 1 

 
Data Splitting Holdout 10-folds CV 

   Proposed model-oversampling technique X-RF 

Metric Class Imbalanced 

dataset [15] 

SMOTE SVMSMOTE 

 

BLSMOTE ADASYN  SMOTE  SVMSMOTE 

 

BLSMOTE ADASYN  

TRP 

(Recall) 

Fatal 0.152 0.993 0.974 0.989 0.984 0.993 0.970 0.988 0.985  

Serious 0.039 0.862 0.764 0.798 0.817 0.859 0.761 0.810 0.822  

Slight 0.957 0.914 0.866 0.777 0.741 0.922  0.871 0.786 0.756 

FPR Fatal 0.012 0.004 0.016 0.017 0.031 0.004 0.014 0.015 0.029 

Serious 0.124 0.043 0.078 0.107 0.121   0.039 0.078 0.104 0.115 

Slight 0.467 0.065 0.151 0.095 0.081 0.067 0.150 0.091 0.080 

Precision Fatal 0.151 0.991 0.944 0.967 0.938  0.992 0.951 0.970 0.943  

Serious 0.220 0.885 0.864 0.787 0.783  0.895 0.860   0.795 0.793  

Slight 0.962 0.898 0.789 0.805 0.818 0.896 0.782 0.815 0.824 

F-

Measure 

Fatal 0.151 0.992 0.959 0.978 0.960 0.992 0.961 0.979 0.964  

Serious 0.066 0.873 0.811 0.793 0.800 0.873 0.810 0.802 0.807  

Slight 0.959 0.906 0.825 0.791 0.777 0.906 0.822 0.800 0.789 

AUC Average NA. 0.976 0.994 0.954 0.961 0.976 0.993 0.957 0.954 

MCC Average NA. 0.888 0.769 0.781 0.769 0.891 0.770 0.791 0.800 

Accuracy  85.08% 92.60 % 84.93% 85.44% 84.56% 92.80 % 85.10% 86.08% 85.29% 

The single metric used in [15] is the accuracy when using 

the KNN classifier. The data splitting approach is holdout 

(70%,30%). Table VIII shows only the accuracy of the KNN 

classifier that is trained by the imbalanced training data as 

recorded in [15] then trained by the balanced data. Also, the 

proposed model-SMOTE-KNN(Holdout), seems to increase 

the model's accuracy from 80.39% to 90.18%.  

By observing the specific performance for each class in Table 

IX, we can confirm that the proposed model-SMOTE-KNN 

is strong in predicting all classes, whether the data is split 

using 10-folds CV or holdout during the training phase. 

Although FPR values of the imbalanced dataset for fatal and 

serious accidents are higher than others, the result is very 

close to the proposed model-SMOTE-KNN. There is an 

excellent enhancement in FPR for slight accidents. Tables X, 

XI, and XII show the evaluation results of each class for the 

proposed predictive model with the NB, DT, and ET 

classifiers using dataset 1, respectively. The results indicate 

that all models enhance predicting each class, and there is no 

superiority based on all used metrics between them. 

 

 
 

 

 
TABLE VIII 

 THE ACCURACY RESULTS AND COMPARISON FOR THE PROPOSED 

PREDICTIVE MODELS WITH THE KNN CLASSIFIER -DATASET 1 

 

Metric Accuracy 

Imbalanced dataset-KNN[15] (Holdout) 80.39% 

Proposed model-SMOTE-KNN(Holdout) 90.18% 

Proposed model-SMOTE-KNN (10-folds CV) 90.14 % 

Proposed model-SVMSMOTE-KNN (Holdout) 77.51 % 

Proposed model-SVMSMOTE-KNN (10-folds CV) 78.44 % 

Proposed model-BLSMOTE-KNN (Holdout) 77.29 % 

Proposed model-BLSMOTE-KNN (10-folds CV) 79.02% 

Proposed model-ADASYN-KNN (Holdout) 75.14% 

Proposed model-ADASYN-KNN (10-folds CV) 75.15% 

 

 

TABLE IX   

 EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE KNN CLASSIFIER -DATASET 1     

 

Data Splitting Holdout 10-folds CV 

  
 

Proposed model-oversampling technique X-KNN 

Metric Class 
Imbalanced 

dataset  

SMOTE SVMSMOTE BLSMOTE ADASYN SMOTE SVMSMOTE BLSMOTE ADASYN  

TRP 

(Recall) 

Fatal 0.017   0.990     0.973 0.982 0.989  0.989     0.967 0.986   0.990 

Serious 0.063  0.860     0.763 0.742 0.871  0.858     0.771 0.782 0.911 

Slight 0.932  0.855     0.677 0.597 0.391  0.856     0.695 0.602 0.498 

FPR Fatal 0.004 0.008     0.065 0.089 0.113 0.006     0.062 0.071 0.081 

Serious 0.065 0.073     0.166 0.167 0.237  0.074     0.156 0.165 0.198 

Slight 0.931  0.065     0.120 0.085 0.026  0.067     0.118 0.079 0.025 

Precision Fatal 0.071   0.984       0.806 0.844   0.806 0.988       0.813 0.875 0.855 

Serious 0.170 0.820       0.749 0.695 0.662 0.819       0.760 0.703 0.711 

Slight 0.809  0.891       0.783 0.777 0.883  0.888       0.790 0.792 0.910 

F-
Measure 

Fatal 0.028   0.987       0.881 0.908 0.888  0.988 0.884 0.927 0.918 

Serious 0.092 0.839       0.756 0.718 0.752   0.838  0.766 0.741 0.798 

Slight 0.866 0.873       0.726 0.675 0.543 0.872 0.740 0.684 0.644 

AUC Average 0.555 0.927 0.915 0.908 0.961 0.926 0.920 0.919 0.924 

MCC Average 0.008 0.851 0.674 0.660 0.651 0.850 0.687  0.687 0.719 
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TABLE X 

EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE NB CLASSIFIER -DATASET 1

 

TABLE XI 

EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE DT CLASSIFIER -DATASET 1 
 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-DT 

Metric Class Imbalanced 

dataset  

SMOTE SVMSMOTE BLSMOTE  ADASYN  SMOTE  SVMSMOTE  BLSMOTE  ADASYN  

TRP 

(Recall) 

Fatal 0.042  0.906 0.937 0.969 0.940 0.904 0.937 0.968 0.938 

Serious 0.221  0.655  0.743 0.712 0.712 0.657  0.747 0.711 0.709 

Slight 0.780 0.652 0.712 0.666 0.642 0.647 0.711 0.671 0.645 

FPR Fatal 0.022 0.075 0.031 0.034 0.060 0.075 0.031 0.032 0.060 

Serious 0.199 0.174 0.173 0.158 0.168 0.174 0.173 0.157 0.168 

Slight 0.752 0.149 0.163 0.135 0.130 0.149 0.160 0.138 0.132 

Precision Fatal 0.034  0.856  0.896 0.934 0.882 0.858  0.893 0.938 0.883 

Serious 0.185 0.656 0.735 0.690 0.693 0.652 0.736 0.692 0.693 

Slight 0.818 0.690 0.739 0.714 0.709 0.688 0.742 0.714 0.705 

F-

Measure 

Fatal 0.038  0.880  0.916 0.952 0.910 0.881  0.915 0.952 0.910 

Serious 0.201  0.655  0.739 0.701 0.702 0.654  0.741 0.701 0.701 

Slight 0.798 0.670 0.725 0.690 0.674 0.667 0.726 0.692 0.674 

AUC Average 0.613 0.952 0.954 0.960 0.961 0.802 0.838 0.837 0.822 

MCC Average 0.023 0.606 0.649 0.673 0.645 0.604 0.650 0.675 0.643 

 

 TABLE XII 

EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE ET CLASSIFIER -DATASET 1 
 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-ET 

Metric Class Imbalanced 

dataset  

SMOTE SVMSMOTE BLSMOTE  ADASYN  SMOTE  SVMSMOTE  BLSMOTE ADASYN  

TRP 

(Recall) 

Fatal 0.010 0.977  0.977 0.986  0.984  0.976  0.978 0.987 0.987  

Serious 0.027 0.789 0.781  0.827 0.835 0.787 0.781  0.826 0.834 

Slight 0.983 0.774 0.868 0.794 0.774  0.77 0.871 0.787 0.774  

FPR Fatal 0.001 0.034 0.012 0.012 0.023 0.034 0.011 0.014 0.021 

Serious 0.017 0.104 0.079 0.100 0.107 0.103 0.076 0.103 0.11 

Slight 0.974 0.092 0.140 0.085 0.077 0.093 0.143 0.085 0.078 

Precision Fatal 0.001         0.931 0.957  0.975  0.953 0.934 0.960  0.973 0.956 

Serious 0.246  0.789 0.865 0.804  0.806 0.791 0.870  0.799 0.807 

Slight 0.814 0.812 0.799 0.826 0.831 0.810 0.798 0.826 0.829 

F-

Measure 

Fatal 0. 002         0.954 0.967  0.981 0.968  0.955 0.969  0.980 0.971  

Serious 0.048  0.789 0.821 0.815 0.820 0.790 0.823  0.813 0.821 

Slight 0.890 0.793 0.831 0.810 0.801 0.793 0.833 0.806 0.801 

AUC Average 0.613 0.952 0.954 0.960 0.961 0.953 0.954 0.961 0.962 

MCC Average 0.025 0.770 0.781 0.803 0.795 0.770 0.783 0.800 0.796 

 

 

 
 

Data Splitting Holdout 10-folds CV 

  Proposed model-oversampling technique X-NB 

Metric Class Imbalanced 

dataset  

 

SMOTE SVMSMOTE BLSMOTE  ADASYN  SMOTE  SVMSMOTE  BLSMOTE  ADASYN  

TRP 

(Recall) 

Fatal 0.164 0.834 0.802 0.862 0.697  0.854 0.824 0.808 0.687  

Serious 0.103 0.415 0.495 0.445 0.506 0.408 0.482 0.493 0.506 

Slight 0.925 0.963 0.756 0.627 0.350 0.963 0.749 0.758 0.340 

FPR Fatal 0.027 0.003 0.148 0.225 0.312 0.004 0.162 0.148 0.312 

Serious 0.051 0.045 0.111 0.151 0.304 0.038 0.102 0.107 0.304 

Slight 0.847 0.322 0.252 0.160 0.110 0.322 0.247 0.251 0.115 

Precision Fatal 0.092 0.992 0.601 0.652 0.516  0.992 0.587 0.603 0.514  

Serious 0.297 0.779 0.743 0.602 0.471 0.805 0.752 0.746 0.451 

Slight 0.824 0.652 0.657 0.662 0.608 0.653 0.661 0.659 0.605 

F-

Measure 

Fatal 0.118 0.906 0.687 0.742 0.593 0.918 0.686 0.691 0.591 

Serious 0.153 0.542 0.594 0.512 0.488 0.542 0.588 0.594 0.482 

Slight 0.872 0.778 0.703 0.644 0.444 0.778 0.702 0.705 0.441 

AUC Average 0.619 0.935 0.823 0.818 0.961 0.935 0.825 0.825 0.706 

MCC Average 0.103 0.665 0.490 0.465 0.281 0.674 0.489 0.493 0.281 
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TABLE XIII   

 EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE RF CLASSIFIER -DATASET-2 

 

Data Splitting Holdout 10-folds CV 

  Proposed model-oversampling technique X-RF 

Metric Class SMOTE SVMSMOTE BLSMOTE ADASYN SMOTE SVMSMOTE BLSMOTE ADASYN  

TRP 

(Recall) 

Fatal 0.986 0.959 0.973 0.968   0.984 0.967 0.976 0.971  

Serious 0.821 0.781 0.722 0.798 0.857 0.764 0.753 0.798 

Slight 0.757 0.816 0.728 0.711 0.760 0.816 0.733 0.715 

FPR Fatal 0.023 0.035 0.053 0.032 0.019 0.031 0.048 0.029 

Serious 0.119 0.097 0.124 0.138 0.122 0.100 0.121 0.115 

Slight 0.087 0.151 0.114 0.091 0.071 0.143 0.100 0.080 

Precision Fatal 0.991 0.887 0.899 0.939  0.958 0.898 0.911 0.941 

Serious 0.885 0.833 0.744 0.733  0.778 0.831 0.757 0.736  

Slight 0.898 0.772 0.766 0.803 0.859 0.786 0.785 0.805 

F-

Measure 

Fatal 0.992 0.922 0.935 0.954 0.971 0.931 0.943 0.956  

Serious 0.873 0.788 0.733 0.764 0.816 0.796 0.755 0.766  

Slight 0.906 0.794 0.747 0.754 0.807 0.801 0.758 0.758 

AUC Average 0.978 0.933 0.927 0.934 0.950 0.938 0.934 0.940 

MCC Average 0.867 0.741  0.707 0.741 0.795 0.752 0.730 0.744 

 

TABLE XIV  

 EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE KNN CLASSIFIER -DATASET 2 
 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-KNN 

Metric Class SMOTE SVMSMOTE BLSMOTE ADASYN SMOTE SVMSMOTE BLSMOTE ADASYN 

TRP 

(Recall) 

Fatal 0.987 0.969 0.974 0.965 0.985 0.970 0.979 0.967  

Serious 0.869 0.785 0.767 0.811  0.893 0.800 0.783 0.795 

Slight 0.590 0.709 0.620 0.470 0.604 0.712 0.622 0.570 

FPR Fatal 0.034 0.052 0.074 0.087 0.027 0.045 0.066 0.066 

Serious 0.202 0.152 0.166 0.237 0.201 0.154 0.165 0.195 

Slight 0.056 0.116 0.083 0.052 0.049 0.113 0.077 0.072 

Precision Fatal 0.928 0.842 0.864 0.850  0.940 0.857 0.881 0.882   

Serious 0.677 0.769 0.699 0.618  0.690 0.770 0.704 0.660 

Slight 0.856 0.794 0.794 0.824 0.876 0.802 0.801 0.803 

F-

Measure 

Fatal 0.956 0.901 0.916 0.904  0.962 0.910 0.928 0.923  

Serious 0.761 0.777 0.731 0.702  0.778 0.785 0.741 0.721 

Slight 0.699 0.749 0.696 0.599 0.715 0.754 0.700 0.667 

AUC Average 0.911 0.923  0.909 0.934 0.929 0.927 0.917 0.908 

MCC Average 0.721 0.704 0.678 0.638 0.740 0.714 0.694 0.673 

 

TABLE XV 

 EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE NB CLASSIFIER -DATASET 2 
 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-NB 

Metric Class SMOTE SVMSMOTE BLSMOTE  ADASYN  SMOTE SVMSMOTE  BLSMOTE ADASYN  

TRP 
(Recall) 

Fatal 0.827 0.730 0.792 0.974  0.832 0.724 0.787 0.974 

Serious 0.587 0.557 0.397 0.043  0.618 0.550 0.404 0.043 

Slight 0.624 0.759 0.681 0.192 0.605 0.783 0.670 0.192 

FPR Fatal 0.085 0.114 0.188 0.812 0.087 0.102 0.184 0.822 

Serious 0.224 0.140 0.177 0.019 0.235 0.136 0.182 0.019 

Slight 0.183 0.249 0.201 0.053 0.165 0.261 0.203 0.054 

Precision Fatal 0.814 0.645 0.671 0.377 0.807 0.664 0.682 0.377 

Serious 0.561 0.720 0.529 0.522  0.568 0.722 0.526 0.522 

Slight 0.660 0.657 0.634 0.650 0.677 0.659 0.623 0.650 

F-

Measure 

Fatal 0.821 0.685 0.727 0.544  0.819 0.693 0.730 0.544 

Serious 0.574 0.628 0.453 0.080        0.592 0.624 0.457 0.080 

Slight 0.642 0.705 0.657 0.296 0.639 0.716 0.646 0.296 

AUC Average 0.845 0.828 0.809 0.688 0.850 0.827 0.807 0.687 

MCC Average 0.509 0.497 0.430 0.181 0.514 0.504 0.428 0.181 
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TABLE XVI 
EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE DT CLASSIFIER -DATASET 2 

 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-DT 

Metric Class SMOTE SVMSMOTE BLSMOTE ADASYN  SMOTE SVMSMOTE BLSMOTE ADASYN 

TRP 

(Recall) 

Fatal 0.962     0.969    0.975  0.962  0.969     0.975  0.976  0.976 

Serious 0.751 0.790  0.773 0.750  0.787 0.772 0.795 0.786 

Slight 0.630 0.717 0.643 0.626 0.715 0.642 0.636 0.625 

FPR Fatal 0.059 0.030 0.049 0.060 0.030 0.052 0.041 0.044 

Serious 0.170 0.167 0.167 0.172 0.168 0.166 0.170 0.173 

Slight 0.102 0.123 0.090 0.100 0.126 0.089 0.084 0.089 

Precision Fatal 0.887 0.900  0.907 0.889  0.900  0.903 0.924 0.920 

Serious 0.684 0.750  0.692 0.679 0.748 0.693 0.689 0.683 

Slight 0.766 0.792 0.787 0.763 0.788 0.789 0.796 0.784 

F-

Measure 

Fatal 0.924 0.933  0.940 0.924  0.934  0.938  0.949 0.947 

Serious 0.716  0.769  0.730 0.713  0.767 0.731 0.738 0.731 

Slight 0.691 0.753 0.708 0.688 0.750 0.692 0.707 0.696 

AUC Average 0.921 0.932 0.928 0.866 0.884 0.877 0.934 0.882 

MCC Average 0.673 0.693 0.697 0.670 0.690 0.696 0.707 0.697 

 

 
TABLE XVII 

EVALUATION RESULTS FOR THE PROPOSED PREDICTIVE MODELS WITH THE ET CLASSIFIER -DATASET 2 

 

Data Splitting Holdout 10-folds CV 

 Proposed model-oversampling technique X-ET 

Metric Class SMOTE SVMSMOTE BLSMOTE ADASYN  SMOTE SVMSMOTE BLSMOTE ADASYN 

TRP 

(Recall) 

Fatal 0.974  0.969 0.978 0.978  0.974  0.970  0.978 0.978 

Serious 0.787 0.801  0.794 0.814 0.780 0.797  0.784 0.810 

Slight 0.712 0.810 0.726 0.717 0.703 0.813 0.728 0.712 

FPR Fatal 0.034 0.012 0.012 0.032 0.045 0.022 0.040 0.033 

Serious 0.104 0.079 0.100 0.133 0.139 0.112 0.128 0.135 

Slight 0.092 0.140 0.085 0.079 0.090 0.122 0.088 0.081 

Precision Fatal 0.916 0.923 0.923 0.939 0.916 0.924 0.924 0.938 

Serious 0.741 0.818 0.749  0.744 0.732 0.819  0.749 0.740 

Slight 0.810 0.816 0.821 0.823 0.803 0.814 0.811 0.820 

F-
Measure 

Fatal 0.944 0.945 0.950 0.958  0.944 0.946 0.950 0.958 

Serious 0.763 0.810 0.771 0.777 0.755 0.808 0.766 0.773 

Slight 0.758 0.813 0.771 0.767 0.750 0.814 0.768 0.762 

AUC Average 0.921 0.932 0.928 0.934 0.921 0.932 0.928 0.935 

MCC Average 0.736 0.755 0.749 0.756 0.729 0.754 0.745 0.752 

 

After balancing the dataset-2 using different oversampling 

techniques, SMOTE, SVMSMOTE, BLSMOTE, and 

ADASYN, they are analyzed using different classifiers, RF, 

KNN, NB, DT, and ET, for the prediction of accident 

severity. The proposed model-SMOTE-RF and proposed 

model-SVMSMOTE-RF outperformed the others according 

to the comparative metrics as shown in Table XIII. By 

observing the results in Table XIV, the same conclusion is 

obtained. The Holdout data splitting method is suitable with 

the proposed model-SMOTE-RF, whereas the 10 folds CV is 

suitable with the proposed model-SMOTE-KNN. Table XV 

shows the evaluation results for the proposed predictive 

models with the NB classifier. These models prove that 

SMOTE, SVMSMOTE, and ADASYN cause a significant 

enhancement than BLSMOTE. The results in Table XVI 

indicate that all models enhance predicting each class, and 

there is no superiority based on all used metrics between 

them, whereas, in Table XVII, the proposed model-SMOTE-

ET has low performance than others. In all the cases, the best 

performance of the classifier is RF, followed by KNN and 

ET, and then by NB and DT.  

For companies' real application of such models, this is 

reflected in a more accurate prediction about fatal accidents 

or those causing injury and a certain number of false alarms 

(the FP instances) that are mistakenly classified as severe. 
The output of the classifiers is the accident severity class  

(Fatal, Serious, or Slight). In [14], the two minor classes 
(Fatal and Serious) are consolidated as one class. We named 
the "Fatal and Serious " class as "A," whereas the "Slight" 
class as "B." In [14], the dataset splitting approach is the 
holdout (70%, 30%). We consolidated the classes before 
applying the proposed predictive model as presented in 
Tables XVIII and XIX for comparison purposes. They show 
the performance of models in predicting each class. In the 
imbalanced dataset, predicting the minor class (A) is very 
weak. Whereas in the case of RUMS-based classifiers, the 
result of the classifiers decreases for predicting class (B) and 
increases for predicting class (A). In the case of the proposed 
predictive model, the performance of the models significantly 
increases for predicting both classes. 
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TABLE XVIII 

COMPARISON FOR THE PROPOSED PREDICTIVE MODELS WITH THE RF CLASSIFIER -DATASET 2 

 
TABLE XVIII 

COMPARISON FOR THE PROPOSED PREDICTIVE MODELS WITH THE KNN CLASSIFIER -DATASET 2 

 
    Proposed model-oversampling technique X-KNN 

Metric Class Imbalanced 
dataset-

KNN[14] 

RUMC-
KNN[14]  

SMOTE SVMSMOTE BLSMOTE ADASYN 

TRP (Recall) A 0.183 0.572 0.907 0.822 0.904 0.869  

B 0.885 0.470 0.672 0.710 0.661 0.520 

FPR A 0.115 0.530 0.328 0.290 0.339 0.480 

B 0.817 0.428 0.093 0.178 0.096 0.132 

Precision A 0.209 0.152 0.729 0.741 0.721 0.641  

B 0.867 0.869 0.881 0.799 0.876 0.800 

F-Measure A 0.195 0.240 0.808 0.779 0.802   0.738  

B 0.876 0.610 0.763 0.752 0.754 0.630 

The results indicated that reasonable prediction is obtained 
from applying the proposed predictive model-BLSMOTE-
RF, and the proposed predictive model-SMOTE-KNN. They 
also reveal that when applying the proposed predictive 
model-RF or the proposed model-KNN classifiers on a 
different dataset, there is a significant enhancement in 
performance for predicting the minority classes. Indeed, the 
proposed predictive model can predict satisfying both class 
(A) and class (B). 

V. CONCLUSION  

With realizing the importance of traffic safety and 
sustainable transportation in our lives, we demonstrated a 
new proposed predictive model for traffic accident severity 
prediction in this paper. Different models (RF, KNN, NB, 
DT, ET) classifiers have been employed after solving the 
class imbalance problem through SMOTE, SVMSMOTE, 
BLSMOTE, and ADASYN.  Two real-world datasets have 
been utilized for training and testing these models. Several 
evaluation metrics have been employed to confirm the 
proposed predictive model that predicts minor and major 
classes. According to the results of the proposed predictive 
model-SMOTE-RF (10-folds CV) using dataset-1, the 
accuracy is 92.80 %, Kappa statistics is 0.8909, and the 
training time is 69.44 seconds. Using dataset-2, the accuracy 
is 86.04%, Kappa statistics is 0.7904, and the training time is 
3.65 seconds. In comparison, the proposed predictive model-
KNN and proposed predictive model-NB are fast compared 
to others proposed models. The superior performance of our 
proposed predictive model revealed that it could be used as a 
reliable and robust tool that improves traffic safety 
management. 
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