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[4]–[6]. Many approaches have been proposed for text-to-
image synthesis. In work [3], the authors proposed GAN-
INT-CLS that is able to synthesize images based on the
text description. The GAN-INT-CLS adopted the architecture
of deep convolutional GANs [7], where it consists of a
set of convolutional layers to produce the images. The text
description is encoded as an embedding [8]and used to
condition the generated images. Even though GAN-INT-CLS
is able to produce the image with the correct object, it cannot
control the object details such as location and pose. To deal
with this issue, [9] proposed Generative Adversarial What-
Where Network (GAWWN) which is able to generate images
from the description with the desired location. GAWWN
locates the object based on the bounding box or keypoint
as input.

As the image produced by GAN-INT-CLS lacks some
visual detail, [10] proposed StackGAN which is able to
produce higher dimensional images with more complete
visual details. StackGAN is divided into 2 stages: Stage-I
produces small 64×64 pixels images with a rough object
structure while Stage-II enhances those details and expands
them into larger 256×256 pixels images. Furthermore, [11]
proposed StackGAN++ as the improved StackGAN. This
approach contains multiple generators and discriminators in a
tree-like structure. Every generator produces a different scale
of images and serves as the input to the next generator to
finally construct the larger output.

To produce images containing the object mentioned in
the text description, [12] proposed text-conditioned auxiliary
classifier GANs (TAC-GAN) which uses the object labels
as extra input during the synthesis process. The discrim-
inator in TAC-GAN classifies whether the input image is
real or fake and also predicts the class label. The use of
class labels improves the structural coherence of the image.
[13] proposed Attentional Generative Adversarial Network
(AttnGAN) which uses attention techniques and multi-stage
architecture to generate fine-grained visual information.

III. ENHANCED TEXT-TO-IMAGE SYNTHESIS MODEL

This section describes the proposed enhanced text-to-
image synthesis model in detail. As GANs were initially
used for generating images based on the training images
and random noise, they are susceptible to training instability.
This is due to the generator being too focused on defeating
the discriminator, hence using the wrong features to generate
images even though the generated images may not be visually
realistic. Furthermore, the images generated by GANs are
not associated with any text description. To that end, the
conditional GANs (cGANs) were proposed where the images
are synthesized based on the given class labels. Later, a
variant of cGANs, known as GAN-INT-CLS were introduced
where the generated images are conditioned on the text
descriptions instead of class labels.

In view of this, to produce images that are semantically
consistent to the given text description, this paper lever-
ages GAN-INT-CLS that synthesize images conditioned on
the text description. The proposed enhanced text-to-image
synthesis cGANs consist of two networks: generator and
discriminator. The generator receives random noise and text
description as input and synthesizes images as output. On
the other hand, the discriminator receives the real images,

synthesized images and text description as input. The dis-
criminator subsequently predicts whether the generated im-
age is real or fake. The overall architecture of the enhanced
text-to-image synthesis cGANs is illustrated in Fig. 1.

A. Preliminaries

The text-to-image synthesis cGANs comprises two net-
works: a generator and a discriminator. The generator is
denoted as G and the discriminator is denoted as D. The
input noise vector is randomly sampled from multivariate
standard normal distribution as z ∈ RZ ∼ N (0, 1) where Z
denotes the length of the vector, 0 represents the zeros vector,
and 1 defines the identity matrix with the dimension of Z×Z.
The text description is denoted as t and is encoded by a
pretrained character-level convolutional neural networks with
recurrent neural network (char-CNN-RNN) text encoder [8]
fψ (t) to produce the 1024-dimensional embedding h where
h = fψ (t).

B. Network Architecture

This section presents the network architecture of the
generator G and discriminator D.

1) Generator: Table I presents the architecture of the
generator. The generator consists of two components, namely
conditioning augmentation function fCA and modeling fϵ.

The text conditioning augmentation function fCA is intro-
duced to generate more conditioning variables through the
augmentation for generator learning. The text conditioning
augmentation function fCA is composed of a dense layer
with 1024 nodes and activated by the Rectified Linear
Unit function (ReLU). The input of the text conditioning
augmentation function fCA is the text embedding h and the
output is the augmented text embeddings.

The modeling component fϵ acts as the text-to-image
synthesizer in the generator. The modeling component fϵ
consists of a dense layer and 4 deconvolutional layers. The
first dense layer has 356 nodes and is activated by the ReLU
function. The output of the dense layer is expanded to fit
into the subsequent deconvolutional layer. The first three
deconvolutional layers use 512, 256, and 128 filters of the
size 4×4, with batch normalization and ReLU activation
function, respectively. The fourth deconvolutional layer uses
64 filters of the size 4×4 and tanh activation function. The
final output of the modeling component fϵ is the synthesized
image with the resolution of 128×128 pixels.

TABLE I
THE CONFIGURATION AND NETWORK ARCHITECTURE OF THE

GENERATOR.

Component Configuration
Text Conditioning dense 1024, ReLU

Augmentation fCA
Modeling fϵ dense 356, ReLU

convTranspose filter 4×4×512, batchnorm, ReLU
convTranspose filter 4×4×256, batchnorm, ReLU
convTranspose filter 4×4×128, batchnorm, ReLU

convTranspose filter 4×4×64, tanh

2) Discriminator: Table II shows the architecture of the
discriminator. The discriminator consists of two components:
image embedding fθ and classification fcls.
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This bird has wings
that are black and
has a yellow belly.

Fig. 1. The overall architecture of the proposed enhanced text-to-image synthesis cGANs. The text description is encoded through pre-trained text encoder
fψ to obtain its embedding h. The h is augmented through fCA to obtain augmented haug and hµ. The haug is concatenated with random noise z
before sending to fϵ to generate a fake image x′. The x′ is encoded through fθ to obtain the image embedding x′

m. After that, the x′
m is concatenated

with augmented text embedding hµ as the input for fcls to return the prediction score s.

The image embedding fθ comprises 4 convolutional layers
with 3, 64, 128, and 256 filters, respectively. Each filter is of
the size 4 × 4. Every convolutional layer is activated by the
leaky ReLU function and followed by a batch normalization
layer. The image embedding fθ returns the extracted features
from the input image.

The classification fcls consists of one convolution layer
with sigmoid function to classify whether the image is fake
or real. The input to classification fcls are the augmented
text embeddings and the image features, while the output is
the predicted class label.

TABLE II
THE CONFIGURATION AND NETWORK ARCHITECTURE OF THE

DISCRIMINATOR.

Component Configuration
Image Embedding fθ conv filter 4×4×3, batchnorm, leaky ReLU

conv filter 4×4×64, batchnorm, leaky ReLU
conv filter 4×4×128, batchnorm, leaky ReLU
conv filter 4×4×256, batchnorm, leaky ReLU

Classification fcls conv filter 8×8×768, sigmoid

C. Process

This section describes the input, process and output of the
generator G and discriminator D in the enhanced text-to-
image synthesis cGANs.

1) Generator: The generator G in text-to-image synthesis
cGANs aims to produce images that can deceive the dis-
criminator into classifying the images as real images. The
generator receives the text embedding h and a random latent
variable z sampled from the Gaussian distribution N (0, 1).

As the text embedding h is nonlinearly transformed in the
generator, it might cause data discontinuity and negatively
impact the generator’s learning. In view of this, this paper
proposes a text conditioning augmentation function. The
text conditioning augmentation function fCA addresses this
problem by synthesizing more sample pairs from a given
small set of input pairs. In the text conditioning augmentation
function fCA, the text embedding h is encoded through
a linear layer with ReLU activation function f to obtain
256-dimensional augmented text embeddings hµ and hσ .
Subsequently, the latent variable z multiplied with hσ and

added with hµ to obtain the augmented text embedding haug .
The process of the conditioning augmentation is shown in
Fig. 2.

hµ, hσ = f (h)

haug = z × hσ + hµ
(1)

Linear + relu

Fig. 2. The process of the text conditioning augmentation function fCA.

The text conditioning augmentation incorporates an ad-
ditional loss function LCA into the generator which is
determined by:

LCA = DKL (N (hµ, hσ) ∥ N (0, 1)) (2)

where DKL refers to the Kullback-Leibler divergence be-
tween the conditioned Gaussian distribution N (hµ, hσ) and
standard Gaussian distribution N (0, 1). With the text condi-
tioning augmentation, the images are associated with more
semantically similar text descriptions, thus improving the
semantic consistency of the synthesized images. The out-
put of the conditioning augmentation function fCA are the
augmented text embedding haug , hµ, and hσ , which serve
as the input to the modeling component fϵ of the generator.

Given the latent variable z and augmented text embeddings
haug , the modeling component fϵ synthesizes the images
to fool the discriminator. The process of the modeling
component fϵ is defined as:

x′ = fϵ (z, haug) (3)

where x′ represents the generated images. Given Equation 1
and 3, the overall process of the generator is defined as:

x′, hµ, hσ = G (z, h) (4)
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As the generator focuses on deceiving the discriminator
into believing the synthesized images are true, the genera-
tor tends to synthesize similar images that had previously
successfully deceived the discriminator. The scenario of
synthesizing images with low varieties is known as mode
collapse. In order to mitigate the mode collapse issue, we
integrate an additional feature matching loss function into
the generator. Instead of focusing on, The feature matching
loss function shifts the generator’s focus from synthesizing
images to fool the discriminator to synthesizing images that
resemble the real images. In doing so, the generator tends
to synthesize more diverse images similar to the varieties of
the real images. The feature matching loss function Lfm is
defined as:

Lfm = ∥xm − x′
m∥

2
2 (5)

where xm and x′
m denote the real and fake image fea-

tures returned by the image embedding component fθ of
the discriminator. By integrating the feature matching loss
function, the synthesized images are more visually realistic
and semantically consistent to the text description.

In order to further reduce the dissimilarity between real
and fake images, the L1 distance loss is introduced into the
objective function of the generator. The L1 distance loss LL1
computes the distance between the real image x and fake
image x′ and is described as:

LL1 = ∥x− x′∥1 (6)

With the L1 distance loss, the generator strives to minimize
the dissimilarity between the real and fake images. Thus,
improving the synthesized images to be more photo-realistic
and semantic consistent to the real images and associated
text descriptions.

After integrating the additional loss functions introduced
by text conditioning augmentation, feature matching and L1
distance, the final loss function of the generator is defined
as:

LG = log [D (x′, hµ)] + δ · Lfm + η · LL1 + λ · LCA (7)

where log [D (x′, hµ)] is the fundamental loss function for
the generator to defeat the discriminator. The δ, η, and λ are
the coefficients for the feature matching loss Lfm, the L1
distance loss LL1, and the conditioning augmentation loss
LCA. Based on the loss function, the generator synthesizes
image x′ and passes it together with the augmented text
embedding hµ to the discriminator.

2) Discriminator: Upon receiving the real image x, gen-
erated image x′, and the augmented text embedding hµ, the
discriminator D performs classification to determine whether
the image is a real or fake image. The input image x′ is
encoded by the image embedding fθ to obtain the image
features x′

m. The process is defined as:

xm = fθ (x)

x′
m = fθ (x

′)
(8)

The image features are then concatenated with the aug-
mented text embedding hµ, and serve as the input to the
classifier fcls in the discriminator. The classifier fcls classi-
fies the image features and augmented text embedding hµ in

pair to obtain a final decision score s. The general process
in the classifier is defined as:

s = fcls (Xm, hµ) (9)

where Xm includes both real image features xm and fake
image features x′

m and s denotes the final decision score.
Based on Equation 8 and 9, the overall discriminator process
is shown as:

s = D (x, hµ) (10)

In order to train the discriminator to distinguish whether
the given image is real or fake and whether the image is
semantically consistent with the text description, 3 types of
input pairs are used:

• Real image x with matched text description t.
• Real image x with unmatched text description t

′
.

• Fake image x′ with any text description t.
The real and fake image pairs train the discriminator to
distinguish the real image from the fake image while the
matched and unmatched text description pairs train the dis-
criminator to determine the semantic consistency. By utiliz-
ing these input pairs, the discriminator can better distinguish
whether the image is real or fake as well as the relationship
between the image and text description which is not available
in the conventional discriminator.

With the different input pairs, the loss function of the
discriminator is constructed as:

Lr = log [D (x, hµ)] (11)

Lf =
log

[
1−D

(
x, h′

µ

)]
+ log [1−D (x′, hµ)]

2
(12)

LD = Lr + Lf (13)

where Lr denotes the computed loss from the real input
pair. Lf represents the average total loss computed from two
fake input pairs with fake images x′ and unmatched text
description t′. The input h′

µ is the augmented text embedding
for t′ using Equation 1. LD denotes the final loss of the
discriminator. The overall procedure of the enhanced text-
to-image synthesis cGANs is presented in Algorithm 1.

IV. EXPERIMENTS

This section describes the experimental details, including
dataset, hyperparameter settings, evaluation metrics, and ex-
perimental results in comparison with existing methods.

A. Datasets

We have evaluated the enhanced text-to-image GANs on
a widely used dataset: CUB-200-2011 [14]. The CUB-200-
2011 dataset consists of 11788 images from 200 bird species.
The dataset is split into 150 training classes (train+val) and
50 test classes. The splitting of the dataset is based on
the zero-shot experimental settings where all the test data
remain unseen during the training. In the training stage,
each image is paired with 5 randomly selected captions out
of 10 captions. While during the test stage, each image is
paired with all captions available in the dataset. Throughout
the experiments, all images are resized into 128×128 pixels
and normalized into the range of [−1, 1]. Random horizontal
flip is applied as the image augmentation technique in the
training.
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Algorithm 1 The training stage of our proposed enhanced
text-to-image GANs.
Input: Mini batch b from the dataset T , real images x,

matched text description t, unmatched text description
t′.

1: random initialize D and G
2: for e iterations do
3: for b ∼ T do
4: x, t, t′ ← b
5: h← fψ (t)
6: h′ ← fψ (t′)
7: z ∼ N (0, 1)
8: x′, hµ, hσ ← G (z, h)
9: h′

µ ← fCA (h′)
10: Lr ← log [D (x, hµ)]

11: Lf ←
log[1−D(x,h′

µ)]+log[1−D(x′,hµ)]
2

12: LD ← Lr + Lf
13: D ← D −∆σLD/σD
14: Lfm ← ∥fθ (x)− fθ (x

′)∥22
15: LL1 ← ∥x− x′∥1
16: LCA ← DKL (hµ, hσ)
17: LG ← log [D (x′, hµ)]
18: LG ← LG + δ · Lfm + η · LL1 + λ · LCA
19: G← G−∆σLG/σG
20: end for
21: end for

B. Hyperparameter Settings

This section describes the hyperparameter settings of the
enhanced text-to-image synthesis cGANs. For the loss func-
tion of the generator, δ and η are set to 1.0 while λ is set to
2.0. Both the generator and discriminator are trained using
Adaptive Moment Estimation (Adam) optimizer [15] with
learning rate 0.0002. The training epoch is set to 600 and
the learning rate is decayed into half for every 100 epochs.
The batch size is 64 and the dimension of the input noise is
100.

C. Evaluation

In this work, two evaluation metrics, i.e. Inception score
[16] and Structural Similarity Index Matrix (SSIM) [17], are
adopted to evaluate the performance of the enhanced text-to-
image synthesis cGANs. Inception score is widely used for
evaluating the quality of the generated image. The Inception
score is computed as:

I = exp (Ex′DKL (p (y | x′) ∥ p (y))) (14)

where x′ is the image synthesized by the enhanced text-to-
image synthesis cGANs. A pretrained Inception v3 model
[18] is leveraged as the classification model to predict all
images x′ produced by the enhanced text-to-image synthesis
cGANs based on all text descriptions in the test set. The
Inception score evaluates the performance based on the qual-
ity and diversity of the synthesized images, the prediction
accuracy, and the number of object types in the synthesized
images.

SSIM is used to measure the similarity between the
generated images and real images. It can also be used to
measure the semantic consistency of the generated images

as the real images and generated images are from the same
text description. The generated images and real images with
the same text description are evaluated as a pair in SSIM.
The average score of all pairs are computed as the final SSIM
result.

D. Ablation Study

An ablation study is performed to evaluate each compo-
nent of the enhanced text-to-image synthesis cGANs. The
experiments involve four parts: the baseline GAN-INT-CLS,
feature matching loss Lfm, L1 distance loss LL1, and text
conditioning augmentation loss LCA. The results of the
ablation study are presented in Table III.

TABLE III
THE ABLATION STUDY OF THE ENHANCED TEXT-TO-IMAGE SYNTHESIS

CGANS ON CUB-200-2011 DATASET.

Model IS
Baseline 4.64±0.05
Baseline + LL1 5.01±0.07
Baseline + Lfm + LL1 5.20±0.05
Baseline + Lfm + LL1 + LCA 5.26±0.09

It is observed that the baseline model without any enhance-
ments obtained the Inception score of 4.64±0.05. When the
L1 distance loss LL1 is added to the baseline model, the
Inception score increases to 5.01±0.07. The improvement
demonstrates that the LL1 is efficient in motivating the
generator to synthesize images that are more similar to
the real images. After incorporating the feature matching
loss Lfm, the Inception score increases to 5.20±0.05. The
improvement is attributable to the Lfm that makes the
generator synthesize more image varieties using the features
similar to the real image features, which in turn mitigates
the mode collapse issue and improves the training stability.
The Inception score further escalates to 5.26±0.09 after
integrating the text conditioning augmentation loss function
LCA. The LCA function produces more semantically similar
text embeddings to improve the semantic consistency of the
synthesized images.

E. Comparison with existing approaches

We have also included several existing state-of-the-art text-
to-image synthesis methods in the performance evaluation.
The experimental results on the CUB-200-2011 dataset are
presented in Table IV. It is observed that the enhanced text-
to-image GANs outshines the methods in comparison by
yielding the highest Inception score of 5.26±0.09. The high
Inception score corroborates the effectiveness of the proposed
enhancements in improving the quality of the synthesized
images, in terms of image variations, photographic realism
and semantic consistency.

In addition to that, the enhanced text-to-image synthesis
cGANs have recorded an outstanding SSIM of 0.7741. This
is attributable to the feature matching loss and L1 distance
loss that close the gap between the real and fake images
in the visual feature space. Apart from that, the text condi-
tioning augmentation also improves the semantic consistency
between the synthesized images and text descriptions.

Fig. 3 presents some sample images produced by the
enhanced text-to-image synthesis cGANs based on the text
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TABLE IV
THE COMPARISON RESULTS ON CUB-200-2011 DATASET.

Methods IS SSIM
GAN-INT-CLS [3] 5.08±0.08 0.2934

GAWWN [9] 5.22±0.08 0.2370
StackGAN [10] 4.95±0.04 0.2812
AttnGAN [13] 4.43±0.06 0.3129

Enhanced Text-to-Image Synthesis GANs 5.26±0.09 0.7741

descriptions from CUB-200-2011 dataset. The samples show
that the synthesized images are semantically consistent with
the text description. This is ascribable to the L1 distance and
feature matching that simulate the content of the generated
images based on the real images to improve the diversity in
the learned representation. Moreover, the text conditioning
augmentation loss provides better conditioning in the text
embedding space and enhances the semantic consistency of
the synthesized images.

Fig. 4 shows some sample images generated by the en-
hanced text-to-image synthesis cGANs conditioned on the
unseen text captions from the CUB-200-2011 dataset. The
images exhibit diversifying and rich image contents from
the feature matching function. The feature matching provides
visual realistic features that are close to the real images
to enrich the learned visual representation and stabilize the
model training.

V. CONCLUSION

In this paper, we propose several enhancements to the
text-to-image synthesis cGANs. Firstly, the text conditioning
augmentation loss enriches the text embedding represen-
tation to diversify the visual features in the generator. It
also standardizes the text feature information in both the
discriminator and the generator to improve the semantic
consistency of the synthesized images. Secondly, the feature
matching loss gears the generator to generate visual contents
closer to the real images thus diversifying the synthesized
images and alleviates the mode collapse issue. Thirdly, the
L1 distance loss helps ensure the synthesized visual contents
to resemble the real images. Hence, the synthesized images
are more photo-realistic and semantically consistent to the
text description.
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This is a small
yellow bird with

black and grey on
the breast and

wing bars. 

This is a large
black bird with a
long and pointy

black beak.

This bird has a
black swatch over
the eye and black

and yellow
feathers on the
underside of the

body.

This bird has
wings that are

black and has red
eyes.

This bird is black
in color with a
black beak.

Fig. 3. Some sample bird images generated by the enhanced text-to-image synthesis cGANs. The images highly match with their corresponding text
descriptions. All text descriptions are taken from the unseen classes (zero-shot experiments).

Fig. 4. Some sample images generated from the unseen classes by the enhanced text-to-image synthesis cGANs. The images demonstrate the ability to
synthesize diverse image contents.
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