
 

   

Abstract— In semiconductor manufacturing, surface defects 

on wafers must be classified accurately for better yield 

management. To manage the increasing chip demand in speed 

and scale, automatic defect classification (ADC) system has 

been introduced. Most existing ADC systems utilize machine 

learning-based algorithms that require manual feature 

extractions and manual intervention such as human-based 

classification for accuracy and consistency. These methods are 

labour-intensive, unreliable, and highly prone to human error. 

Therefore, by leveraging on deep learning technologies, this 

paper proposes DLADC - an ADC system using a deep 

convolutional neural network (CNN) architecture for detecting 

and classifying semiconductor wafer surface defects. The 

proposed system takes Scanning Electron Microscope (SEM) 

images as input and outputs the defect’s class and location. The 

proposed system also sub-classifies particle-type defects into 

various sizing groups. Identification of defect types that 

occurred on wafer surfaces allows for better defect root cause 

analysis, and the additional information of defect size further 

serves as an essential indication of the origin of machine failure. 

The proposed DLADC promotes 2x time saving while achieving 

an improved accuracy of 93.69% based on experimental results 

with a real semiconductor defect dataset. Not only does DLADC 

outperforms the 70% classification performance of trained 

operators, but it also surpasses the 90% classification 

performance of industrially pragmatic defect classification.  

 
Index Terms— automatic defect classification (ADC), 

convolutional neural network (CNN), deep learning (DL), 

Review-SEM defects, semiconductor manufacturing 

I. INTRODUCTION 

HE growing demand for semiconductors motivates 

manufacturers to develop wafers with better capabilities, 

are defect-free, and have high reliability to avoid field 

failures [1]. To meet these requirements, the wafers must be 

flat and particle-free so that the final chip products do not 

incorporate any defects. However, defects are sometimes 

generated during the lengthy and complex 

Metal-Oxide-Semiconductor (MOS) technology fabrication 

process [2]. Therefore, wafer defect management is an 

important process in semiconductor manufacturing to ensure 

that sources of defects are captured by associating defects to 

specific steps in the fabrication process and, after that, 

quickly eliminated before reaching the final production stage. 
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The classified defects are also used for excursions 

containment to reduce the loss in wafer fabrication time and 

cost [3].  

One of the common practices in defect management is 

establishing in-line inspection stations along with the most 

important processing steps and/or machines with a high 

probability of defect deposition to observe abnormalities on 

wafer dies. These inspection tools produce wafer maps, 

which is a visualization created based on the detected 

abnormal locations on the wafers. Wafer maps are widely 

used to understand the process abnormalities, facilitating the 

diagnosis of low-yield problems [4]. A step further to 

pinpoint defects is to take Scanning Electron Microscope 

(SEM) images of the wafer surface after identifying the 

defect locations in wafer maps. The SEM images capture any 

particles, flaws or irregular connections caused by 

misaligned electronic circuits stacked on the many layers of a 

wafer [18]. The traditional method applied in semiconductors 

is visual inspection. However, this manual approach has 

proven to be time-consuming and expensive. Hence, 

automatic defect classification (ADC) systems have been 

introduced as an alternative.  

Ideally, utilizing high-resolution microscopes, an ADC 

system involves scanning the wafer surface and collecting 

information (e.g., location, shape, and size) on detected 

defects. The inspection system uses automatic defect 

detection technology and the classification of the defects 

using visualizations of wafer maps, optical images or SEM 

images [6][7]. Despite the success of applying the ADC 

approach in the semiconductor industry where existing ADC 

systems display good defect detection, they have low 

accuracy (intelligence) in defect classification for both 

present and newly discovered defects in varied wafer designs. 

Consequently, human intervention in defect classification is 

unavoidable and must be performed, producing unreliable 

and inconsistent results due to variation in expertise level. 

For the reasons stated above, it is clear that research is 

required for an advanced and powerful ADC system to 

improve defect classification accuracy and efficiency.  

Various approaches to addressing this problem statement 

of a high-performance ADC system have been proposed in 

the literature. In particular, machine learning techniques, 

such as clustering, support vector machines, and artificial 

neural networks, have been proposed to deal with the 

problem using both unsupervised and supervised learning 

paradigms [1,8]. These approaches rely on a series of features 

to capture the spatial properties of wafers. Conversely, these 

wafers can be intuitively interpreted as images, with defect 

patterns serving as spatial features. Therefore, using images 

as the realistic representation of wafers will best preserve the 

native spatial characteristics of the defect patterns [9]. Defect 
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detection and recognition in semiconductor manufacturing 

can then be tackled as an automatic image classification 

problem by utilizing various machine learning models with 

the application of image processing techniques. In 

correspondence to this approach, deep learning models have 

attracted much interest in recent years because of the 

demonstrated excellent successes in machine vision-related 

tasks. Motivated by this success, we propose using deep 

learning techniques to study the detection and classification 

of wafer surface defects. 

In contrast to conventional ADC which consists of two 

separate steps in the pipeline: manual feature extraction and 

classification, a convolutional neural network (CNN) has the 

abilities to effectively extract significant defect features 

directly from the image inputs using convolutional features 

and classify them into respective defect classes in a single 

architecture. Furthermore, each semiconductor often 

undergoes hundreds to thousands of SEM review scans every 

day, resulting in a large number of pictures to be evaluated at 

various magnification levels and defects of varied sizes to be 

classified. We incorporate defect size into our proposed 

system since it is a vital element for root cause analysis to 

discover the specific problematic machinery tool from the 

lengthy manufacturing process. Additionally, to the best of 

found knowledge, there has been no effort specifically on the 

smart automation of the detection and recognition for defects 

and defect sizes at metal layers of the back-end-of-line 

(BEOL) process, wherein these steps the metallization is 

applied [10]. Therefore, this paper proposes a novel 

autonomous deep-learning-based defect classification 

(DLADC) system for the metal layers as early as the first 

metal layer coating stage with a methodology that uses a 

CNN-based object detection network architecture to locate 

defects and scale bars in the images, allowing for 

autonomous measurement of exact defect sizes relative to 

their real-life dimensions. This novel approach has three 

contributions: 

i.  DLADC is specifically designed with the goal of 

achieving high classification performance with the 

CNN architecture. 

ii. DLADC includes a feature that calculates defect size. 

iii. DLADC increases operation efficiency, which saves 2x 

time over manual review and reclassification. 

The remainder of this paper is organized as follows: 

Section II describes the related works. Section III presents the 

proposed DLADC system, and Section IV evaluates its 

performance with real semiconductor defect dataset. And 

finally, Section V concludes the paper and discusses future 

works. 

 

II. RELATED WORKS 

In the current semiconductor manufacturing industrial 

scene, defect inspection is still heavily reliant on manual 

labour. This prevailing method of defect inspection has 

proven to be unreliable with high inconsistency resulting in 

many false identifications of defects, mainly due to the lack 

of objectivity of engineers and fatigue from excessive hours 

of the mundane task of looking at defect images. The 

following section covers the need for autonomous defect 

classification for semiconductor wafer surface defects, 

 
Fig. 1.  Examples of SEM images of wafer surface defects. 

 

followed by the introduction of convolutional neural network 

architecture in the interest of its widespread achievements in 

tackling vision-based tasks, especially on the topic of defect 

classification. This section also discusses multiple variants of 

the CNNs and several established CNN-based object 

detection architectures. 

A. Automatic Defect Classification  

Automatic defect classification (ADC) is one of the 

mechanisms helping defect engineers in their quest for early 

defect detection and quick analysis. Before ADC was 

introduced, semiconductors mainly depended on manual 

labour for defect inspection, review, and classification. Most 

process engineers rely on their domain knowledge and 

expertise to determine the unique features of wafer defects 

and relate them to fabrication processing steps. As a result, 

the accuracy of identifying the root causes of defects is highly 

reliant on the process engineers' experience [2].  

According to a whitepaper by Intel in 2018 [11], the 

authors reported that it could take up to 9 months to train 

operators or engineers to classify defects with 90% accuracy 

manually. Even so, the trained operator will over time has a 

drop in performance to only 70% to 85% accuracy due to 

reasons such as the repetitive nature of the task, lack of 

insight, advancements in fabrication processes, and plain 

difficulty in classification purely based on human eye and 

brain. 

As a result, semiconductors have introduced the use of 

ADC to improve defect inspection throughput as well as data 

integrity. The ADC system uses a die-to-die comparison, 

otherwise known as golden template method to detect 

defects, and measures multiple spatial and textural features of 

the defects to determine the defect classes. Either a 

rule-based system or machine learning algorithm is applied to 

classify the defects into pre-defined defect classes based on 

training samples. Despite the use of ADC systems, existing 

ADC systems claim a high defect detection rate but low 

accuracy (high false alarms, high erroneous classifications), 

necessitating further manual intervention. Based on 

significant study, previous works mostly focused on defect 

pattern detection and classification in semiconductor wafer 

maps. Nevertheless, there has been emerging research over 

the recent few years on defect classification using SEM 

images which would be the methodology used in this study. 
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Fig. 2.  Example of a Convolutional Neural Network. 

 

B. Review-SEM Defect Classification 

One of the methodologies of defect classification is done 

using scanning electron microscope (SEM) images of the 

wafer surface, which are taken after the completion of each 

circuit layer (particularly between the etching and deposition 

steps). It is almost implausible for any SEM image to contain 

more than one defect due to the SEM's microscopic sensing 

field. Yet, the defect classification accuracy by conventional 

ADC systems is poor, and a manual inspection process is 

often required to ensure accurate classification. Fig. 1 

visualizes the sample SEM images of wafer surface defects.  

Many studies concentrate on defect control on the wafer 

map level, but limited literature focuses on defect detection 

and classification of microscopic defects, particularly those 

that use deep learning techniques. Deep learning has recently 

acquired popularity because to its ability to extract compact 

features from complicated and high-dimensional data (e.g., 

pictures and sensor signals) automatically. The convolutional 

neural network (CNN) model, in particular, was widely used 

due of its superior performance in identifying picture input. 

In [12], Cheon et al. proposed a CNN-based ADC method to 

address the lack of application of CNN-based models for 

wafer surface defect classification. Recognizing the 

limitation of the CNN model being a supervised model that 

requires a sufficient amount of data for each defect class, the 

authors designed their CNN architecture to achieve high 

classification performance for all known defect classes. 

Besides, by utilizing the feature space created by the CNN 

training result, the authors included a k-nearest neighbours 

(k-NN) algorithm to classify unknown defects as an 

‘Unknown’ class without retraining the CNN and hence 

avoiding the time-consuming process of collecting new data 

for the unseen defects. In the study, Cheon et al. explored the 

proposed CNN architecture on a dataset with five defect 

classes exclusive of the ‘Unknown’ class. The authors 

reported an average of 96.2% classification accuracy of the 

trained CNN for the testing subset of 319 images and it 

showcased the CNN’s superiority in wafer surface defect 

classification performance in the comparison experiments 

against other classifiers such as MLP, SVM, and stacked 

autoencoder (SAE).   

In a separate study, Leary et al. [13] explored an ADC 

approach to classify the chemical composition of particle 

defects on semiconductor wafers based on combined 

information of the SEM image and energy-dispersive x-ray 

(EDX) spectroscopy data. The proposed method consisted of 

a CNN which was trained using SEM images and then 

merged EDX spectra data using fully connected layer. The  

 

 

main intention of this approach is to enable engineers to 

identify the defect source(s) of the classified defects within 

the manufacturing process by connecting the source to the 

semiconductor equipment chamber. With eight defect classes 

used in the study, the authors reported that the combined 

SEM image and EDX spectra CNN yielded a greater than 

99% Top-3 accuracy and 82.1% Top-1 accuracy on the 

testing subset of 1172 images. CNNs trained with either SEM 

image only or EDX spectra data have also been explored and 

yielded Top-1 accuracy of 51.0% and 70.6%, respectively. 

Therefore, the authors concluded that CNN trained with both 

SEM image and EDX spectra data is able to classify 

semiconductor defects with higher accuracy. 

In another study done by Yang and Sun (2020) [14], the 

authors explored a double feature extraction method based on 

CNN for defect recognition. The proposed model combined 

Radon transform with CNN's feature and input these features 

into the last dense layer to obtain the final classification 

output. The proposed model, which was named as RadonNet, 

achieved a recognition rate of 98.5%, averaging across a total 

of 11 defect types. 

Similar to the studies above, leveraging the emergence of 

new technologies such as computing resources, we propose 

using deep learning technology for this vision-based task, 

particularly a CNN-based object detection architecture for 

the detection and classification of semiconductor wafer 

surface defects. In addition, we integrate a defect-sizing 

computation feature to enhance the CNN’s classification 

results and provide insights into mechanisms that cause 

various defect modes. The methodology of the proposed 

DLADC system will be explored in length in Section III. In 

the next sub-sections, we will first learn about the CNN 

operating principle, CNN-based classifier and CNN-based 

object detector. 

C. Convolutional Neural Network  

While many types of artificial neural networks (ANN) have 

been developed and adapted to research and industrial fields, 

CNNs have been exclusively emphasized to handle image 

recognition problems with outstanding performance on the 

MNIST, CIFAR-10 and ImageNet datasets. CNNs are 

end-to-end auto-learning models with minimal requirements 

for any human intervention as their architecture enables the 

functionalities combinations of a feature extractor functions 

and a classifier [15]. For this reason, CNNs have been the 

most sought after as an efficient image recognition method. 

Most CNNs are made up of four-layered concepts, namely 

convolution, ReLU (activation), pooling, and fully 

connectedness (see Fig. 2). After several convolutional and 
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pooling operations, the high-level reasoning in the neural 

network is done via fully connected (FC) layers as this FC 

layer converts feature maps of the input data into a feature 

vector. For multiclass problem as in our case here, a SoftMax 

function (i.e., a generalized form of logistic regression) is 

commonly used to transform the feature vector from FC layer 

into classification probabilities. 

D. CNN-based Classification Architecture 

 The advance of deep neural networks in computer vision 

applications is primarily contributed by the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC) [16], 

which tested a few generations of large-scale image 

classification systems. We will discuss two significant image 

classification systems that have hugely impacted the 

ImageNet Challenge, specifically, the VGG Network 

(VGG-Net) and the Residual Net (ResNet). 

 VGG-Net was created in 2014, and its main contribution 

being the comprehensive assessment of networks of 

increasing depth. Simonyan & Zisserman [17] introduced an 

architecture with tiny convolutional filters (3 by 3), which 

showed that depth could be extended to 16 to 19 weight 

layers compared to prior-art configurations. The width of 

convolutional layers, i.e., the number of channels, is 

relatively small, increasing by a factor of 2 after each 

max-pooling layer; it starts from 64 in the first layer to 512 in 

the last layer. As a result, during the time it was proposed , 

VGG-Net reported significantly more accurate performance 

amongst other CNN architectures. It reported high accuracy 

on ILSVRC 2014 classification task with a 7.3% error rate. 

The researchers demonstrated that the representation depth is 

beneficial for classification accuracy. 

ResNet, invented in late 2015 by Microsoft Research Asia, 

is a 152-layer network architecture that has won ILSVRC 

2015 with an error rate of 3.6%. Instead of learning 

unreferenced functions, the creators had explicitly 

reformulated the layers as learning residual functions 

concerning the layer inputs [18]. The authors demonstrated 

that these residual networks are easier to optimize, and 

accuracy can be gained from the significantly increased 

depth. 

E. CNN-based Object Detection Architecture 

In this subsection, we will discuss some region-based 

CNNs for object detection on images. Girshick et al. 

proposed a simple and scalable detection algorithm by 

combining region proposals with CNNs, later named R-CNN 

[19]. The proposed approach employed a function called 

Selective Search. Selective Search performs the function of 

generating 2000 bottom-up region proposals that have the 

highest probability of containing an object. These proposals 

are then warped into an image size that can be fed into a 

trained CNN that extracts a feature vector for each region. 

This vector is then used to input class-specific linear SVMs 

and outputs a classification result for each region. The same 

vector also gets fed into a bounding box regressor to obtain 

the most accurate coordinates. Non-maxima suppression is 

then used to suppress bounding boxes that have a significant 

overlap with each other. The introduction of the R-CNN 

model architecture provided performance breakthroughs in 

object detection tasks. It reported a mean average precision 

(mAP) of 53.3% on PASCAL VOC 2012 dataset and 31.4% 

on ILSVRC 2013 detection dataset. 

Despite the notable achievements in object detection tasks, 

R-CNN suffers from few drawbacks due to its multi-stage 

training process, which is computationally expensive and 

extremely slow. Hence, in [20], Girshick proposed Spatial 

Pyramid Pooling networks (SPPnets) to speed up R-CNN by 

sharing computation of the convolutional layers between 

different proposals. With this algorithm that utilizes R-CNN 

and SPPnet, the authors called this method Fast-RCNN, 

mainly derived from its comparatively fast speed to train and 

test. The authors showed the higher detection quality of Fast 

R-CNN by reporting 65.7% mAP in VOC 2012. 

Later, the authors in [21] introduced a Region Proposal 

Network (RPN) after the last convolutional layer. This 

network takes the full-image convolutional features from the 

detection network, thus producing region proposals as an 

outcome. This architecture that combats the complex training 

pipeline of both R-CNN and Fast R-CNN is dubbed as Faster 

R-CNN. The authors reported high object detection 

accuracies on various datasets, including VOC 2012 and MS 

COCO. Proven by its excellent object detection performance, 

Faster R-CNN has become the standard and foundation for 

many object detections today.  

 In 2016, an architecture named SSD was introduced to 

reduce the computational power required at model inference 

time. In the paper SSD: Single Shot MultiBox Detector, 

authored by W. Liu et al., [22], the authors presented a 

method for detecting objects in images using a single deep 

neural network. As the name of this architecture highlights, 

object localization and classification tasks are done in a 

single forward pass of the network where the MultiBox 

technique is used for bounding box regression. In the SSD 

approach, a base network from high-quality image 

classification architecture such as VGG-16 built the early 

network layers. Then, instead of the original fully connected 

layers used for classification, a set of auxiliary convolutional 

layers were added to the network to enable feature extractions 

at multiple scales and the progressive decrease in input size to 

subsequent layers. The SSD approach has reported a 

significant improvement in speed and accuracy for detection 

problems where it achieved 74.3% mAP on VOC 2007 at 59 

frames per second (FPS) while Faster R-CNN reached 73.2% 

with 7 FPS. 

As discussed above, CNN has numerous network 

architectures that can be chosen dependent on the fields in 

which it is applied. For ADC, we propose using a CNN from 

the object detection architecture to take advantage of its 

ability to generate multiple regions of interest (i.e., bounding 

boxes) and class labels for detected objects in each image 

input, which is essential for defect size measurement on top 

of defect recognition for our research.   

 

III. PROPOSED METHOD 

In this section, we discuss on the methodology of the 

proposed DLADC, starting with the dataset collection 

process, and thereafter continuing on to the pre-processing 

step. Then, we discuss about the model architecture design 

and transfer learning technique. 
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TABLE I 
NUMBER OF DEFECTS PER CLASS 

Defect Class Count 

sp 1792 

ed 1191 

pd 3513 

res 277 

scr 868 

bub 1056 

po 1908 

rare 476 

False Count 1735 

Total Defects 11081 

Total Data 12816 

 
TABLE II 

NUMBER OF DEFECTS PER CLASS FOR “SP” AND “ED” CLASSES 
small: ≤1µm; large: >1µm 

Defect   

Class 

Defect Class  

with Sizing 
Count 

Total  

Count 

sp 
 

sp_small 1023 
1792 

 
sp_large 769 

ed 
 

ed_small 524 
1191 

 
ed_large 667 

 

A. Dataset Collection and Details 

The dataset used in this paper contains real defect images 

obtained from our industrial partner. The dataset consists of 

grayscale 480 × 480 pixels Review-SEM defect images at 

metal layers of the BEOL process on 8-inch wafers. The 

number of defect classes differs across each semiconductor 

since the wafer defect class set is not closed, i.e., categories of 

defect class are determined based on the widely available 

process recipes for each semiconductor’s production 

environment. In our study, the metal layers defects are 

grouped into nine main classes. Among the nine classes, eight 

of them are actual defect classes. The remaining one class 

represents the “False Count” class because images can be 

wrongly captured as having surface defects in a real 

production setting.  

For this study, our industrial partner, X-FAB, provided a 

total of 11,081 metal layers defect images. Inclusive of the 

“False Count” class, 12,816 images were used to train, 

validate, and test the performance of the proposed approach 

for the ADC system. 

Table I shows the distribution of the number of defects per 

class. For example, defect class “sp” and “ed” are the 

particle-type defect classes, respectively also known as 

Surface Particles and Embedded Defects. The defects from 

these classes require accurate size measurements. Table II 

shows the distribution of the number of defects for classes  

 
Fig. 3.  An example of SEM image of defect class “sp” and size 0.38μm. 

 

“sp” and “ed”. 

These SEM defect images are often captured in a 

micrometre scale, and the actual defect size can be measured 

by referencing the scale bar at the bottom of each defect 

image (see Fig. 3). The defects in this dataset have sizes 

ranging from 0.18μm to 200μm. In the defect management 

process, precise and accurate measurement of defects is 

critical for determining the best relevant root cause. Defect 

sizes can be an important indicator of which process step or 

tool out of the many complex BEOL processes resulted in 

defects on the wafer. Besides, there are recipe issue, 

equipment issue, and delay in queue time, all of which cause 

defects. Therefore, it is important to accurately locate the 

defects and scale bars in the images; the images are labelled 

by having bounding boxes drawn on the respective region of 

interest. Note that both data collection and defect labelling 

are mainly manual processes. In other words, some 

mislabeled defects may have been used in model training. 

This mislabeling may degrade the accuracy performance of 

the proposed model. Nevertheless, the expectation is that 

only less than 2% of total data are possibly mislabeled. 

B. Dataset Pre-processing and Partitioning 

The provided SEM defect images are initially at the size of 

480 × 480 pixels, and the images are then resized to 256 × 

256 pixels during the model training process. In an effort to 

help with model generalization which enables robust 

learning, image data augmentation techniques such as adding 

noise or randomly jittering the brightness, contrast, blurring, 

saturation, and hue of the image, were applied. 

 The values of input images are normalized from a scale of 

[0, 255] to [0, 1] to minimize noise and speed computation 

during model training. Moreover, the values of input images 

are also normalized with the mean and standard deviation 

pixel values from the ImageNet dataset to take full advantage 

of transfer learning.  

With the collected total of 12,816 images, the dataset is 

partitioned for the purpose of training, validation, and testing. 

The dataset partitioning ratio used in this study is 80% for 

training, 10% each for validation and testing. The defect class 

distribution is kept consistent during dataset partitioning. 

C. Model Architecture 

The proposed DLADC system comprises three main 

phases. The first phase detects and classifies the 

Review-SEM defect image samples accordingly into their 
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defect classes. In this phase, DLADC applies a Faster R-CNN 

detector with a ResNet-50 classifier backbone trained on the 

collective labels from the nine defect classes and the scale 

bars. The reason for selecting such architecture is that it has a 

proven top-1 error rate of 20.74% on the ImageNet validation 

set [18] and achieved great performance in other major object 

detection datasets [21,23]. Instead of a bigger ResNet of more 

layers, the selection of ResNet with 50 layers is to avoid an 

overfitting scenario whilst acknowledging the comparatively 

smaller dataset size compared to ImageNet.  

In the second phase, if the classification by the CNN model 

in the first phase is found to be belonging to either “sp” or 

“ed” class, then it is sent for defect size calculation whereby 

the (x, y)-coordinates from the bounding boxes of the 

localized defect and the localized scale bar are used to 

calculate the actual defect size in micrometre. Equation (1) 

defines the defect size calculation operation: 

 

  (1) 

 

d represents defect and s represents scale bar. m represents 

scale measurement in µm unit. The bounding box is 

rectangular, which is determined by the  x  and  y  coordinates 

of the upper-left corner of the rectangle and the such 

coordinates of the lower-right corner (i.e., x1, x2, y1 and y1). 

Subsequently, with the calculated defect size, DLADC 

sub-classifies the defect into their respective sizing 

categories. Fig. 4 visualizes the defect calculation for a “sp” 

defect. 

 

 

Fig. 4.  “sp” defect size calculation. 

 

The third (last) phase either finalizes the defect class from 

the first phase or finalizes once it sub-classify the image into 

individual defect classes with sizing from the second phase. 

The layout of the proposed DLADC system is depicted in Fig. 

5. 

To summarise, DLADC is designed to autonomously and 

continuously process each image input. The object detection 

model, Faster R-CNN with ResNet50 backbone in phase 1 is 

chosen after comparison study against other CNN 

 

Fig. 5.  DLADC System Overview. 

 

architectures and contributes to the high defect classification 

performance. In addition to defect classification, phase 2 of 

DLADC contributes the novel feature of an ADC system that 

calculates accurate defect size. Overall, the DLADC design 

improves SEM review efficiency in semiconductor 

operations. 

D. Transfer Learning 

Transfer learning is a machine learning approach where a 

model developed for a task is redeployed as the starting point 

for a model on a second related task [24], particularly popular 

in deep learning for computer vision and natural language 

processing tasks. The proposed method in this study 

exploited the benefits of transfer learning by loading  

 

pre-trained ResNet-50 on COCO object detection dataset, 

which yields a 40.2 box AP result. Since COCO dataset 

contains images of common objects from complex everyday 

scenes [25], we re-define the output layer to fit the computer 

vision task of defect classification, i.e., nine defect classes, 

and lastly, the models are tuned to achieve greater defect 

recognition performance. 

 

IV. FINDINGS AND DISCUSSIONS 

Firstly, we evaluate the performance of the proposed 

DLADC on the validation and testing datasets to better 

understand the CNN’s detection and classification 

capabilities, particularly for defect classes of varied sizes. In 

this paper, validation dataset is used to assess the 

classification accuracy of the trained Faster R-CNN in 

DLADC system after each update of the Faster R-CNN 

parameters using the augmented training dataset. In general, 

the Faster R-CNN should not demonstrate the best 

performance for the training dataset, but for the validation  
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TABLE III 
VALIDATION DATASET OVERALL ACCURACY RESULT. 

Fold Dataset 
Accuracy: 

Total Data 

Accuracy: 

Total Defects 

1 Validation 0.9354 0.9259 

2 Validation 0.9308 0.9173 

3 Validation 0.9352 0.9249 

average Validation 0.9339 0.9227 

 

 

Fig. 6.  Accuracy results for total data and total defects for validation and 

testing datasets. 

 

dataset, in order to construct a object detector with robust 

performance. After the training process is completed, the test 

dataset is used to conduct the final performance evaluation. 

The final solution performance is calculated using a 

procedure called stratified k-fold cross-validation where, in 

our case, k=3 and each fold has the same class distribution.  

The accuracy of each of the three folds for the validation 

dataset are reported in Table III. The validation dataset 

records an overall accuracy for total data of 93.38%, while 

overall accuracy for all the defects is at 92.27%. We report 

the final performance measure on the testing dataset using the 

mean of the values computed in the loop of the three 

cross-validation folds because stratified k-fold 

cross-validation is commonly used to demonstrate the robust 

model's performance and because the evaluation done on 

validation datasets has proven the model's generalization 

performance. 

With reference to the above, the testing dataset records an 

overall accuracy for total data of 93.69%, while overall 

accuracy for all the defects is at 92.78%. Fig. 6 visualizes the 

accuracy results for total data and total defects between the 

validation and testing datasets. 

Table IV shows the accuracy for defect classes with sizing 

for the testing dataset. The result indicates that accuracy for 

each sizing class varies, ranging from 80% to 100%. 

However, when evaluating the defect class as a whole, Class 

“sp” records 93.27% while Class “ed” records 89.18% as an 

average across the three cross-validation folds. 

A comparison experiment has also been conducted with 

two different CNN-based object detection models: SSD with 

VGG16 backbone and SSD with ResNet50 backbone. The  

two CNNs similar accept full-size 480 × 480 pixels images as 

inputs and output nine classes in the final fully connected 

layer. The comparison results show that SSD-VGG16 model 

TABLE IV 

TESTING DATASET AVERAGE ACCURACY RESULT FOR  

DEFECT CLASS WITH SIZING. 

Defect 

Class 

Defect Class 

with Sizing 
Accuracy 

Overall 

Accuracy 

sp 

sp_small 0.9699 

0.9327 

sp_large 0.9051 

ed 

ed_small 0.8911 

0.8918 

ed_large 0.8936 

 

 
TABLE V 

RESULTS OF THE COMPARISON EXPERIMENT. 

CNN-based 

Model 

Testing Accuracy 

for Total Data 

Training 

Hours 

Inference 

Speed 

DLADC 0.9369 < 1 hour 
0.0881 

second/image 

SSD with 

VGG16 
0.9417 8 hours 

0.1297 

second/image 

SSD with 
ResNet50 

0.9152 8 hours 
0.1297 

second/image 

 

 

has an accuracy of 94.17% and SSD-ResNet50 model has an 

accuracy of 91.52%. Besides comparing testing accuracy 

results, we compare the average training hours and inference 

time between the 2 SSD-based models against the proposed 

DLADC. Both SSD networks require up to 8 hours for each 

training round with 0.1297 second per image during the 

inferencing stage. However, the DLADC only requires less 

than 1 hour for each training round with 0.0881 second per 

image during inferencing. The comparison results are 

provided in Table V, in which we conclude that DLADC 

showcases consistent and great recognition performance for  

wafer surface defects and trains much faster and has more 

efficient inference speed than other CNNs. 

Moving forward, we analyze the testing dataset result  

based on the confusion matrix. The confusion matrix reveals 

that several classes are more accurately classified as 

compared to other classes. Table VI shows the confusion 

matrix for the DLADC performance on the testing dataset. 

The confusion matrix shows that 9 out of 11 classes are 

classified with greater than 90% accuracies, including those 

with sizing calculation.  

For further understanding, we study the effects of the count 

of training samples on the model's performance. We also 

investigate the relationship between average testing accuracy 

and the percentage count of training samples per defect class. 

The study suggests that even though Class “res” and Class 

“rare” have the lowest percentage count of training samples, 

the model achieved 96.30% and 93.62% testing accuracy for 

these classes, respectively. Comparatively, Class “ed” 

performed the worst amongst the other classes while having a 

fair number of training samples (9.29%). Hence, the study 

concludes that the count of training samples does not have an 

apparent effect on the model performance. However, since 

the distribution has been adjusted when performing 
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TABLE VI 
CONFUSION MATRIX FOR TESTING DATASET.

 

augmentation to increase training samples, this study 

proposed that dataset balancing is essential in ensuring model 

performance robustness. 

In summary, the experiments conducted using actual 

semiconductor’s Review-SEM defect images have 

demonstrated that the proposed ADC system, DLADC, can 

detect and classify wafer surface defects without manual 

feature extractions and with an improved accuracy 

performance at 93.69%. In addition, previous related works 

approach the same problem statement using CNNs as image 

classifiers. In contrast, this paper presents its novelty by 

approaching CNN as an object detector which is far more 

challenging since it combines two tasks: object localization 

and image classification. Nevertheless, the proposed DLADC 

achieves an average accuracy of 93.69% using only SEM 

images as input, outperforming both the existing manual 

classification benchmark of 70% and the industry-ready 

product benchmark of 90%. DLADC's autonomous design 

and quick inference speed allow it to cut the time required for 

manual review and reclassification in half, resulting in a 

reduction in miss or delay tool inhibitions due to shortened 

review cycletime in a real-world semiconductor 

manufacturing environment. 

 

V. CONCLUSION 

This research proposed a deep-learning-based defect 

classification model (DLADC) using CNN-based object 

detection architecture to detect and classify wafer surface 

defects from metal layers. The proposed DLADC system 

firstly takes Review-SEM images as input to the Faster 

R-CNN model for defect detection and scale bar detection. 

With the detected objects (defect and scale bar), sizing 

calculation is further applied for Classes “sp” and “ed”.  

Based on our investigation, the proposed DLADC system 

represents the one of the first examples of deep learning 

based ADC, which considers defect sizing and focuses on 

metal layers out of the other many semiconductor layers. This 

proposed ADC system can classify semiconductor surface 

defects with high and production-ready accuracy when tested 

on actual semiconductor data. DLADC’s autonomous 

architecture also allows for a 2x time savings over manual 

SEM review and reclassification. The primary limitation is 

the small and non-uniform dataset.  

Moreover, the high accuracy of the proposed DLADC 

suggests that the solution might be extended to all other wafer 

layers as well, with only Review-SEM images as the training 

dataset. On the other hand, the overall classification accuracy 

may be improved by experimenting with better-advanced 

CNNs with larger training datasets and more uniform 

distribution across defect classes. Concerning the 

applicability of transfer learning, the study reveals that it can 

be adopted to increase the model’s training efficiency and 

shorten training time for the defects classification problems 

in semiconductor wafers. 
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