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Abstract—Accurately detecting the keypoints of small 

persons in an image using bottom-up multi-person pose 

estimation algorithms is exceptionally difficult owing to scale 

variation challenges. HigherHRNet initially solved the 

challenge of multi-player scale change pose estimation. 

However, because it uses repeated cross-scale fusion, owing to 

inherent defects in channel reduction, semantic information is 

lost. Furthermore, the aliasing effects produced by the 

miscellaneous feature maps formed after cross-scale fusion 

have a significant impact on the detection accuracy of small 

persons. In this paper, we propose a novel bottom-up human 

pose estimation algorithm based on HigherHRNet, called 

Channel-Enhanced HigherHRNet (CE-HigherHRNet). 

CE-HigherHRNet comprises three main components: a multi- 

scale sub_pixel skip fusion module, a lightweight attention 

mechanism (with channel attention enhanced and spatial 

attention modules), and a high-resolution feature pyramid with 

an added Dupsampling module. The lightweight attention 

mechanism optimizes the feature map after each fusion. 

Deconvolution is replaced with Dupsampling, which  

strengthens the network’s scale awareness and makes it more 

sensitive to robust scale changes. The average precision (AP) of 

CE-HigherHRNet on the COCO test-dev dataset was 71.9% 

(an improvement of 1.4% compared with HigherHRNet). 

Furthermore, the average detection accuracy of small persons 

was 68.1% AP (an improvement of 1.5% AP). These results 

verify that the proposed CE-HigherHRNet is more robust in 

processing scale changes and has a stronger ability to handle 

crowded environments. Thus, it is more accurate in positioning 

small persons in images and human bodies in crowded 

environments. 

 

Index Terms—Channel enhancement, Deep learning, 

HigherHRNet, Pose estimation.   

 

I. INTRODUCTION 

n the area of computer vision, human pose estimation [1] 

has been identified as a research and application hotspot. 

In human pose estimation, the objective is to estimate and 

detect human joint points in images or videos and output 
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relevant information on human limbs, such as the position of 

each joint point, their corresponding category information, 

the connection relationship between the body parts, and even 

the outline of the human body. These data are then used by 

machines to automatically determine the position of persons 

in a scene, and to understand the behavior of the human 

body.  

Currently, human pose estimation is predominantly used 

in the following areas: behavior recognition, human– 

computer interaction, intelligent security, motion capture, 

and training robots. Many factors affect the detection of 

human joints, such as occlusion, clothing, the person's 

environment, the angle of the camera, and the distance 

between the camera and the person. Traditional methods use 

multi-angle depth cameras and radars to estimate and track 

the posture of the human body. However, with the rapid 

development of deep learning and convolutional neural 

networks (CNNs) in recent years, it has become feasible to 

reliably infer the keypoints of the human body from images 

without the need for additional professional acquisition 

equipment. Consequently, pose estimation for the human 

body utilizing CNNs is an active research area and 

significant progress has been made [2],[3],[4].   

HigherHRNet [5] uses HRNet as its backbone, and makes 

repeated multi-scale fusions by repeating the paralleling 

interaction of subnetworks. In the multi-scale fusion, a 1*1 

convolutional layer is needed to reduce the number of 

channels in high-level feature maps, which causes channel 

information loss, and consequent semantic information loss. 

Because cross-scale feature maps have semantic differences, 

straight fusing after linear interpolation results in aliasing 

effects when performing cross-scale fusion [6],[7], which, in 

turn, complicates the positioning and recognition tasks [8].  

In this study, we focused on solving the problems of 

channel reduction in high-level feature maps and aliasing 

effects when performing cross-scale fusion, and the question 

of how to generate higher-resolution prediction heatmaps to 

restore the keypoints of small persons. To this end, we 

propose an efficient HigherHRNet variant called Channel- 

Enhanced HigherHRNet (CE-HigherHRNet). 

Predicting the keypoints of small persons presents two 

major issues. The first issue is scale variations, which 

necessitates improving the keypoint prediction accuracy for 

small persons without reducing that of persons with large 

statures. The second issue is the generation of a high- 

resolution, high-quality heatmap to precisely locate the small 

CE-HigherHRNet: Enhancing Channel 

Information for Small Persons Bottom-Up 

Human Pose Estimation 

M. Y. Li, J. Zhao 

I 

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_27

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



 

person's keypoints. The bottom-up approach [9], [10] focuses 

on how to group the keypoints of the human body and only 

uses feature maps with a single resolution to forecast the 

heatmap of keypoints. The models based thereon do not have 

the ability to sense scale.  

By increasing the resolution of the input image, PersonLab 

[10] produces heatmaps with a higher resolution. The 

keypoint detection accuracy for small persons continues to 

improve as the resolution increases. However, when the input 

image resolution is overly high, the keypoint detection 

accuracy of a large-scale human body falls significantly, 

whereas that of a small person does not improve further. 

Moreover, the above operations are seriously restricted by 

hardware conditions, and exponential increases in the 

required video memory may occur. HigherHRNet can 

generate higher-resolution feature maps by deconvolution. 

However, owing to the inherent problems of deconvolution 

[11], [12], HigherHRNet [5] cannot generate a character map 

with the same dimensions as the input image. Rather, it 

requires choosing the policy of introducing multi-resolution 

heatmap aggregation in the inference process. 

We assessed our proposed method on the COCO dataset; 

the details are presented in Section IV. Specifically, the 

improved HigherHRNet achieved an average precision (AP) 

of 71.9% on the COCO test-dev dataset without any 

post-processing. Compared with HigherHRNet, it improves 

the AP by 1.4%. In addition, we observed that we can obtain 

gains for both small persons and large persons. For small 

persons, our method improves the AP by 1.5% compared to 

HigherHRNet, and the detection accuracy of large-scale 

human bodies also increases by 1.2% AP. These results 

validate our theory. Meanwhile, we achieved 66.6% AP on 

the CrowdPose dataset. This result shows that the bottom-up 

approach is more advantageous in crowded environments.  

The contributions of this study are primarily in three areas: 

 We propose a new channel-enhanced backbone that solves 

the problem of channel information loss caused by 

multi-scale fusion; it incurs a small computational burden 

only. 

 We propose an improved lightweight attention mechanism 

based on the convolutional block attention module (CBAM) 

[13], apply the channel attention mechanism to the new 

feature maps obtained after each fusion, and optimize all 

the feature maps produced to eliminate the influence of 

aliasing during multi-scale fusion. 

 We introduce an upsampling method that incurs less 

computation than deconvolution to generate a predictive 

heatmap that is consistent with the input image resolution. 

The method recovers keypoints of small persons lost in the 

low-resolution heatmaps to strengthen the scale perception 

ability of the network. 

II. RELATED WORK 

A. Human Pose Estimation  

Human pose estimation methods can be classified into two 

main approaches: top-down methods [4], [14], [15], [16], 

[17], [18] and bottom-up methods [9], [10]. The first step of 

the top-down approach is to gather the full human body 

instance frame by detecting a human target [19], and then 

extract the human joints based on this frame. The first step of 

the bottom-up approach [20] is to directly extract the full 

image of the human body joints and distribute the full image 

keypoints to the corresponding human instances in the 

Heuristic Post-Processing method. At present, deep CNNs 

provide the mainstream keypoints detection solutions [21], 

which are mainly divided into two types: (1) direct return to 

the locations of the keypoints [22] and (2) estimating the 

keypoint heatmaps [23] and then selecting the position with 

the highest heat value in the heatmap as the keypoints. 

Human pose estimation is the prework of behavior 

recognition [24], and it is typically used together with object 

detection methods [25] to detect human behavior [26]. It is 

widely used in the field of gesture recognition [27], [28]. 

Since 2012, AlexNet, a deep learning method has been 

applied to image classification, image detection, and image 

segmentation problems. In 2014 [29], for the first time, a 

CNN was successfully used to solve the problem of 

single-person pose estimation. Because of the background 

time required, the network structure was relatively simple, 

and this facilitated the use of some traditional skeleton ideas. 

The proliferation of deep learning prior to 2016 also 

launched human pose estimation into its prime time. Starting 

from convolutional pose machines (CPM) [30], CNN can 

model feature representation as well as spatial position 

information for keypoints. The position of the corresponding 

keypoints can be determined by locating the maximum 

response position through the channels on the predicted 

heatmap. The entire network of CPM has multiple stages, 

and each stage is designed with a small network to extract 

features. Then, a supervision signal is added at the end of 

each stage.  

In July of 2016, Stacked Hourglass Networks [4] first put 

forward a network structure using multi-scale features to 

identify posture. The previous pose estimation network 

structure made predictions solely by using the last layer of the 

convolution feature, which can cause loss of information. In 

2016, the very important dataset COCO appeared. OpenPose 

[9], proposed by the Carnegie Mellon University (CMU) 

team, took first place in the COCO competition that year. It 

first determined the position of each joint in the images by 

utilizing CPM as its component, and then used part affinity 

field (PAF) to construct the keypoints of the human body.  

In 2017, Chen proposed the cascaded pyramid network 

(CPN) [17], which uses a network to detect coarse results 

(GlobalNet), and then refines (RefineNet) these results. In 

2018, Li proposed multi-stage pose estimation network

（MSPN） [31], in which a skip connection was added to two 

adjacent stages for better transmission of information. In 

2018, Xiao proposed SimpleBaseline [14], which is a simple 

but very effective baseline network that uses deconvolution to 

expand the resolution of the feature map, and replaces the 

previous commonly used upsampling method with linear 

interpolation. It has made scholars seriously consider how to 

obtain a high-resolution prediction heatmap.  

Papandreou et al. at PersonLab [10] used expanded ResNet 
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[32] and direct learning to categorize the keypoints of each 

pair of 2D grouping keys bias field. In 2019, Wang Jingdong 

et al. proposed HRNet [15], [16], which emphasized the 

importance of spatial resolution. The network is divided into 

numerous stages, but the most detailed spatial information is 

always conserved because of parallel connections. PifPaf [33] 

positioned keypoints locations through part intensity field 

(PIF), and then used PAF to associate the human body 

keypoints, thereby forming a complete human posture. In 

2020, Wang et al. proposed HigherHRNet [5], a scale-aware 

high-resolution network with multi-resolution supervision 

for training and multi-resolution heatmap aggregation for 

inference. It overcomes the issue of scale change in 

bottom-up multi-person pose estimation, and more precisely 

detects the keypoints of small persons in the image. 

B. Network Architecture  

Fig.1. depicts the structure of the original HigherHRNet  

[5]. With HRNet as the backbone, it commences with a 

high-resolution subnetwork, progressing the subnets from 

high to low resolution, and then connecting the multi- 

resolution subnetworks in parallel. Throughout the process, 

information is exchanged several times between parallel 

multi-resolution subnets, resulting in repetitive multi-scale 

fusion. Then, to generate a high-resolution heatmap, it 

creates a high-resolution feature pyramid, which starts at 1/4 

resolution. Such a new feature map has the highest resolution 

in the backbone, and it is generated by a deconvolution that 

is as large as the backbone output feature map. The targets of 

various resolutions are then assigned to the corresponding 

feature pyramid level using the multi-resolution supervision 

strategy. At the same time, the multi-resolution heatmap 

aggregation strategy is introduced in the inference process to 

generate a high-resolution heatmap with scale awareness. 

C. High-quality High-resolution Feature Maps  

The main method used conventionally to generate a high- 

resolution feature map is the encoder–decoder method [3], 

[17]. The encoder captures contextual information and the 

decoder restores the high-resolution representation through a 

series of linear interpolation upsampling operations, and skip 

connection of encoders with the same resolution.  Deconvo- 

lution can produce higher-quality feature maps for predicting 

heatmaps, as shown by SimpleBaseline [14]. HRNet [15], [16] 

has a plurality of branches composed of different resolutions, 

with a resolution branch for capturing contextual inform- 

ation in terms of enhanced features, and for promoting 

contextual information classification and positioning 

performance. High-resolution branches are used to capture 

spatial information and, through repeated multi-scale fusion 

between branches, high- resolution feature maps with rich 

semantics can be used to predict heatmaps. 

III. PROPOSED METHOD  

In this section, we present our proposed CE-HigherHRNet, 

which reduces channel information loss, optimizes the 

feature maps generated after fusion, and generates 

higher-quality high-resolution feature maps. The structure is 

primarily made up of three elements: multi-scale sub_pixel 

skip fusion, lightweight attention mechanism (which 

includes a channel attention enhanced module and a spatial 

attention module), and a high-resolution feature pyramid 

with added Dupsampling module. The details are presented 

below. 

A. Network Architecture 

Fig. 2. shows the overall network structure of 

CE-HigherHRNet. It is composed of an improved backbone 

and improved high-resolution feature pyramid. According to 

the settings of HRNet, the overall backbone is divided into 

four stages of high-resolution parallel subnets, which we 

denote as {C1, C2, C3, C4}, and their resolution is the input of 

the image resolution {1/4/, 1/8/, 1/16/, 1/32}. We do not use 

the general method of feature fusion in the multi-scale 

fusion.  

To decrease the number of channels in the feature map, a 

1*1conv is applied first, followed by upsampling for fusion. 

Because the core purpose of our change is to make the most of 

all the rich semantic information of the C44 and C33, the 

above method will cause serious aliasing effects owing to the 

loss of C44 and C33 channel information during the repeated 

multi-scale fusion. Therefore, there is a need to improve the 

backbone. {N1, N2, N3} form a high-resolution feature 

pyramid, in which N1 is the backbone's final feature map, and 

N2, N3 are the higher-resolution feature maps generated by 

Dupsampling [12]. We use three-scale feature maps to obtain 

the final prediction heatmap, and also use the attention 

mechanism to make the model express the characteristics of 

the keypoints of small persons. Then, we average the 

heatmaps of all the scales to make the final prediction. 

B. Multi-scale Sub_Pixel Skip Fusion (MSSF) 

The specific method of multi-scale fusion of the fourth 

stage C4 in HigherHRNet is shown in Fig.3. (a). First, {F44, 

F43, F42} is generated by reducing the channel dimensions of 

the feature map at the {C44, C43, C42} layer with low- 

resolution by 1*1 conv, so that the number of channels of 

{F44 , F43 ,  F42 } and C41 are consistent. The feature maps 

{F44, F43, F42} are upsampled so that all of the feature maps 

have the same resolutions. Then, fusion is performed to add 

the corresponding elements. The 1*1 convolutional layer is 

utilized to decrease the high-level feature map's channel 

count. This causes loss of channel information and also loss 

of semantic information. When performing cross-scale 

fusion, because cross-scale feature maps possess semantic 

 
Fig. 1. The original HigherHRNet [5] network structure. 
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differences, direct fusion after linear interpolation results in 

aliasing effects.  

We observed that the rich channel information of C44 is 

not fully utilized. Based on this discovery, we developed rich 

channel information with low-resolution feature maps to 

enhance the final capability of the model. Specifically, we 

designed a novel fusion method aroused by sub_pixel conv 

[11], which is an upsampling approach, also known as Pixel 

Shuffle. Fig. 3. (b) shows its operation; it converts feature 

maps with the shape of H1*W1*C1•r2 into a feature map with 

the shape of rH2*rW2*C2. The formula can be defined 

mathematically as follows: 

       
, ,

/ / y, r mod x, r c 
x y c

PS F F x r y r C r mod C  （ ） ， ，    (1) 

Where F is the input feature map, r is the upscaling factor, 

and 
, ,x y c

PS F（ ）  represents the output feature pixel point 

on the coordinates (x, y, c).  

We introduce MSSF to directly upsample low-resolution 

feature maps without channel reduction. When upsampling 

by using sub_pixel conv, the generated high-resolution 

feature maps may not be reliable. Therefore, we introduce 

skip connections, and fuse the output from the previous layer 

with the feature map again to generate high-quality feature 

maps, as shown in Fig. 3. (c). In this manner, the feature 

aggregation makes the spatial position information in the 

high-resolution feature maps obtained by the fusion more 

accurate, and the generated low-resolution feature maps have 

complete semantic information and stronger characterization 

capabilities.  

 Mutual information exchange can ensure that the network 

considers both spatial location information and feature 

abstract information, and can also enhance the ability of 

network feature information dissemination while reducing 

the difficulty of training. The MSSF only uses rich 

information channels of feature maps {C44 , C33 } with low 

resolution, rather than replacing all the upsampling 

operations with sub_pixel conv, because the fusion of 

adjacent layers can only generate slight aliasing effects, 

which can be solved by adding a residual block [6]. Therefore, 

we only need to process the feature map of multi-scale cross 

fusion and incorporate it into F41. This is depicted as follows: 

 
Fig. 2. A schematic of the overall network structure of CE-HigherHRNet. The overall network is composed of an improved backbone and an improved 

high-resolution feature pyramid. 

 
（a）Fusion in HigherHRNet 

 
（b）Sub_pixel convolution 

 
（c）Multi-scale Sub_Pixel Skip Fusion 

Fig. 3. (a) Shows the fourth stage C4 fusion method in HigherHRNet.  (b) 

Shows the working principle of Sub_Pixel, (c) Introduces our Multi-scale. 

Sub_Pixel skip fusion work.. 
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   (2)  

Where i represents the index of the layer in the entire 

backbone, and 


represents the channel conversion. r=2 

means that the sub_pixel conversion factor is two, which 

doubles the generated spatial resolution. We propose a novel 

lightweight channel with the attention enhanced module to 

optimize the final generated feature maps to eliminate the 

negative consequences of aliasing effects.  

C. Lightweight Convolutional Block Attention Module 

Cross-scale feature maps have differences in semantic 

information due to the loss of channel information, and the 

mixed features can cause aliasing effects. Therefore, we 

designed a lightweight channel attention mechanism based 

on the channel attention mechanism of CBAM, and applied 

it to the final feature maps generated by MSSF, because the 

third-stage high-resolution subnet and the fourth-stage 

high-resolution subnet in the backbone require three-scale 

and four-scale feature fusion, respectively. At the same time, 

skip connection is also made and the aliasing effect becomes 

more obvious. The simplest way to eliminate the impact of 

the aliasing effect is to introduce the channel attention 

mechanism after the feature fusion. Therefore, in this study, 

an improved channel attention mechanism based on the 

CBAM [13] was developed so that the final generated feature 

map has no aliasing effect. The overall structure is shown in 

Fig. 4. (a). This study also introduces a focus mechanism 

mixed by the channel attention and spatial attention 

mechanisms into a high-resolution pyramid. The passage has 

a mechanism for focusing the mixing mechanism. Thus, the 

final feature maps are more sensitive to the position and 

identification of keypoints that are not easily tested in small 

persons. 

1) Channel Attention Enhanced Module 

We also propose a lightweight channel attention 

mechanism, called the channel attention enhanced module 

(CAEM), based on CBAM. Fig. 4. (b) depicts the structure. 

First, global average pooling and global max pooling of the 

input feature map are utilized to aggregate the feature map's 

spatial information to create two different spatial context 

descriptors,  c

avgF and c

maxF , which respectively portray average 

pooling features and max pooling features. Each pixel on the 

feature map receives feedback from the average pooling. 

When calculating the gradient of the back propagation, the 

maximum pooling only has gradient feedback for the 

maximum response in the feature maps. Then these two 

features are respectively sent to two parallel fully-connected 

layers. Finally, the fully-connected layer’s output feature 

vector is combined through the corresponding element-wise 

operation, and the sigmoid function is used for the activation 

operation. The combined vector is mapped to the interval 

(0–1) to obtain the final channel attention feature map. The 

method can be expressed as follows: 

        1 2CA F FC AvgPool F FC MaxPool F     （3） 

2)  Spatial Attention Module 

In this study, the spatial attention mechanism of CBAM 

[13] is used. CBAM utilizes the spatial relationship of 

features to obtain a spatial attention map. In contrast to the 

channel attention map, the spatial attention map 

concentrates on the position information of the keypoints of 

the human body [13]. It is a supplement to the channel 

attention map. This study utilizes the spatial attention 

mechanism to focus on the human body's keypoints that are 

more difficult to detect for small persons in an image. To 

calculate the spatial attention, first the feature map output by 

the channel attention mechanism is utilized as the input 

feature map of the module to make a channel-based global 

average pooling and global maximum pooling to aggregate 

the channel information of one feature map, and then 

generate two 2D pictures: s  avgF ∈ R1 × H × W and 
s

maxF ∈ R1 

× H × W. Based on the channel, the resulting two 2D pictures 

undergo a concat operation. Then, after 7*7 conv, the 

dimensionality is reduced to one channel, and spatial 

attention feature maps are generated through batch 

normalization (BN) and Sigmoid functions. The spatial 

attention is calculated as follows: 

       7 7SA ;F f AvgPool F MaxPool F         （4） 

Where  represents the Sigmoid function, 7 7f   

represents a convolution operation, and the convolution 

kernel's size is 7×7. 

D. High-Resolution Feature Pyramid. 

This section introduces Dupsampling [12] based on the 

problem of deconvolution. The workflow is shown in Fig.5. 

 
（a）The overview of CBAM 

 
（b）The Channel Attention Enhanced Module (CAEM). 

Fig.4. (a) Overall network structure of the CBAM, (b) Illustration of 

Channel Attention Enhanced Module (CAEM). 
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(a). A high-resolution feature pyramid is designed to predict 

heatmaps. When deconvolution is upsampling, it is 

necessary to pad the image (i.e., fill in zeros). In fact, the 

white zero-filled part of the image is invalid information, and 

it does not facilitate optimization of the gradient. For the 

keypoints of a large body in an image, the upsampling 

operation of filling in zeros makes the feature maps generate 

a checkerboard pattern, and impact the generated feature 

maps. Thus, the detection accuracy of the large body declines, 

and the deconvolution is highly computation-intensive. In 

considering the above problems, we replaced the 

deconvolution with Dupsampling to create a higher- 

resolution feature map for predicting heatmaps. Fig. 5. (b) 

depicts the Dupsampling network structure. There are 

feature maps with three resolutions in this article. They are 

the 128 × 128 feature maps output by the backbone, and 

feature maps with resolutions of 256 × 256 and 512 × 512 

generated by Dupsampling. Because the computational cost 

of the deconvolution is very high, if the high-resolution 

feature pyramid in the HigherHRNet generates feature maps 

with three resolutions, the computational cost will increase 

significantly. The addition of a second deconvolution module 

will produce a large precision drop of 0.8% AP for large 

persons. However, for the Dupsampling, the idea of depth 

separable convolution is a borrowed idea. First, all the 

channels of a pixel are reshaped, then rearranged by W 

learned through the network, and finally enlarged by the 

upscale factor r, so that the amount of calculation is very 

small compared to that of the deconvolution. Even if the 

second Dupsampling module is used, the overall number of 

parameters will be slightly less than that of a deconvolution. 

Moreover, because the Dupsampling does not have a 

zero-filling operation, it will not cause a checkerboard effect 

in the newly generated feature map. When using heatmap 

aggregation strategies, the experimental results in Section IV 

show that after generating a feature map with the same input 

image size by using two Dupsampling modules, there is no 

significant drop in the detection accuracy of the big human 

body, rather it improves slightly. The precision of small 

targets ire also improved. Hence, it demonstrates that 

CE-HigherHRNet is a pose estimator with recognizable 

scale. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset and Evaluation Metrics 

The COCO dataset [20] contains more than 200,000 

images and 250,000 persons with seventeen keypoints labels. 

It is compartmentalized into train/val/test-dev sets, which 

contain 57,000, 5,000, and 20,000 images, respectively. This 

article presents our ideas on the CrowdPose [35] dataset. The 

bottom-up method is well known to exhibit better 

performance for crowded people. The CrowdPose [35] 

dataset incorporates 20,000 images. The training, validation, 

and testing are divided in the ratio of 5:1:4. In addition, 

crowded scenes have more datasets than COCO datasets. 

Keypoints detection needs to simultaneously detect human 

targets and locate the coordinates of human keypoints, which 

is a task in which detection and keypoints estimation are 

performed at the same time. Microsoft designed a novel 

evaluation metric, the object keypoint similarity (OKS), 

which is expressed as follows: 

   

 

2 2 2/ 2 0

0

i i ii

ii

exp d s k v
OKS

v





 







                  (5) 

Where
id is the Euclidean distances between the 

corresponding ground truth of each human keypoint and the 

detected keypoints, 
iv  is the ground truth’s visibility in the 

flag (predicted by the detector; 
iv is not used), s is the factor 

of the object, 
ik  represents the normalized factor of the i-th 

human body keypoints. The performance metrics follow the 

standard COCO-style mean AP (mAP) metrics under 

different intersection over union (IoU) thresholds, ranging 

from 0.5 to 0.95 with intervals of 0.05 [5].  

B. Training Details 

We followed the same training procedure as the original 

HigherHRNet [5], and used the same dataset for the data 

enhancement processing. Images with input size 640 × 640 

were randomly rotated ([-30◦, 30◦]), scaled ([0.75, 1.5]), 

translated ([-40, 40], and flipped. In the experiments, all the 

models actualized using the PyTorch framework and the 

Adam optimizer [34] was used for the training. The batch 

size was 16, number of training epochs 300, and initial 

learning rate 1e-3. In the 210th and 260th training epochs, 

the learning rate decreased to 1e-4 and 1e-5, respectively. 

C. Results on COCO2017 

Table I summarizes the bottom-up method results on the 

COCO 2017 test-dev dataset, and introduces two test 

methods, the single-scale test and multi-scale test. From 

Table I, we designed two image preprocessing methods 

consistent with HigherHRNet to compare them with the other 

bottom-up human pose estimation methods [5]. One uses an 

 
（a） Dupsampling 

 
（b） The overall structure of the high-resolution feature pyramid 

Fig.5. (a) The working process of Dupsampling is introduced. (b) Overall 

structure of the high-resolution feature pyramid. 
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input image with a resolution of 512 × 512 and 32 channels 

in the first layer of the backbone, the other uses an input 

image with a resolution of 640 × 640 and 48 channels in the 

first layer of the backbone.  

It can be seen that in the single-scale test, although our 

method used the attention mechanism many times, and more 

residual blocks than HigherHRNet were utilized to refine the 

feature maps’ features, the parameters of our method 

(+5.49%) and computational complexity (+4.14%) increased 

slightly, but our results compared to those of HigherHRNet 

improved by 0.9% AP. In the multi-scale test, our results, 

compared to the HigherHRNet, improved by 1.4% AP. The 

detection accuracy for small persons improved significantly, 

reaching 68.1% AP, whereas the detection accuracy for large 

persons also increased by 1.2% AP. This proves that our 

method is effective in human pose estimation, especially for 

small humans. The detailed results and analysis of the 

ablation experiments are given in the next section. 

Table II summarizes the top-down method results of the 

COCO 2017 test-dev dataset. The performance of CE- 

HigherHRNet is similar to some top-down methods. We used 

the same testing strategy that is used in bottom-up methods. 

The results obtained are very close to the results of the 

top-down method, which has been known to have a very slow 

inference speed. However, owing to the existence of the 

bounding boxes of the target detection algorithm, and the less 

crowded and occluded environment in the COCO dataset, its 

detection accuracy is much better than that of bottom-up 

methods. 

D. Ablation Experiments 

To better comprehend the increased gain of our proposed 

method, we conducted ablation experiments on the COCO 

2017 test-dev dataset for each individual component. All of 

 
Fig. 6. (a) The original HigherHRNet's high-resolution feature pyramid network. (b) Replace HRNET with the improved CE-HRNET. (c) Use dupsampling 

module to replace the deconvolutional module to generate feature maps with input image resolution 1/2. (d) On the basis of (c), generate a feature map that is 

consistent with the resolution of the input image. (e) Add an improved CBAM attention mechanism at the end to form the final network structure. 

TABLE I 

COMPARISONS OF BOTTOM-UP METHODS. 

Method Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL 

w/ single-scale test 

OpenPose VGG-19 368 - - 61.8 84.9 67.5 57.1 68.2 

Hourglass Hourglass 512 277.8M 206.9 56.6 81.8 61.8 49.8 67.0 

PersonLab ResNet-152 1401 68.7M 405.5 66.5 88.0 72.6 62.4 72.3 

PifPaf ResNet-152 - - - 66.7 - - 62.4 72.9 

Bottom-up HRNet HRNet-W32 512 28.5M 38.9 64.1 86.3 70.4 57.4 73.9 

HigherHRNet  HRNet-W32 512 28.6M 47.9 66.4 87.5 72.8 61.2 74.2 

HigherHRNet  HRNet-W48 640 63.8M 68.4 69.8 88.2 75.1 64.4 74.2 

Ours CE-HRNet-W32 512 31.9M, 52.8 67.3 87.5 73.8 62.5 75.3 

Ours CE-HRNet-W48 640 67.3M 160.7 71.0 88.4 76.9 66.3 75.9 

w/ multi-scale test 

Hourglass Hourglass 512 277.8M 206.9 65.5 86.8 72.3 60.6 72.6 

PersonLab ResNet-152 1401 68.7M 405.5 68.7 89.0 75.4 64.1 75.5 

SPM Hourglass 384 - - 66.9 85.5 72.9 62.6 73.1 

HigherHRNet  HRNet-W48 640 63.8M 154.3 70.5 89.3 77.2 66.6 75.8 

Ours CE-HRNet-W48 640 67.3M 160.7 71.9 89.2 78.8 68.1 77.0 

 

TABLE II 

COMPARISONS OF TOP-DOWN METHODS.  

Method AP AP50 AP75 APM APL 

Mask-RCNN 63.1 87.3 68.7 57.8 71.4 

G-RMI 68.5 87.1 75.5 65.8 73.3 

SimpleBaseline 73.7 91.9 81.8 70.3 80.0 

CPN 72.1 91.4 80.0 68.7 77.2 

AlphaPose 72.3 89.2 79.1 68.0 78.6 

CFN 72.6 86.1 69.7 78.3 64.1 

CE-HigherHRNet-W48 71.9 89.2 78.8 68.1 77.0 
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the comparative experiments used pretreatment approaches 

to train the input image with a resolution of 640 × 640 and 48 

channels in the backbone’s first layer. Fig.6 illustrates all the 

compositions of our experiment, and the results are shown in 

Table III, Table IV, and Table V. 

Effect of Multi-scale Sub_Pixel Skip Fusion. We 

conducted ablation experiments for the MSSF. The results 

are shown in Table III and Table IV, which include sub_pixel 

conv, skip connection, and three components of the CAEM. 

When performing a separate sub_pixel conv (Fig. 6. (b)), the 

final precision decreased by 1.3% AP compared to that used 

in HigherHRNet as the baseline Fig.6. (a)). The precision of a 

small person decreased by 1.5% AP, and that of a large 

human body decreased by 0.7% AP. Although the problem of 

information loss of the channel has been solved, the aliasing 

effect is very serious because it causes a decrease in the 

detection accuracy. The skip connection and CAEM need to 

be added in feature fusion to eliminate the aliasing effects. 

The results prove that our proposed MSSF can solve the 

problem of aliasing effects. 

Effect of high-resolution feature pyramid. The high- 

resolution feature pyramid comprises two components: 

lightweight attention module and Dupsampling module. 

After the Dupsampling, we added four basic blocks [32] to 

the two generated resolution feature maps to refine the 

features of the feature map. We conducted two sets of 

ablation experiments. 

The results in Table V show that to verify the effectiveness 

of higher-resolution predictive heatmaps, we had to set 

CE-HigherHRNet to the same setting as HigherHRNet, 

without adding the lightweight convolutional block attention 

module (LCBAM) at the end (Fig. 6.(c)). 

 It can be seen that when the two generated prediction 

heatmaps of 160*160 and 320*320 aggregate with 

multi-resolution, the precision of small persons was slightly 

improved (0.2%) whereas that of large persons did not 

change. However, when we generated the input image of the 

same size feature map (Fig. 6. (d)), the precision of small 

persons increased by 0.8% AP, whereas that of large persons 

improved by 0.7% AP. The results show that 1) prediction 

with higher resolution is beneficial to detect the keypoints of 

small persons, and the bottom-up methods require the ability 

to sense scale. 2) Dupsampling can generate better feature 

maps than deconvolution, and the calculation is 20% of that 

of the deconvolution. In further experiments, it can be seen 

that adding LCBAM (Fig. 6. (e)) behind the predicted 

heatmaps can make the precision of a small person improve 

by 1% AP, and that of a large body improve by 0.5% AP. 

These results prove that our method indeed has scale 

awareness. 

Effect of Input image resolution. An experimental analysis 

was conducted to determine whether the input image 

resolution has an impact on the performance of the model. 

The input image resolution of CE-HigherHRNet was set to 

512 × 512, 640 × 640, and 768 × 768, and the number of 

channels in the first layer of the network was set to 48. All the 

methods used single-scale test. 

When performing the test, all the image resolutions were 

cropped to be consistent with the input image resolution for 

testing. From Table VI, it can be seen that when the input 

image resolution was increased to 640 × 640, the AP was 

significantly increased by 1.9%, of which only 0.3% AP was 

for the large human body, and more increase resulted for the 

small persons, with an increase of 3.3% AP. At the same time, 

it was found from experiments that if the input image 

resolution is further increased to 768 × 768, the mAP will not 

continue to increase; the detection accuracy of the small 

persons will increase slightly, but that of the large human 

body will drop significantly by 2.3% AP. This also verifies 

that, as mentioned for HigherHRNet, setting the input image 

to 640 × 640 works best. Hence, in this study, the training 

input image resolution was set to 640 × 640. 

Table VII shows the results of inference speed comparison. 

It compares the inference speed of three network models: 

HRNet, HigherHRNet, and CE-HigherHRNet. For fair 

comparison, we set 32 channels in the first layer of the 

TABLE III 

ABLATION STUDY OF MULTI-SCALE SUB_PIXEL SKIP FUSION. 

Method w/ sub_pixel conv w/ skip connection w/ CAEM AP APM APL 

 HigherHRNet    69.8 64.4 74.2 

Ours √   68.5 62.9 73.5 

Ours √ √  69.3 64.0 74.2 

Ours  √ √ √ 70.3 65.1 74.9 

 
TABLE IV 

ABLATION STUDY OF CE-HIGHERHRNET’S COMPONENTS. 

Method w/ MSSF w/ LCBAM w/ DUpsampling AP APM APL 

HigherHRNet    69.8 64.4 74.2 

Ours  √   70.3 65.1 74.9 

Ours  √ √  70.8 65.3 75.4 

Ours  √ √ √ 71.0 66.3 75.9 

       

 

TABLE V 

ABLATION STUDY OF DIFFERENT HEATMAP SIZE. 

Method Heatmap resolution AP APM APL 

HigherHRNet 256 69.8 65.4 76.4 

Ours 256 69.9 65.6 76.4 

Ours 512 70.1 66.0 76.7 

 

TABLE VI 

ABLATION STUDY OF CE-HIGHERHRNET WITH DIFFERENT TRAINING 

IMAGE SIZE. 

Train Size AP APM APL 

512 69.2 63.0 75.6 

640 71.0 66.3 75.9 

768 70.8 66.9 73.6 

 

TABLE VII 

COMPARISON OF THE INFERENCE TIME. 

Method Input size Inference time 

HRNet 640×640 689ms 

HigherHRNet 640×640 154ms 

Ours 640×640 119ms 
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backbone, and the input image resolution both were 640 by 

640. It can be seen that because HRNet is a two-stage method, 

the accuracy is slightly higher than that of the proposed 

model, but the inference speed is very slow. Compared with 

HigherHRNet, the inference speed of CE-HigherHRNet is 

improved by 35 ms, and it has a slight improvement in speed 

and accuracy. 

E. Results on CrowdPose 

The precision of the top-down methods has always been 

better than the bottom-up methods. However, for the problem 

of crowded people, the bottom-up methods are the better 

choice because the top-down methods need to select the 

human body instance frame to estimate the human body pose, 

which is very difficult for crowds. As can be seen in Table 

VIII, the top-down method [17], [18] that performs favorably 

on the COCO dataset does not perform well on the 

CrowdPose dataset. 

To verify the robustness of CE-HigherHRNet in a crowded 

scene, we used the CE-HigherHRNet-W48 on CrowdPose for 

training and testing, and report the performance on the test 

set. The evaluation indices all followed the COCO, and were 

trained and tested by setting the input image resolution to 

640 × 640. 

The results are shown in Table VIII. Our 

CE-HigherHRNet is much better than the top-down pose 

estimation method. AlphaPose is the best top-down method. 

Our proposed method is also slightly improved compared to 

the refined SPPE. However, it can be seen that our main 

enhancement is in the moderately crowded APM. We 

achieved 1% AP improvement for APH with a congestion 

factor exceeding 0.8% AP, thus proving that performance 

under extreme overcrowding situations is still a very difficult 

problem. 

F. Results Comparison 

We also compare the qualitative results between 

HigherHRNet and CE-HigherHRNet in Fig.7. (a). Our 

experiment was mainly aimed at the keypoints detection of 

small persons. As shown in the first row of Fig.7.(a), because 

the aliasing effect makes the model's positioning of the 

keypoints of the human body inaccurate and this kind of 

problem can be solved by our method, the third row of 

Fig.7.(b) shows that our method can detect drivers in a dark 

environment. It can be seen from Fig.7.(b) and Fig.7.(d) that 

our method can predict smaller people regardless of the 

environment they are in. In crowded, dimly lit, and other 

environments, the proposed model can estimate the human 

body pose very accurately. However, it can be seen that in the 

first row of Fig.7.(e), the human foot is occluded and the 

model misidentified the deer's hoof as a human foot. 

Therefore, CE-HigherHRNet still has room for improvement 

in severely occluded environments. In summary, 

CE-HigherHRNet has stronger discrimination ability, better 

performance, and is more precise in positioning the 

keypoints of the human body. All the images were selected 

from the COCO2017 val dataset. We compared the detection 

performance with a threshold of 0.5. 

V. CONCLUSION  

In this paper, we proposed CE-HigherHRNet, a new 

bottom-up method for human pose estimation based on 

HigherHRNet. Channel reduction causes loss of channel 

information in low-resolution feature maps, and the fused 

 
Fig. 7.（a) (c) are the test results of HigherHRNet, (b) (d) are the test results of CE-HigherHRNet, (e) (f) are the test results of crowded people. 

TABLE VIII 

COMPARISON OF TOP-DOWN AND BOTTOM-UP METHODS ON THE 

CROWDPOSE TEST DATASET.  

Method AP AP50 AP75 APE APM APH 

Top-down methods 

Mask-RCNN 57.2 83.5 60.3  69.4 57.9 45.8 

SimpleBaseline 60.8 81.4 65.7 71.4 61.2 51.2 

AlphaPose 61.0 81.3 66.0 71.2 61.4 51.1 

Top-down with refinement 

SPPE  66.0 84.2 71.5 75.5 66.3 57.4 

Bottom-up methods 

HigherHRNet-W48 65.9 86.4 70.6 73.3 66.5 57.9 

CE-HigherHRNet-W48 66.6 86.9 72.0 76.1 67.5 58.7 

APE is easy, representing Crowd Index range (0–0.1), APM is medium, 

representing Crowd Index range (0.1–0.8), APH is hard, representing Crowd 

Index range (0.8–1). 
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feature maps engender aliasing effects. We proposed a new 

channel-enhanced backbone to solve this problem. 

Specifically, we use sub_pixel conv to directly perform 

channel reduction and upsampling, which solves the problem 

of channel loss. We employ an enhanced attention 

mechanism based on CBAM to optimize the fused feature 

map every time, and skip connect the feature map generated 

after fusing this layer and the former layer, to solve the 

problem of aliasing effects. For the high-resolution feature 

pyramid, we introduce Dupsampling instead of deconvo- 

lution to generate higher-resolution prediction heatmaps to 

strengthen the model's detection of small persons, and also to 

strengthen the network's scale perception ability. In this 

study, multiple sets of experiments were conducted for 

objective performance analysis of the proposed method. The 

results indicate that CE-HigherHRNet is a significant step 

forward in addressing the pose estimation challenges. 
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