
Towards a Clean Architecture for Android Apps
using Model Transformations

Daniel Sanchez, Alix E. Rojas, Hector Florez

Abstract—In the last years, mobile applications have gained a
lot of importance in the software industry, since every day more
people become users of mobile devices and companies create a
lot of mobile applications to keep competitive in the market.
Then, it has become necessary to adopt new strategies that help
the industry produce applications that can be extensible, scal-
able, testable, and deployable effectively and efficiently. Based
on this, several architectural approaches have been proposed
to provide the required features in mobiles applications. In the
paper, we propose an approach that uses concepts of model-
driven engineering and model-driven architecture to build a
model to text transformation that allows generating Android
applications using Clean Architecture.

Index Terms—Model-Driven Engineering, Model Transfor-
mation, Clean Architecture, Android

I. INTRODUCTION

SOFTWARE products need to provide the functionalities
specified in the business functional requirements as well

as to support flexibility to change. Then, software products
demand an architecture to offer this characteristic. In addi-
tion, clean architecture is a software architecture that uses the
dependency inversion principle to separate high-level com-
ponents and low-level components. Then, this architecture
seeks to keep the software flexible and maintainable.

Furthermore, in Model-Driven Engineering, a metamodel
is used to make an abstraction of a specific domain, while
a model, which conforms to a metamodel, is used to make
a representation of a specific case in the modeled domain,
where the model has to follow the metamodels’ structure
and constraints [1]. Moreover, a model transformation allows
converting a model that conforms to a source metamodel
into a new model that conforms to a target metamodel [2].
A transformation is used to add valuable components to a
source model. In several cases, the final result after running a
model transformation is the source code of a software project.

In this article, we present a project in which we use a
model transformation to automatically generate source code
to manage peripherals of mobile devices. Nevertheless, in
this project, we faced the concern of separating the PIM
(Platform-independent Model) components from the PSM
(Platform-specific Model) components [3]. For instance, sep-
aration of libraries to work with different data sources or
to expose some output for the user through the peripherals
with the business logic and data flow communication. To
solve this concern, we use architecture in the generated

Manuscript received June 28, 2021; revised January 18, 2022
Daniel Sanchez is Master Student in Information and Communication

Sciences at the Universidad Distrital Francisco Jose de Caldas, Bogota,
Colombia. E-mail: desanchezt@correo.udistrital.edu.co

Alix E. Rojas is Associate Professor at the Universidad Ean, Bogota,
Colombia. E-mail: aerojash@universidadean.edu.co

Hector Florez is Full Professor at the Universidad Distrital Francisco Jose
de Caldas, Bogota, Colombia. E-mail: haflorezf@udistrital.edu.co

source code that helps to minimize the problems of upgrading
without modifying some business logic components, the flow
of the data, interactions, and so on. This approach has several
similarities to the levels defined on MDA [3] by the OMG1.
Therefore, we try to bind these two approaches in the same
implementation.

Then, our approach consists of a model transformation of
one PIM Model that represents CRUD operations into text
files that represent an Android App based on Clean Archi-
tecture. Such an architecture model represents the different
components and navigation used in an Android App, as well
as bindings the business entities with their corresponding
operations.

The result of the transformation is an Android App, which
can connect to Firestore2 implementing a Clean Architecture
and using the components and guidelines given by Google
and JetPack3 for their apps using Architecture Components4.

This article is structured as follows. Section II describes
Clean Architecture concepts. Section III presents the main
concepts related to model transformations. Section IV illus-
trates our proposed approach. Section V presents a case study
based on the proposed approach. Section VI presents related
work. Finally, Section VII presents conclusions and future
work.

II. CLEAN ARCHITECTURE

Clean Architecture was proposed by Robert C. Martin
[4] presenting a Component-Based Software Engineering
(CBSE) approach that can help to apply the separation
of concerns related to the platform-specific and platform-
independent functionalities. Regarding this approach, Martin
Fowler5 states that adopting a layered architecture is a good
point to start, but the problem is that once the software grows
in scale and complexity, there will be three big containers of
code that are not separating the code correctly. In addition,
Robert C. Martin [4] pointed out that Clean Architecture
is a domain-centered approach, which allows explaining all
elements of the domain.

An important feature of Clean Architecture is that the
UI and data source can be changed without any problem.
This characteristic allows testing business rules without UI,
database, services, or any other external dependency. As
a result, it provides source code with the domain logic
surrounded by the infrastructure components.

In this project, we have chosen Clean Architecture because
it has well-defined boundaries that separate the application

1https://www.omg.org/
2https://firebase.google.com/docs/firestore/
3https://developer.android.com/jetpack
4https://developer.android.com/topic/libraries/architecture
5https://martinfowler.com/bliki/PresentationDomainDataLayering.html

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 

https://www.omg.org/
https://firebase.google.com/docs/firestore/
https://developer.android.com/jetpack
https://developer.android.com/topic/libraries/architecture
https://martinfowler.com/bliki/PresentationDomainDataLayering.html


domain from the infrastructure components. In addition,
infrastructure components in this project refer to peripherals,
android UI, and communication to Firestore.

A. SOLID

SOLID is an acronym that encompasses five different
principles to apply in software development processes [5],
which are applied in Clean Architecture. These principles
are the:

• SRP Single Responsibility Pattern: A module should
be responsible for just one actor to avoid that changes
related to requirements for one actor affecting another
actor, not only taking into account the functionality, but
also the deployment process.

• OCP Open Close Principle: Textually the principle is:
A software artifact should be open for extension but
closed for modification [6]. This means that extensions
on requirements should not end in a massive change
in the code. The architecture should seek to reduce the
amount of code affected.
This can be done by a correct application of the SRP
pattern and DIP (Dependency Inversion Pattern), which
is the fifth principle.

• LSP Liskov Substitution Principle: Everything should
have a contract through an interface. In this way, in a
project, everything that accomplishes the contract can
be replaced by the client for its derivative class.

• ISP Interface Segregation Principle: When function-
ality is going to be used by several clients, one interface
for each client should be created, instead of loading a
concrete class for each client.
This serves to avoid recompilation and redeployment
between components. In this aspect, such definitions are
not necessary for dynamically typed languages because
they inferred the type at runtime.

• DIP Dependency Inversion Principle: Software
projects should depend on abstractions such as in-
terfaces and abstract classes instead of concretions
(classes) to allow injecting dependencies useful for each
specific purpose [7].
For example, consider injecting a gateway to commu-
nicate to a MySQL database and another gateway to
communicate to an SQL server database, where both
gateways implement the interface IGateway. Therefore,
the client that uses IGateway does not know anything
about the data access logic. This is helpful because
sometimes clients should not care about it.
This offers more flexibility for the architecture to
plug and play components. Thus, we should focus
on avoiding the use of very volatile concretions (i.e.,
elements susceptible to change); however, sometimes
concretions should be used instead of abstractions
when elements are reliable and very stable (e.g.,
java.lang.string class).

Regarding these principles, the 3-tier architecture demands
that any change in any layer suppose to recompile and
redeploy the subsequent layers (even when they should not
care about the changes of the other layer) [8].

B. Details definition (Platform-specific code)

Robert C. Martin defines details as software components
that are not closely related to the business rules and can
also be replaced. They can include the IO devices, databases,
web systems, servers, frameworks, communication protocols,
etc. Thus, business logic must be clean to be able to be
reusable in case of details suffer any change [5]. In this
project, we created an architecture where the policies are
isolated from those pluggable components i.e., data access
technology (firestore) and the UI.

C. Components

Components are units of deployment; for instance, Java
components are jar files, .NET components are DLLs, in-
terpreted languages components are source files. They must
be independently deployable and independently developed.
In Component-Based Development (CBD), systems are as-
sembled by components that are built and prepared for
integration. Making this integration using Clean Architecture
leads to a release of the system, starting from the business
logic and ending with the UI and components that integrate
the system with external systems (e.g., database, services)
[9].

III. MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) is an approach that of-
fers the required concepts to understand the elements related
to metamodels and models. Then, MDE uses models and
metamodels to support the design, construction, deployment,
maintenance, and upgrades of a system.

In the context of MDE, every model needs to meet the
following characteristics [10]:

• Abstraction. It means that a model must be a simplifi-
cation of the modeled system.

• Understandability. It means that a model must be intu-
itive.

• Accuracy. It means that a model must provide a correct
representation of the modeled system.

• Predictiveness. It means that a model must predict the
most important characteristics of the modeled system.

• Inexpensiveness. It means that the construction of a
model must be significantly cheaper than the modeled
system.

The Object Management Group (OMG)6 proposed a four-
layered architecture presented in Fig. 1. The OMG called
these layers M0, M1, M2, and M3. Layer M0 corresponds
to the instances of the system under study. Layer M1 includes
the model of the system. The layer M2 includes metamodels
that define the concepts and relations of the domain that
meets the system under study. Finally, layer M3 defines a
meta-metamodel that presents a definition of the elements
that can be created in the metamodel.

This architecture also defines relations between layers.
One instance of layer M0 is an instanceOf a model placed
in the layer M1, which conformsTo a metamodel placed in
the layer M2, which conformsTo a meta-metamodel placed
in the layer M3. However, the meta-metamodel conformsTo
itself.

6http://www.omg.org/

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 

http://www.omg.org/


M3: Metametamodel

M2: Metamodel

M1: Model

M0: System

instanceOf

conformsTo

conformsTo

conformsTo

Fig. 1. Four Levels Architecture.

IV. MODEL TRANSFORMATION

Model transformations are considered an important appli-
cation of MDE when using models as artifacts in the process
of code generating. A transformation is defined as the change
of a source model, which conforms to a source metamodel
into a target model, which conforms to a target metamodel
[11]. To make this transformation, it is necessary to use a
transformation language.

In a model transformation, the transformation language
is defined by a metamodel. Then, the source metamodel,
target metamodel, and transformation language metamodel
must conform to one meta-metamodel (e.g., ECORE). In this
structure, there is a transformation specification, which is a
source code created using the transformation language and
is considered a model that conforms to the transformation
language. This transformation specification depends on the
elements defined in the source and target metamodels. Fi-
nally, the transformation execution gets the source model and
generates the target model [12].

In addition, a model to text transformation is used to
generate source code in the desired language. Then, a model
to text transformation is made of individual transformations
that generate text files with desired content and extension.
This transformation requires an input model and an input
metamodel. The output is composed of the set of files that
contain the generated source code, which follows the syntax
of the selected language to deploy the final application [13],
[14]. Acceleo7 is a project that allows this kind of transforma-
tion. With this tool, a transformation requires including the
metamodel with which generating the text. Acceleo allows
building a set of templates that are the components where is
implemented the decisions of the transformation. It also has
a statement @main indicating which templates will be run.
If a template does not contain the statement @main, it must
be called by another template for its execution.

7https://www.eclipse.org/acceleo/

V. PROPOSED APPROACH

We propose an approach, which has as a main compo-
nent a domain metamodel that conforms to ECORE meta-
metamodel and is presented in Fig. 2. This metamodel has
been created using Obeo Designer8.

In this metamodel, view and model packages have been
separated, as well as some Enumeration utilities that
are used in other parts of the metamodel (Operation,
FieldType, DataType and Comparator).

The Model package contains the definition of the entities
that will have operations to access the database. This entity
can have several attributes with their corresponding name
and datatype.

The View package contains the elements related to the
UI. Screen is the element with the higher hierarchy in
this package, which contains containers that could be Form
or List. The Form element can have several Widget
specialized in TextField that can have all the types that
are defined in the FieldType, Spinner for multiple
selections of categorical values, Label to show a message,
and Button that can be specialized in SaveButton or
CancelButton.

We also define the binding relationship between Entity
and Form elements, and the relationship between entities’
attributes with the widgets inside the form to define which
elements of the UI affects the attributes of the entity.
Form has an operation type to specify the operation to

be performed by the SaveButton. For example, when
creating a Form with an operation Edit, the SaveButton
will execute the logic to edit the entity bound to that form.
This idea comes to us from the way how React Admin9

works.
In the case of listing data from a Read operation in the

database, then we also allow the relationship from the entity
element to the UI list element. Finally, the element with the
higher hierarchy in the metamodel is App, which contains
zero or any entities and zero or any screens.

After the user creates a model that conforms to this
metamodel, the transformation to text on this model is
performed based on the Android platform with the following
specifications:

• The code is generated in Kotlin language10. Android
officially supports Kotlin language. Kotlin is a modern
Java interoperable language that provides null safety,
reduces verbosity, and numerous other modern program-
ming language features solving issues like the ”Null-
PointerException” as well as incorporates functional
programming [15].

• As a data source, we are using Firestore from Firebase
because it gives us flexibility on the data definition since
it is a Real-time database-oriented as a documentary
database. The user that uses our metamodel just needs
to add the google-services.json and follow the
instructions provided by Firebase11. This allows us to
create completely functional projects without making
much more work apart from the model.

8https://www.obeodesigner.com/en/
9https://marmelab.com/react-admin/
10https://kotlinlang.org/
11https://firebase.google.com/docs/android/setup

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 

https://www.eclipse.org/acceleo/
https://www.obeodesigner.com/en/
https://marmelab.com/react-admin/
https://kotlinlang.org/
https://firebase.google.com/docs/android/setup


Fig. 2. Metamodel for describing CRUD operations

• To take advantage of the real-time database and to
use the best practices of the Android platform, we are
using the Lifecycle and other components from the
Architecture Components defined by Android Jetpack.

• Finally, we are using the Clean Architecture in the gen-

erated code with all the benefits it carries out removing
one of the difficulties of implementing the boundaries
and separating components (normally this implies a
lot of coding work). Thus, we are generating four
separated components, one per ring in the architecture

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 3. Default values in the Acceleo M2T Transformation definition

(Framework, Adapters, UseCases, and Entities).
For the transformation we use Acceleo [16] and as envi-

ronment to create the metamodels we use Obeo Designer12.
In addition, we are using the best practices proposed by
Acceleo to define the transformation model13. With this in
mind, we want to highlight that additionally to follow the
best practices, we also encompass all the routes, namespaces,
name convention, and default values in a single package as
Acceleo queries (see Fig. 3) to reconfigure the generation of
the components, which indeed is one of the capabilities we
want to support as future work.

VI. CASE STUDY

As a case study, we create an Android app called Com-
panyApp that allows users to register the information of
employees of a company. For each employee we want to
register the following information:

• ID (length between 6 and 11 characters)
• name
• address
• email
• salary

12https://www.obeodesigner.com/en/
13https://www.obeo.fr/en/acceleo-best-practices

• gender
• educationLevel
Then, we want to create a form, where the user can register

the information and show all employees registered in a list.
To accomplish this task, we created the model presented in
Fig. 4, which conforms to the metamodel presented in Fig.
2.

A. Architecture of the generated App

As we mentioned before, the cornerstone of the gener-
ated code for our Android app is Clean Architecture. The
diagram presented in Fig. 5 shows a typical scenario of
the separation of components using this architecture for an
app that needs to connect to a database. In this diagram,
Input Data, Output Data, and View Model are data
transfer objects transported between the different boundaries.
Input Boundary is the interface that defines the contract
that the Controller is using to invoke services, while
Output Boundary is the interface that the Presenter
is implementing. The Data Access Interface is also
part of the Output Boundary for the use cases; therefore,
it is the interface that the Data Access class implements.

One important element of the case study architecture is
Use Cases because it is the core of the business logic and

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 

https://www.obeodesigner.com/en/
https://www.obeo.fr/en/acceleo-best-practices


Fig. 4. Model for the case study of the CompanyApp

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 5. Class diagram for the proposed approach based on Clean Architecture concepts presented in [4].

defines boundaries to separate our Platform independent code
from the Platform-specific code.

Fig. 6 presents the Use Cases components diagram, in
which the component EmployeeUseCases expose all
interfaces to be assembled in the application. The other
components connect to it by implementing its interfaces. In
addition, the diagram includes input and output ports.

Regarding input ports, the EmployeeController
component (which is the one that triggers the
operations of EmployeeUseCases) invokes methods
defined in the IListEmployeeUseCase and
IRegisterEmployeeUseCase interfaces (or contracts).
In this way, the Controller does not know anything
about the concrete class that implements this contract.

Regarding output ports, the EmployeeUseCases
component invokes methods de-
fined in IListEmployeePresenter,
IRegisterEmployeePresenter, and
IEmployeeGateway interfaces. These interfaces are
exposed outside of the component through the output ports
in order to be implemented by the concrete classes defined
in EmployeePresenter and EmployeeGateway
components.

Thus, the complete data flow of our application for the
case of getting data from firestore is the following:

• The UI gets the event and sends the message to the
EmployeeController.

• The EmployeeController packages the data into
and object that is passed though the InputBoundary
of the EmployeeUseCases (by calling the method

Fig. 6. Components diagram

defined in IListEmployeeUseCase).
• The EmployeeUseCases component processes the

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 7. Class diagram

data and orchestrates all the business logic using the
Entities to emit a response in the following way:

– The EmployeeUseCases invokes the methods in
the output boundary IEmployeeGateway (that
is concreted in the EmployeeGateway compo-
nent).

– With the data received, the EmployeeUseCases
applies the corresponding business rules and emits
the response by invoking the methods defined in the
output boundary IListEmployeePresenter
(which has its concrete class defined in the
EmployeePresenter component).

– Finally, the Presenter creates the ViewModel
to allow UI to present the corresponding response
to the user.

Fig. 7 presents a static model for all this interaction
through a class diagram. In this diagram, every compo-
nent depends on the EmployeeUseCases component;
therefore, any change on it ends in a rebuild and rede-
ployment of EmployeeUseCases component that will be
propagated in the concrete components. However, it does

not happen for the opposite situation, so any change on
the EmployeeGateway component does not affect the
business rules (Platform independent component).

In addition, the Gateway component is not responsible
to connect to firestore, there is another component called
DataAccess in the framework that makes this task. This
ends in easy plug and plays for the component that makes
that data access, and thus it is possible to easily make
a change for a new data access repository (e.g. RestFull
services) without affecting the business logic.

B. Generated Android App

After running the model to text transformation, the pro-
posed approach generates the files with source code of a
complete functional Android App using Clean architecture.
This transformation produces several components such as a
menu with the functions offered by the App using a Navi-
gation Drawer, forms to enable users to store information in
the database including the validation messages modeled for
each modeled concept, UI to retrieve information from the
database for each concept, among others.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



VII. RELATED WORK

There are some proposals to create Android Apps using
MDE. For instance, Parada et al. [17] presents an approach
to generating Android code using UML class diagrams to
generate the structural parts of the application (Activities and
Services) and sequence diagrams to generate the behavior,
which generates interactions between different views using
Intents. This approach is open to modeling almost everything
since the sequence diagrams allow modelers to model loops
and specific code blocks. The difference with our approach
lies in we want to provide modelers with a metamodel, in
which they can create a high-level model without technical
knowledge. The trade-off of this approach is the code gener-
ated, which so far, the approach allows the ability to model
CRUD operations.

Sabraoui et al., [18] propose a Model Transformation
Chain from a UML diagram into a platform-specific model
that represents the Android platform elements. This model is
made by a model to text transformation that represents the
code of the application. In this solution, the generated code
is only for the GUI.

The main difference of our approach with these approaches
is that the code we generate is using an architecture that could
be extended for the user, and also we are generating the code
in Kotlin language.

VIII. CONCLUSIONS AND FUTURE WORK

The clean architecture fits with our purpose to manage
mobile peripherals because we can incorporate easily sepa-
rated components for each different type of peripheral and
in that way we can scale the solution without affecting the
business rules.

We have not implemented completely the SOLID principle
in this work because despite we are implementing correctly
OCP, LSP, ISP, and DIP principles, we are missing SRP;
therefore, in future work, we will add to the architecture
metamodel the element actor to provide new services and to
fulfill the Single Responsibility Principle.

In addition, we want to make a metrics evaluation in
terms of the components and classes to define their level of
responsibility and dependency on other classes/components.
This could serve as a basis for the application architects
to make decisions towards the modification of the present
architecture for their specific purpose.

This work cannot be considered as a CBD approach
because using MDE, it is complex to allow users to define
their intentionally in the modeled system since we are not
able to make a vertical separation into components of the
system, but we can make a horizontal separation of the
system into different components using the classic Clean
Architecture structure. In future work, we plan to allow
users to choose which entities in the application can go
into different components that constitute an approximation
to vertical integration of the components.

One of the points against the use of Clean Architecture
is the effort invested in the construction of the boundaries;
however, by using our model transformation, that time and
effort are saved for developers.

REFERENCES

[1] H. Florez, M. Sánchez, and J. Villalobos, “Modeling and analyzing
imperfection in enterprise models.” Engineering Letters, vol. 29, no. 1,
pp. 261–277, 2020.

[2] H. Florez and M. Leon, “Model driven engineering approach to
configure software reusable components,” in International Conference
on Applied Informatics. Springer, 2018, pp. 352–363.

[3] R. Soley et al., “Model driven architecture,” OMG white paper, vol.
308, pp. 1–12, 2000.

[4] R. C. Martin, J. Grenning, S. Brown, K. Henney, and J. Gorman, Clean
architecture: a craftsman’s guide to software structure and design.
Prentice Hall, 2017.

[5] R. C. Martin, “Design principles and design patterns,” Object Mentor,
vol. 1, no. 1–34, p. 597, 2000.

[6] R. C. Martin and S. Lippman, More C++ gems. Cambridge University
Press, 2000.

[7] A. Becker and D. Gorlich, “What is game balancing? - an examination
of concepts,” ParadigmPlus, vol. 1, no. 1, pp. 22–41, 2020.

[8] D. Sanchez, O. Mendez, and H. Florez, “An approach of a framework
to create web applications,” in International Conference on Computa-
tional Science and Its Applications. Springer, 2018, pp. 341–352.

[9] I. Crnkovic, “Component-based software engineering—new challenges
in software development,” Software Focus, vol. 2, no. 4, pp. 127–133,
2001.

[10] B. Selic, “The pragmatics of model-driven development,” IEEE soft-
ware, vol. 20, no. 5, pp. 19–25, 2003.

[11] H. Florez, E. Garcia, and D. Muñoz, “Automatic code generation
system for transactional web applications,” in International Conference
on Computational Science and Its Applications. Springer, 2019, pp.
436–451.

[12] D. Sanchez and H. Florez, “Model driven engineering approach to
manage peripherals in mobile devices,” in International Conference
on Computational Science and Its Applications. Springer, 2018, pp.
353–364.

[13] M. Amrani, B. Combemale, L. Lúcio, G. Selim, J. Dingel, Y. Le Traon,
H. Vangheluwe, and J. R. Cordy, “Formal verification techniques for
model transformations: A tridimensional classification,” The Journal
of Object Technology, vol. 14, no. 3, pp. 1–43, 2015.

[14] E. Syriani, “A multi-paradigm foundation for model transformation
language engineering,” Ph.D. dissertation, McGill University Libraries,
2011.

[15] D. Jemerov and S. Isakova, Kotlin in action. Manning Publications
Company, 2017.

[16] J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front, “A survey of
model driven engineering tools for user interface design,” in Inter-
national Workshop on Task Models and Diagrams for User Interface
Design. Springer, 2007, pp. 84–97.

[17] A. G. Parada and L. B. De Brisolara, “A model driven approach for
Android applications development,” Brazilian Symposium on Comput-
ing System Engineering, SBESC, pp. 192–197, 2012.

[18] A. Sabraoui, M. El Koutbi, and I. Khriss, “Gui code generation for an-
droid applications using a mda approach,” in 2012 IEEE International
Conference on Complex Systems (ICCS). IEEE, 2012, pp. 1–6.

Daniel Sanchez is M.Sc student at the Universidad Distrital Francisco
Jose de Caldas. This article presents an important component related to
his research project.

Alix E. Rojas is Associate Professor at the Universidad Ean, Bogota,
Colombia. She is M.Sc. in Systems and Computing Engineering at the Uni-
versidad Nacional de Colombia. Her research interests are agile practices,
industry 4.0 technologies, and education.

Hector Florez is Full Professor at the Universidad Distrital Francisco Jose
de Caldas, Bogota, Colombia. He is Ph.D. in Engineering at the Universidad
de Los Andes. His research interests are enterprise modeling, model-driven
engineering, and enterprise analysis.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_28

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 


	Introduction
	Clean Architecture
	SOLID
	Details definition (Platform-specific code)
	Components

	Model-Driven Engineering
	Model Transformation
	Proposed Approach
	Case Study
	Architecture of the generated App
	Generated Android App

	Related work
	Conclusions and Future work
	References
	Biographies
	Daniel Sanchez
	Alix E. Rojas
	Hector Florez




