
 

 

Abstract— Software fault localization is a task of isolating 

the statements which cause faults in a program. Fault 

localization is one of the monotonous, time consuming and 

prohibitively expensive, yet very important activities in 

program debugging. Manual testing and debugging is very 

infeasible due to the escalating scale and complexity of 

software systems. So, there is a strong need for automated 

techniques which can help developers locating bugs in 

programs without much human interference. This necessity 

has given rise to the development of a variety of fault 

localization techniques, each of which deals with the problem 

in its own way. This paper presents an overview of such 

techniques with some key issues and concerns relevant to 

software fault localization. In particular, this paper focuses on 

spectrum-based software fault localization (SBFL) techniques 

and reviews two recent approaches in detail that further 

improve its performance. These two approaches which are 

based on the concepts of Failed Execution Slice and Fault 

Context are evaluated experimentally on seven standard 

benchmark Siemens programs to compare their effectiveness 

against the classic Ochiai method. The experimental results 

show that the two approaches improve SBFL performance by 

an average of 27.05% and 38.64% respectively against the 

classic Ochiai technique. 

 
Index Terms— Software fault localization, execution trace, 

debugging, failure, program spectrum, program slicing, failed 

execution slice, fault context. 

 

I. INTRODUCTION 

oday the influence of software is reasonably 

everywhere. At the present time, software is key 

element to many systems and processes from the safety 

point of view such as healthcare, aeronautics, industrial 

plants, nuclear energy etc. This development has been 

continuously increasing the scale and complexity of 

software systems day by day. Unfortunately it has resulted 

in many software bugs that remain undetected during the 

development process and ultimately passes to the end user 

which may result in huge losses because of failures. The 

significant proportion of cost of fixing software bugs is 
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passed to the software users and rest is absorbed by the 

developers and vendors. 

The objective of fault localization is to identify the 

defective program elements which lead to software failures. 

In other words, fault localization is the process to identify 

the locations of faults in software programs. Previously the 

task of fault localization was performed manually which 

was very tedious, time consuming and prone to failures as 

many bugs remain undetected. This manual process of 

localizing faults in today’s large scale complex and safety 

critical software systems is prohibitively expensive. Another 

problem of manual fault detection is that it depends on 

experience, judgment and perception of developers and 

testing engineers to identify the code that causes software 

failure. These limitations have given rise to the requirement 

of developing more scientific techniques for fault 

localization. It is also important to develop techniques that 

can fully or partially automate the task of identification of 

faulty code in software systems. The research is 

continuously going on in this direction and many techniques 

and concepts have been developed that are helping software 

professionals to improve the quality of the software and to 

improve the bug localization process. As advances are being 

made from both theoretical and practical perspective in the 

field of software fault localization, it is important to give an 

overview of current techniques related to fault localization 

to facilitate those who want to contribute in this area. In 

software fault localization literature many studies have been 

proposed that further improve the performance of existing 

classical fault localization methods. This paper describes 

two such techniques in detail and experimentally evaluates 

their effectiveness against the classic SBFL technique 

(Ochiai in our study). 

It is necessary to give brief definitions of the following 

terms which appear frequently in this paper. A failure occurs 

when a service differ from its accepted behavior. An error 

can be defined as a state or condition that may cause a 

failure and a fault or bug is the primary source of an error 

[1]. The main contributions of this paper are summarized 

below. 

 A review of the basic and advanced software fault 

localization techniques and examining their issues and 

concerns. 

 This paper illustrates the traditional spectrum-based 

fault localization technique and some of the recent 

methods that further improve its performance. 

 Provides an overview of some standard metrics that are 

used to evaluate the effectiveness of software fault 

localization techniques.  
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 Experimentally evaluates two recent techniques on a 

standard benchmark (Siemens test suite) to compare 

their effectiveness against the classic SBFL method 

Ochiai. 

The rest of the paper is organized as follows: the second 

section briefly discusses about the conventional fault 

localization techniques, and then categorization of more 

advanced techniques of fault localization is presented in 

third section. This section illustrates the traditional methods 

of spectrum-based fault localization and also illustrates 

some recent techniques by which the effectiveness of 

spectrum-based fault localization can be improved. The first 

technique discussed here is based on the failed execution 

slice and the second method utilizes the concept of fault 

context in SBFL to improve the absolute rank of faulty 

program entities. A brief review of other software fault 

localization technique is also provided in section three. An 

overview of various evaluation metrics that are used to 

measure the effectiveness of fault localization techniques is 

presented in section four. The section five presents a 

detailed experimental study to evaluate the effectiveness of 

the two techniques (i. e. failed execution slice and fault 

context) against the classic SBFL method Ochiai. In the end 

conclusion is presented in section six. 

II. CONVENTIONAL FAULT LOCALIZATION TECHNIQUES 

To give a basic overview of fault identification, this 

section explains some traditional and instinctive techniques 

of fault localization. 

A. Program Logging 

To monitor variable values and other state information of 

the program, statements such as print are inserted into the 

code. This creates a program log, which is used by 

developers to detect the underlying cause of failure in case 

of abnormal program behavior is detected. 

B. Assertions 

Assertions are added by developers in the form of 

constraints which are required to be always true during the 

correct execution of a program code. Assertions are 

specified in the program as conditional statements that 

terminate the program if evaluated to false. In this way, 

incorrect or faulty execution of a program can be detected 

by assertions. 

C. Breakpoints 

With the help of breakpoints the user can temporarily stop 

the execution of a program when it reaches a certain point 

and thus allows a user to examine the current state of 

variables and intermediate results. User can observe 

development of a bug after a breakpoint is activated. This 

approach is adopted by tools for example GNU GDB and 

Microsoft Visual Studio Debugger.  

D. Profiling 

In order to optimize a program, profiling can be used by 

analyzing run time metrics such as memory usage and 

execution speed. Profiling is helpful in debugging in the 

following manner – detecting when a function execute 

unexpectedly and identifies the code responsible for that, 

discovering the state of memory leak and investigating the 

side effects of lazy evaluation i.e. evaluation of expressions 

is deferred until some other computation is awaiting their 

results. The examples of some debugging tools that 

incorporate profiling are GNU’s “gproof” and the Eclipse 

plug-in “TPTP”. 

III. ADVANCED FAULT LOCALIZATION TECHNIQUES 

As the size and complexity of software system is 

increasing continuously, traditional fault identification 

techniques are insufficient to detect the root cause of 

failures. This section discusses different category of fault 

localization techniques. The authors illustrate the differences 

between different slice-based techniques first, and then this 

paper presents spectrum-based techniques with the help of 

an example. The spectrum-based techniques are commonly 

used in fault localization to compute suspiciousness values 

of program statements to identify the location of faults that 

are responsible for program failure. Many improvements in 

spectrum-based methods have been proposed by various 

authors time to time and two such methods that improve the 

performance of spectrum-based fault localization are 

explained in this paper with the help of examples. Next, we 

give a brief overview of some other techniques such as 

statistics-based, program state-based, machine learning 

based, data mining-based and model-based techniques. 

A. Slice-Based Techniques 

 Program slicing is a method or approach that 

conceptualizes a program into a compact manner by 

removing irrelevant parts which have no effect upon the 

semantics of interest. Program slicing only focuses on 

selected aspects of semantics. Program slicing reduces the 

search domain while developers locate faults in a program. 

The idea is that when failures occurs in a program because 

of an erroneous variable value at a statement, then the defect 

is there in the static slice related to the variable statement 

pair which restricts the search efforts to the particular slice 

rather than the entire program. One limitation with static 

slicing technique is that it does not work well with pointer 

variables because pointers make data flow analysis 

inefficient as dereferencing of pointer variables introduces 

large sets of data facts which need to be stored. Equivalence 

analysis improves effectiveness of data flow analysis while 

working with pointer variables. It finds equivalence 

relationship between memory locations accessed by a 

program segment. When two memory locations are equal 

then they share same data objects in a function or procedure. 

Thus, it is required to figure out information for a 

representative memory location by data flow analysis, and 

data flow for other locations can be acquired from the 

representative location. 

Static slicing has a drawback that the slice for a given 

variable at a given program statement contains all the 

executable statements of the program that could somehow 

affect the value of this variable of the slice. Consequently, it 

might include some extra unnecessary statements because 

run time values cannot be predicted with static slicing 

method. To keep out such extra statements dynamic slicing 

should be used. The dynamic slicing is constructed with 

respect to the conventional static slicing criterion together 

with the input sequence supplied to the program, during 
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some specific execution (dynamic information). One weak 

point with dynamic slicing is that it may omit some crucial 

statements which can lead to failure. The dynamic slicing 

cannot find the execution omission errors which may cause 

to leave out some significant statements in a program and 

therefore resulting in failure.  The relevant slicing concept 

can be used to trace such execution omission errors by 

locating faulty statements. 

A third type of slicing is execution slicing which includes 

statements that execute with respect to a given test case. It 

gives statements executed related to a specific inputs as 

against the case of static slicing which considers all inputs. 

Some of the execution slice based debugging tools in 

practice are xSuds at Telcordia, and eXVantage at Avaya. 

The following example given in Table I demonstrates the 

difference between static, dynamic and execution slicing. 

Assume the sample code given in the second column of 

Table I has a bug at statement S15. The third column shows 

the static slice of variable maximum. This static slice 

contains all statements of the program that might influence 

the value of the maximum variable. The statements included 

in this static slice are S1, S2, S3, S4, S6, S7, S8, S13, S14, 

S16, S17, S22 and S24. The fourth column shows the 

dynamic slice for variable maximum which includes 

statements that affect the value of maximum with respect to 

test case when a=1, b=2 and c=3. This dynamic slice is 

consists of statements  S1, S2, S3, S4, S6, S16, S22, and 

S24.The execution slice with respect to test case a=1, b=2 

and c=3 is given in column five and contains all statements 

of the program executed by this test case. This execution 

slice contains statements S1, S2, S3, S4, S5, S6, S16, S22, 

S23, S24, and S25. Slices are difficult to understand due to 

their length. The notation of barriers is proposed by Krinke 

[2], which offers a filtering method for smaller program 

slices and improved ability to understand. 

B. Program Spectrum-Based Techniques 

A program spectrum explains the execution details from 

certain viewpoints, such as conditional branching or loop 

free paths within procedures. The use of the program 

spectrum techniques in software fault localization was 

suggested by Collofello and Cousins [3]. Such spectra 

information can be used to identify suspicious code which is 

responsible for program crash. The program segment under 

testing during execution is denoted by Executable Statement 

Hit Spectrum (ESHS). This information enables to identify 

components of a program involved in a failure. 

i. Notations 

Some notations that are used in spectrum-based 

techniques are defined here. P represents a program. NCF 

means “number of failed test cases that cover a program 

statement”; NCS signifies the “count of successful test cases 

that cover a statement”, NC symbolizes the “total number of 

test cases by which a statement is covered”, NS and NF 

represent the “total number of successful and failed test 

cases” respectively. NUF means the “count of failed test cases 

that do not cover the statement”, and NUS specifies the 

“number of successful test cases that do not cover the 

statement”. 

ii. Techniques 

For spectrum-based fault localization, some early 

researches only used failed test cases. These studies found to 

be ineffective. Afterwards researches used both successful 

and unsuccessful test cases and highlighted the differences 

between them and achieved better fault localization results. 

M. Renieris et al. [4] worked on methods known as set 

union and set intersection. In set union algorithm program 

TABLE I 

COMPARISON OF DIFFERENT TYPES OF SLICING METHODS 
 

Stmt. 

# 

Code snippet with a bug at 

statement S15 

Static slice for maximum Dynamic slice for maximum 

w. r. t. test case a=1, b=2, c=3 

Execution slice for maximum 

w. r. t. test case a=1, b=2, c=3 

S1 input (a); Enter (a); Enter (a); Enter (a); 

S2 input (b); Enter (b); Enter (b); Enter (b); 

S3 input (c); Enter (c); Enter (c); Enter (c); 

S4 int maximum; int maximum; int maximum; int maximum; 

S5 int minimum;     int minimum; 

S6 if(a>b) if(a>b) if(a>b) if(a>b) 

S7   if(a>c){ if(a>c){     

S8    maximum=a; maximum=a;     

S9    if(b>c)       

S10     minimum=c;       

S11    else       

S12     minimum=b;}       

S13  else else     

S14   { maximum=c; { maximum=c;     

S15      minimum=a;  

     //correct minimum=b;} 

      

S16 else if(b>c) { else if(b>c) { else if(b>c) { else if(b>c) { 

S17  maximum=b; maximum=b;     

S18  if(a>c)       

S19   minimum=c;       

S20  else       

S21   minimum=a;}       

S22 else{ maximum=c; else{ maximum=c; else{ maximum=c; else{ maximum=c; 

S23  minimum=a;}     minimum=a;} 

S24 print(maximum); print(maximum); print(maximum); print(maximum); 

S25 print(minimum);     print(minimum); 
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spectra differences are determined between a failing test 

case f and a set of successful test cases P. Consider S (t) as 

the spectra or in other words running behavior of the 

program executing the test case t. Then, A fault localization 

report R is generated by determining the differences 

between a failing test case f, and all passed test cases pi  P. 

This can be represented as R= S (f) – Upi  p S(pi). This 

algorithm is known as set union algorithm and is described 

in [4]. The code executed by failed test cases but not 

successful test cases is more suspicious than others. This is 

the technique of set union methods which focuses on source 

code that is executed by failed test cases but not by any of 

the test cases that successfully executed the code. 

As opposed to above Set Union algorithm, a different 

algorithm known as Set Intersect is also explained in. As per 

set intersect method, the program spectra difference between 

failing test case and intersection spectra of successful test 

cases is computed as localization report, R. This can be 

written as R = pi  p S(pi) – S(f). The code that is executed 

by all the successful test cases but not failed tests is 

excluded by set intersection method. 

Another program spectrum-based technique is nearest 

neighbor, in which a successful test run is find out that is 

most similar to the failed tests based on distance metric. The 

difference set of this successful and failed test is computed 

that locates the fault is it is present in the difference set. 

The thought of nearest neighbor resembles counterfactual 

reasoning, which says that, suppose there are two events X 

and Y, in world ‘w’ and X causes Y if, in all possible worlds 

that are similar to ‘w’, X does not occur and Y also does not 

happen. 

Next, the Tarantula, a well-known ESHS based similarity 

coefficient based technique is discussed. This technique 

makes use of coverage and execution results of a program 

under test. The execution results tell the success and failure 

of the program and suspiciousness of each statement (S) is 

computed as per the formula given below in (1). The 

notations used here are explained in the previous section. 

susp (s) =  

𝑁𝐶𝐹
𝑁𝐹

𝑁𝐶𝐹
𝑁𝐹

+ 
𝑁𝐶𝑆
𝑁S

 (1) 

A study shows that, in comparison to set union, set 

intersection and nearest neighbor methods, the technique 

known as Tarantula is relatively more efficient fault 

localization technique because before locating the first 

faulty statement in a program, Tarantula checks fewer code 

statements [5]. Those statements which are executed by 

same number of failed test cases are grouped together and 

these groups are given ranks by the number of failed test 

cases, and are arranged in descending order. Statements are 

ranked on the basis of suspiciousness calculated within each 

group.  

Now, the authors give an example to compute the 

suspiciousness values of statements of a program segment 

using the Tarantula Technique [1]. Consider the code 

snippet given in Table II. Here it is assumed that there are 

five successful test cases (t1, t2, t4, t5 and t6) and one 

unsuccessful or failed test case (t3). 

The statement coverage of six test cases is shown from 

third to eighth columns. The bottom row gives the execution 

result of each test case. Here, ‘0’ means successful 

execution of the test case and ‘1’ represents failed test case 

execution. The entry in the table with an ‘1’ shows that the 

corresponding test case covers the statement, while an 

empty entry means that the statement is not covered. The 

next two columns contain the values of NCF and NCS for 

each statement of the program code. The suspiciousness 

value is displayed in the eleventh column as per the 

definition of Tarantula. The last column displays the ranking 

of each statement. It can be observed that the faulty 

statement S13 has the maximum ranking that is 1. It requires 

only two searches to detect the faulty statement S13 which 

has the highest suspiciousness rank of 1. As per EXAM 

score only 9.09% of statements need to be searched in order 

to reach to the faulty statement. Some other recent 

techniques have given better performance in terms of their 

usefulness at fault localization. The technique based on 

TABLE II 

SUSPICIOUSNESS VALUE OF PROGRAM STATEMENTS COMPUTED USING THE TARANTULA METHOD 

Stmt. # Program t1 t2 t3 t4 t5 t6 NCF NCS Suspiciousness Ranking 

S1 input (a); 1 1 1 1 1 1 1 5 0.50 4 

S2 input (b); 1 1 1 1 1 1 1 5 0.50 4 

S3 input (c); 1 1 1 1 1 1 1 5 0.50 4 

S4 int maximum; 1 1 1 1 1 1 1 5 0.50 4 

S5 int minimum; 1 1 1 1 1 1 1 5 0.50 4 

S6 if(a>b) 1 1 1 1 1 1 1 5 0.50 4 

S7   if(a>c){ 1 1 1       1 2 0.71 3 

S8    maximum=a; 1 1         0 2 0.00 12 

S9    if(b>c) 1 1         0 2 0.00 12 

S10     minimum=c; 1           0 1 0.00 12 

S11    else   minimum=b;}   1         0 1 0.00 12 

S12  else   { maximum=c;     1       1 0 1.00 1 

S13      minimum=a;  

     //correct minimum=b;} 

    1       1 0 1.00 1 

S14 else if(b>c) {       1 1 1 0 3 0.00 12 

S15  maximum=b;       1 1   0 2 0.00 12 

S16  if(a>c)       1 1   0 2 0.00 12 

S17   minimum=c;       1     0 1 0.00 12 

S18  else   minimum=a;}         1   0 1 0.00 12 

S19 else{ maximum=c;           1 0 1 0.00 12 

S20  minimum=a;}           1 0 1 0.00 12 

S21 print(maximum); 1 1 1 1 1 1 1 5 0.50 4 

S22 print(minimum); 1 1 1 1 1 1 1 5 0.50 4 

Execution results 

(0=successful, 1=Failed) 

0 0 1 0 0 0       
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similarity coefficient given by Ochiai [1] is more effective 

than Tarantula. Its formula is given below in (2). 

 

𝑠𝑢𝑠𝑝 (𝑂𝑐ℎ𝑖𝑎𝑖) =  
𝑁𝐶𝐹

√𝑁F x  (𝑁𝐶𝐹+ 𝑁𝐶𝑆)
  (2) 

 

 

Naish et al. [6] worked on fault localization techniques 

for programs having single and multiple bugs. Two such 

techniques are O and OP respectively. Experimental data 

suggest both O and OP both are more efficient methods in 

comparison with Tarantula and Ochiai as far as single bug 

programs are concerned. 

It was also found that O is a better approach for single 

bug programs and OP is good for programs which have 

multiple bugs. The technique O (ranking metric) 

characterizes the suspiciousness of a statement S as given 

below in (3). 

𝑠𝑢𝑠𝑝(𝑠) =  
−1

𝑁𝑈𝑆,
   

𝑖𝑓 𝑁𝑈𝐹 >0

otherwise
 (3) 

 

Here it is assumed that, with respect to single bug 

programs, NUF is always zero for the faulty statements. For 

statements with positive suspiciousness values, the 

probability of them being faulty is relative to NUS. The 

technique OP was proposed for better performance in case of 

programs with multiple bugs. It suggests that the statements 

with larger NCF and smaller NCS are moved to the top 

ranking with the help of the following (4). 

 

susp(𝑠) = 𝑁𝐶𝐹 − 
𝑁𝐶𝑆

𝑁S+ 1
 (4) 

 

The use of data flow spectra in improving effectiveness of 

spectrum-based fault localization is given by Ribeiro et al. 

[7]. The data flow in a program means defining a variable 

i.e. assigning value to it and its subsequent references i.e. 

the use of that variable takes place when its value is referred 

to. The data flow spectrum is related to all such paths 

between every point where a variable is assigned a value 

and its subsequent use (p-use, predicate computation and c-

use, value computation). This is also called definition-use 

associations (DUA). Ribeiro et al. [7] carried out 

experiments and compare the use of data flow spectrum 

(DUA) and control flow spectrum (lines) in fault 

localization. They concluded that data flow spectrum 

located more bugs and allows the programmer to examine 

less code than control flow (line spectrum) for different 

ranking metrics such as Tarantula, Ochiai, and Jaccard etc. 

iii. Issues and Concerns 

This section discusses some issues related to spectrum- 

based fault localization techniques.  The contribution of 

failed and successful test cases is not properly explained by 

the spectrum-based techniques. The program statements are 

divided into two groups i.e. suspicious and unsuspicious 

groups. The statements that are executed by at least one 

failed test case are part of suspicious group, whereas the 

remaining program statements are contained in unsuspicious 

group. The suspicious statements are considered to be risky 

and for these risk factor is calculated. The unsuspicious 

statements are just assigned lowest values. However, the 

problem is that the test cases which executed successfully 

may contain bugs. Wong et al. [1] said that each additional 

test case whether successful or failed is helps in finding 

program bugs.  As per their study, for a statement or piece 

of code, executed by the first failed test case, the computed 

suspiciousness value will be greater than or equal to the 

second failed test executed on that piece of code. Similarly, 

the suspiciousness value computed by second failed test 

case will be greater than or equal to the third failed test case 

that executes the code, and so on. If we compare the total 

contribution in locating program bugs by all the successful 

tests and all the failed tests on a piece of cede, it was found 

that the contribution by failed test is more than the 

contribution by successful test cases. Fault localization 

methods often compare failed tests with successful tests so it 

would be advantageous to know which successful test case 

should be chosen for comparison to reduce the search area 

of the fault. Wong and Qi [8] recommend that the successful 

test cases whose execution sequence is most similar to that 

of a failed one should be chosen. This similarity comparison 

is based on control flow based difference metric. 

The ranking of the statements will be the same if they 

have same suspiciousness values. For example “if” 

statements execute in the same way and it is likely that these 

statements will be assigned same suspiciousness value in 

spectrum- based techniques. In case of these ties, besides 

statement coverage, additional information of frequency of 

statement execution is also utilized. Xu et al. [9] analyzed 

different tie breaking methods like confidence based 

methods, data dependency based and statement order based 

methods.  

Zhao et al. [10] used the program control flow graph to 

study program execution because only coverage information 

cannot be used to analyze execution paths. They discover 

the relationship between failed execution and control flows 

and explained the mapping of distribution of failed 

execution to different control flows. They determined that 

how each block is related with failure and also verified that 

how a block is bug free by comparing the distributions of 

blocks on the same failed execution paths. 

C. Techniques to Improve the Efficiency of Spectrum-Based 

Fault Localization 

The next two sub-sections illustrate two methods that can 

improve the performance of the spectrum-based fault 

localization. The first method makes use of failed execution 

slice to improve the effectiveness of spectrum-based fault 

localization. The second method combines the 

suspiciousness of program entity and suspiciousness of 

program entity’s fault context in order to improve the 

absolute rank of faulty entities in the program. 

i. Efficient Spectrum-Based Fault Localization using Failed 

Execution Slice 

Spectrum-based techniques of fault localization can be 

improved with the use of failed execution slice [11]. A set of 

statements executed by a test case are referred to as 

execution slice. An execution slice with respect to a failed 

test case is called failed execution slice. This method, first 

computes the suspiciousness score of each statement of a 

program under test using some existing fault localization 

technique such as Tarantula, Ochiai, Jaccard etc., then scope 

of fault is constrained using selective failed execution slice 

(FES) which is chosen on the basis of utility evaluation 
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function f. 

Spectrum-based fault localization (SFL) mainly makes 

use of statement suspiciousness scores in order to detect 

faulty statements in a program. There may be certain 

statements that might be regarded as noise statements which 

have higher suspiciousness values but still they are not the 

main cause of the program failure. This method exploits this 

concept and eliminates such possible noise statements from 

the error report and further debugging process, thereby 

improving the effectiveness of SFL methods. A key failed 

execution slice (FES) is selected from all candidate failed 

execution slices to help reduce the scope of fault detection 

of the classical SFL methods. 

 

a. Utility evaluation function 

The primary objective is to use failed execution slice is to 

remove the maximum possible noise statements that have 

higher suspiciousness than the root cause. But it is 

challenging problem to identify the FES from all failed 

execution slices. As proposed by Shu et al. [11], the utility 

of failed execution slices is measured by the following 

function f as in (5). 

 

f(Ti) = ∑ S[Ii][i]x sus[i]
𝑛

𝑖=1
 (5) 

 

Where Ti is a failed execution slice, Ii is the 

corresponding failed test case. S[Ii][i]  ∈ [0,1] indicates that 

whether the statement i is executed or not by the test case Ii. 

Here, a 0 means the statement is not covered and 1 

otherwise. n>=1 represents the number of executable 

statements in the program under test. The suspiciousness 

score of the statement i is denoted by sus[i]. The utility 

function value is calculated for each candidate FES and an 

FES with smaller utility function value is considered to be 

of greater use for reducing the scope of fault detection. 

 

b. FES-based framework 

The main process of FES based fault localization is 

shown in Fig. 1 and it consists of three broad steps as 

follows. 

i. In the first step, the suspiciousness of statements is 

calculated based on a specific classic SBFL method. In 

our study we have used classic Ochiai method of 

spectrum-based fault localization. A debug report is 

generated which consists of all statements sorted 

according to their suspiciousness scores in descending 

order. 

ii. In the second step, a key execution slice is selected 

which reduced the search space of faulty statements in 

the debug report. The key execution slice is selected by 

a utility evaluation function as defined as in (5). 

iii. Finally, a new debugging report is generated by 

intersecting the failed execution slice (step-2) and the 

basic debug report generated in step-1. Based on this 

new debug report, a developer examines every 

statement by its suspiciousness score in descending 

order until the first faulty statement is found. 

 

c. A simple illustration of fault localization using failed 

execution slice 

To illustrate the efficiency of FES based method, consider 

the program given in Table III. In this example, the 

suspiciousness scores of statements are calculated using 

Tarantula technique of fault localization. The faulty 

statement is S6 with the suspiciousness score of 0.67. As per 

the example, the developer needs to examine five statements 

before reaching to faulty statement. 

By observing Table III it is clear that there are three failed 

test cases t3, t5 and t6 and their related failed execution 

slices are T3, T5 and T6 respectively. The utility evaluation 

function when applied to these three FESs gives f (T3) = 

5.90, f (T5) = 6.79 and f (T6) = 6.79. The T3 will be 

selected as key FES because it has smallest utility function 

value of 5.90. The original debugging report can be 

narrowed down by using selected key failed execution slice 

and a new debugging report can be obtained with the 

statements s1, s2, s3, s4, s5, s6, s7, s14, s15 and s20. Now, it 

is required examining only two statements before finding 

the faulty statement S6. When comparing the efficiency with 

the traditional spectrum-based fault localization method, it is 

easy to observe that there is an improvement of 60% with 

this new FES based method because now only two 

statements need to be examined as compared to five using 

traditional method. When considering FES T5 or T6, the 

reduced debug report contains statements s1, s2, s3, s4, s5, 

s6, s7, s8, s9, s10 and s20.  In this case it requires examining 

4 statements before locating the faulty statement with an 

improvement of 20% as compared to traditional method. 

 
Fig. 1.  Framework for FES based fault localization method 
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So, the effectiveness of traditional spectrum-based fault 

localization methods can be improved by incorporating the 

concept of fault execution slices. Based on the above 

example, there are two important points can be concluded 

(1) the classic SFL methods can be improved by taking the 

advantage of code coverage information extracted from 

failed execution slices and (2) the selection of key FES 

depends on the utility evaluation method and can maximize 

the efficiency of FES based technique. 

Exploring the broader applicability of this approach on 

different real life programs is the motivation for future 

work. How this approach works with other SFL techniques 

would also be interesting to note. 

 

ii. Spectrum-based fault localization combined with fault 

context 

a. The concept of fault context 

Spectrum-based fault localization is a practical and 

efficient fault localization technique. Because of its low 

computational overhead and ability to produce good results 

on large code bases it is also considered as lightweight fault 

localization. 

Recent researches show that the spectrum-based 

techniques have been instrumental to locate bugs. However, 

the study carried out by Parnin and Orso [12] highlighted 

that many developers do not find these techniques very 

much useful if the root cause of failure is not listed in top 

ranked suspicious entities in the debugging reports. 

Therefore researchers have been working on to improve the 

performance of SBFL methods so that the root faults appear 

at higher positions in the ranking list (debugging reports) of 

suspicious program elements.  

One such method presented by Wang et al. [13] combines 

the suspiciousness of program element and suspiciousness 

of program element’s fault context in order to improve the 

absolute rank of faulty elements in the program. Here, the 

fault context of a program element means the other program 

elements that were executed by the same failed test case. 

The concept of fault context’s suspiciousness can be used in 

spectrum-based fault localization techniques (e.g. Ochiai, 

Jaccard, DStar, Tarantula etc) to improve the rank of root 

faults in a faulty program.  

It is important to note that a program entity’s overall 

suspiciousness rank will be higher if the suspiciousness of 

that program entity is higher and the suspiciousness of its 

fault context is lower.  To illustrate this idea we use an 

example as given below. 

 

b. An Illustrative Example 

Consider the example program given in Table IV which 

counts the number of vowels, consonants, spaces and digits 

in a string. 

There is a fault in basic block 3 (or statement 3) wherein 

the equality comparison in incorrectly written as 

line.charAt(i) == 'b'. The correct form of this comparison 

would be line.charAt(i) == 'a'. 

There exist a total of five test cases in this example out of 

which two test cases execute successfully and three test 

cases fail that means does not produce the desired output. 

The program hit spectra is shown from third column to 

seventh column. The entry in the table with a ‘1’ shows that 

the corresponding test case covers the statement, while an 

entry with a ‘0’ means that the statement is not covered. The 

bottom row gives the execution result of each test case. 

Here, ‘0’ means successful execution of the test case and ‘1’ 

represents failed test case execution. The next two columns 

contain the values of NCF and NCS for each statement of the 

program code. These notations have been explained in 

section III-B. The suspiciousness value is displayed in the 

tenth column as per the definition of Ochiai similarity 

metric. The last column displays the ranking of all basic 

blocks in descending order based on their suspiciousness 

TABLE III 

AN EXAMPLE SHOWING EXECUTION RESULTS OF A SAMPLE PROGRAM WITH AN ILLUSTRATION OF FAILED EXECUTION SLICES  

Stmt. 

# 

Program t1 

(1,1,1) 

t2 

(0,1,1) 

t3 

(-1, 1, 1) 

t4 

(-1, 0, 

1) 

t5 

(-1,-1,-

1) 

t6 

(-2, -1, 

-2) 

t7 

(-1, -1, 

0) 

NCF NCS Suspiciousness 

S1 input(a) 1 1 1 1 1 1 1 3 4 0.50 

S2 input(b) 1 1 1 1 1 1 1 3 4 0.50 

S3 input(c) 1 1 1 1 1 1 1 3 4 0.50 

S4 s=1; 1 1 1 1 1 1 1 3 4 0.50 

S5 if (a<0){ 1 1 1 1 1 1 1 3 4 0.50 

S6       s=s * a; 
     //correct s=s * -a; 

  1 1 1 1 1 3 2 0.67 

S7       if (b<0){   1 1 1 1 1 3 2 0.67 

S8            s = s* -b;     1 1 1 2 1 0.73 

S9            if (c < 0)     1 1 1 2 1 0.73 

S10                s = s * -c;     1 1  2 0 1.00 

S11            else if (c >0 )       1 0 1 0.00 

S12                 s = s+ c;          0.00 

S13             else  s=c;       1 0 1 0.00 

S14       } else if (b > 0)   1 1    1 1 0.57 

S15             s = s + b;   1     1 0 1.00 

S16          else s = b;    1    0 1 0.00 

S17 } else if (a> 0) 1 1      0 2 0.00 

S18     s = s + a; 1       0 1 0.00 

S19     else s = a;  1      0 1 0.00 

S20 print (s) 1 1 1 1 1 1 1 3 4 0.50 

  Execution Result 
(0=Successful, 1= Failed) 

0 0 1 0 1 1 0    

  f(ti)   5.90  6.79 6.79     

 

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

scores. The suspiciousness score assigned to each basic 

block represents the possibility of that block being the root 

fault. In the example shown in Table IV below the basic 

blocks b7, b8, b9 and b10 have highest suspiciousness 

scores of 0.82 which is greater than the root fault b3. 

Spectrum-based techniques use similarity metric to 

compute the suspiciousness of program entities. The 

similarity metrics of some well-known approaches are 

discussed in the section III-B. These metrics use program 

spectrum information derived from test case inputs to 

determine the correlation between program entities and test 

case results. The reasoning behind these techniques is that 

the program entities frequently executed by failed test cases 

are considered to be more suspicious. Thus, spectrum-based 

approaches compute the suspiciousness scores of program 

entities by analyzing the frequency in which these entities 

execute in failing and passing test cases.  

The program failure occurs when the faulty program 

entities are activated in an execution and the infected states 

are propagated through the program. Thus, the failure is 

dependent on the fault that is triggered and its context. By 

observing Table IV it is clear that b3 was activated in all test 

cases but failure is observed in T3, T4 and T5. This is 

because of the impact of b3’s different contexts in different 

executions. In our example the root fault is b3 but it does 

have highest suspicious rank, instead b7, b8, b9 and b10 are 

ranked highest. Therefore, in order to improve the absolute 

fault rank of suspicious statements/ blocks it is required to 

combine the suspiciousness of program entities and their 

fault contexts to get to the final suspiciousness scores.

In our example shown in Table IV, if we observe the 

execution trace of failed test case T3 we find that the fault 

context of b3 is {b1, b2, b5, b6, b7, b8, b9, b10} and the 

suspiciousness score of this fault context is defined as the 

sum of the suspiciousness scores of all basic blocks i.e. {b1, 

b2, b5, b6, b7, b8, b9, b10}. Similarly, for the program 

executed in failed test cases T4 and T5, the fault context of 

b3 is {b1, b2, b4, b5, b7, b8, b9, b10} and {{b1, b2, b4, b5, 

b6} respectively. The suspiciousness scores would be the 

sum of the suspiciousness scores of all basic blocks or 

statements of b3’s fault contexts. So, there are three 

suspiciousness scores of b3’s fault context. As we know 

that, a program entity’s overall suspiciousness rank will be 

higher if the suspiciousness of that program entity is higher 

and the suspiciousness of its fault context is lower. Hence, 

we choose the minimum suspiciousness score of the three 

suspiciousness scores of b3’s fault context. 

The suspiciousness score of b3’s fault context can be 

calculated as per the formula given below. 

Sc(b3) = min [(Sb (b1)+ Sb (b2) + Sb (b5)+ Sb (b6)+ Sb (b7) + 

Sb(b8)+Sb(b9)+Sb(b10)), (Sb (b1) + Sb (b2) 

+ Sb (b4)+ Sb (b5)+ Sb (b7) + Sb (b8) + Sb 

(b9)+Sb(b10)), (Sb (b1) + Sb (b2)+ Sb (b4)+ 

Sb (b5)+ Sb (b6))] 

= min (6.17, 6.26, 3.57) 

=3.57 

Here, Sc(b3) denotes the fault context suspiciousness 

score of basic block b3 and Sb (b1), Sb (b2), Sb (b5) etc 

indicate the suspiciousness scores of b1, b2 and b5 

respectively. Similarly, for instance, we can find out the 

suspiciousness score of b7’s fault context as given below. 

Sc(b7) = min [(Sb (b1)+ Sb (b2) + Sb (b3)+ Sb (b5)+ Sb (b6) + 

Sb(b8)+Sb(b9)+Sb(b10)),(Sb (b1) + Sb (b2) 

+ Sb (b3)+ Sb (b4)+ Sb (b5) + Sb (b8) + Sb 

(b9)+Sb(b10)),(Sb (b1) + Sb (b2)+ Sb (b3)+ 

Sb (b4)+ Sb (b5)+ Sb (b6))] 

= min (6.13, 6.21, 4.34) 

=4.34 

In our example basic blocks b7, b8, b9 and b10 are ranked 

higher than the root fault b3. These blocks were influenced 

by b3, and all their fault contexts include b3. So, the 

suspiciousness of b7’s (or b8, b9, b10) fault context might 

have higher suspiciousness score as compared to b3’s. 

The following Table V summarizes the suspiciousness 

scores of all the basic blocks, suspiciousness scores of fault 

contexts of all basic blocks and the final overall rank of each 

basic block (i.e. program entity) based on the two 

suspiciousness ranks. 

TABLE V 

SUSPICIOUSNESS OF BASIC BLOCKS AND THEIR CONTEXTS 

Basic 

Block No 

Ochiai Fault Context Ochiai with Fault 

Context 

Sb Rb Sc Rc Rb+Rc Rank 

b1 0.77 5 0.36 1 6 1 

b2 0.77 5 0.36 1 6 1 

b3 0.77 5 0.36 1 6 1 

b4 0.67 9 0.37 5 14 9 

b5 0.77 5 0.36 1 6 1 

b6 0.58 10 0.38 6 16 10 

b7 0.82 1 0.43 7 8 5 

b8 0.82 1 0.43 7 8 5 

b9 0.82 1 0.43 7 8 5 

b10 0.82 1 0.43 7 8 5 

 

TABLE IV 

AN EXAMPLE SHOWING THE SUSPICIOUSNESS VALUE COMPUTED USING OCHIAI TECHNIQUE 

Basic 

Block No 

static void vowel(String line) T1 T2 T3 T4 T5 NCF NCS Suspiciousness 

(Ochiai) 

Rank 

b1 {int vowels, consonant, digit, space; vowels = consonant = digit 

= space = 0; 

1 1 1 1 1 3 2 0.77 5 

b2 for (int i = 0; i <line.length() ; ++i) { 1 1 1 1 1 3 2 0.77 5 

b3 if (line.charAt(i) == 'b' || line.charAt(i) == 'e' || line.charAt(i) == 

'i' || line.charAt(i) == 'o' || line.charAt(i) == 'u') 

 // correct line.charAt(i) == 'a' 

1 1 1 1 1 3 2 0.77 5 

b4 ++vowels; 1 0 0 1 1 2 1 0.67 9 

b5 else if ((line.charAt(i) >= 'a' && line.charAt(i) <= 'z') )  1 1 1 1 1 3 2 0.77 5 

b6 ++consonant; 1 1 1 0 1 2 2 0.58 10 

b7 else if (line.charAt(i) >= '0' && line.charAt(i) <= '9')  0 0 1 1 0 2 0 0.82 1 

b8 ++digit; 0 0 1 1 0 2 0 0.82 1 

b9 else if (line.charAt(i) == ' ')  0 0 1 1 0 2 0 0.82 1 

b10 ++space;}} 0 0 1 1 0 2 0 0.82 1 

  Execution Result (0=Successful, 1= Failed) 0 0 1 1 1         
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c. Framework 

The main process of this fault context based approach is 

shown in Fig. 2. This approach mainly consists of the 

following three steps. 

i. The program under test is executed with test suites 

containing failed and passed test cases, and program 

spectrum data is collected. 

ii. Then using one of the existing classic SBFL techniques 

(Ochiai in our study) suspiciousness scores are 

computed for program statements and their fault 

contexts. 

iii. Based on the two suspiciousness scores, the final 

improved suspiciousness rank list of program 

statements is generated in the form of a debugging 

report. 

Now we formally describe the steps of the fault context 

based approach of fault localization [13].  

Let P={e1, e2, e3, …,ey} be a faulty program which 

contains program entities ei. Let T = {t1, t2, …, tn} be a test 

suite containing ti test cases. This test suite T can be divided 

into two subsets Tp and Tf which represent passed and failed 

test cases respectively. As per our example we have Tp = 

{t1, t2} and Tf = {t3, t4, t5}. Similar to existing spectrum-

based approaches we first collect the program spectra by 

executing the program under test P with the input of test 

cases Tp and Tf. We then compute and analyses the 

suspiciousness scores of each program entity and their fault 

contexts. Finally, a ranking list in descending order for P is 

generated that shows the likelihood of each program entity 

to be faulty. This approach has three major steps as 

explained below. 

Computation of suspiciousness for program entities 

In this step we collect program spectra or coverage matrix 

M, by executing the program P with the input of test suite T. 

The result vector r is collected which contains the results 

data as per the execution of passing (Tp) and failing (Tf) test 

cases. We then compute the suspiciousness score for every 

program entity by using a spectrum-based similarity metric. 

In our case we use Ochiai metric as given in (2) of section 

III - B. 

Computation of suspiciousness for fault context of program 

entities 

In this step we formally define the fault context. For a 

failed execution i, the covered set of program entities are 

represented as eci = {c1,…, cj, …, ck}. The fault context of cj 

is the set of all program entities covered by the failed 

execution of ti except the entity cj itself. The fault context of 

cj can be denoted as follows. 

faultcontextc (cj, ti) = eci / cj (6) 

 

The cj’s suspiciousness score can be calculated as the 

summation of all suspiciousness scores of program entities 

eci in test case execution ti except for the entity cj. 
 

Sc (cj, ti) = ∑Sb (eci(k)) (7) 

 

In case if there are more than one fault contexts for the 

program entity cj in Tf, then we have to find the minimum of 

these fault contexts for cj. The fault context of cj can be 

defined as. 

faultcontextc (cj) = {eci / cj | i ∈ set of failed test executions} (8) 

Sc (cj) = min(Sb (ej, ti) | i ∈ set of failed test executions) (9) 

 

Fault ranking list generation 

After the steps 1 and 2, two fault rank list can be 

generated, first for the suspiciousness scores of program 

entities, and second for their fault contexts. In this step we 

further generate a new third rank list.    

Assume S is a program entity then the rank of S will be 

higher in the new ranking list, if the suspiciousness score Sb 

(S) is higher and the suspiciousness score of its fault context 

Sc (S) is lower. 

To create a new fault ranking list R we first create two 

fault ranking lists for a faulty program, Rb and Rc where, Rb 

is in descending order of Sb and Rc is in ascending order of 

Sc. The two ranking lists are combined to generate the new 

ranking list R as follows. Assume ei and ej are two 

suspicious program entities and ei has ranks Rb
i  and Rc

i  , and 

ej has ranks  Rb
j

 and Rc
j
 . In the new fault ranking list R, ei is 

ranked higher than ej if and only if Rb
i  + Rc

i  <= Rb
j

 + Rc
j
. 

By observing Table IV we can see that with traditional 

method of fault localization it takes 7 searches to reach to 

the faulty statement S3.  Whereas with the new fault context 

based approach we need to search only 3 statements to reach 

to the faulty statement. That means the developer’s effort 

will be reduced by 57.14% because of improvement in 

absolute rank of suspicious program entity. 

D. Statistics Based Techniques 

Dynamic fault localization techniques do not make use of 

prior knowledge of semantics of programs under test. These 

techniques however, identifies whether an execution is 

successful or failed. So, dynamic techniques locate program 

bugs by differentiating unsuccessful and successful 

execution runs. The techniques based on predicate 

evaluations are promising methods of fault localization [14]. 
Fig. 2.  Framework for fault context based fault localization method 
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Program run time behavior is characterized in the form of 

statistics such as evaluations of conditionals and function 

return values. For example, the predicate “i < STRLEN” 

where the variable i is an index and it is being checked 

whether or not it is exceeding the max length of the buffer. 

In this way, the statistics of multiple executions at run time 

are collected and recorded for later analysis. A statistical 

debugging method known as LIBLIT05 [14] is discussed 

here for a reference. For each conditional or predicate P in a 

program Pr, LIBLIT05 computes two conditional 

probabilities as given below. 

Prob1= Prob (Pr fails | P is ever observed)  

and  

Prob2= Prob (Pr fails | P is ever observed as true)  

Then the difference of probabilities Prob2 – Prob1, 

indicates the relevance of P to the fault. That means, a 

predicate is related to a fault, if there is a correlation 

between its true evaluation and the program failure. We can 

also say that those predicates that have the above difference 

Prob2- Prob1 <=0, can be discarded. The importance scores 

of remaining predicates are calculated and these predicates 

are prioritized as per their scores. These important scores 

indicate the relationship between predicates and program 

faults. Those predicates which have higher scores are 

examined first.  

Another statistical model based approach was known as 

SOBER which was proposed by Liu et al. [14]. This fault 

localization technique does not use any prior knowledge of 

program semantics. This technique ranks suspicious 

predicates. The evaluation patterns of predicates consider 

both successful and unsuccessful executions in SOBER 

technique. This method considers a predicate as faulty, if its 

evaluation pattern in unsuccessful executions differs 

considerably from the successful executions. When a test 

case is executed, it is possible that a predicate P is evaluated 

as true more than once.  The following formula of (10) gives 

the probability that the predicate P is evaluated true in each 

execution of a test case. 

π (P) = 
𝑛(𝑡)

𝑛(𝑡)+ 𝑛(𝑓)
 (10) 

Where n(t) and n(f) are number of times P is evaluated as 

true and false respectively. Now, the distribution of π (P) in 

successful and failed executions of test cases is checked. If 

there is a significant difference in the distribution of π (P) in 

failed and successful executions then P is considered as 

faulty. 

Cross tabulation is another statistical analysis based 

technique for fault localization that calculates 

suspiciousness of program statements [15]. This technique 

utilizes information related to execution results i.e. success 

or failure and statement coverage information with respect 

to different test cases. The structure of crosstab is such that 

it has two columns that specify two categorical variables – 

covered and not covered; and it has two row wise 

categorical variables for successful and failed executions. 

The dependence or independence between coverage of each 

statement and execution results is determined using a 

hypothesis test. The degree of association between the 

execution results and coverage of each statement is 

measured using chi square statistic test. So, the 

suspiciousness of each statement depends on this degree of 

association.  

So, it is important to note that the methods like SOBER and 

LIBLIT05 are used to only rank predicates which are likely 

to cause errors whereas crosstab method is used to find 

suspicious program elements like statements, functions, 

predicate etc. 

A predicate with two or more conditions is called a short 

circuit evaluation and it may occur often in program 

execution. In this short circuit evaluation if first condition is 

suffice to evaluate the result of the predicate then, the rest of 

the conditions that follow will not be executed or evaluated. 

So, short circuit evaluations of individual predicates can be 

identified and a set of evaluation sequences for each 

predicate is generated. The “debugging through evaluation 

sequence approach (DES)” uses such information and can 

be compared with predicate based approaches like SOBER 

and Liblit05. 

Another statistical method which uses the behavior of two 

sequentially connected predicates in the execution was 

studied by You et al. [16]. For each execution of a test case 

a weighted execution graph was constructed where nodes of 

the graph represent predicates and edges denote transition of 

two sequential predicates. A suspiciousness value is 

computed for each edge to measure the possibility of its 

fault proneness. 

E. Program State-Based Techniques 

Variables and their values at run time make program state 

which can be an indicator for bug localization. One of the 

approaches of program state based technique is to change 

the values of some of the variables to find out which one 

causes erroneous program execution. Delta debugging was 

suggested by Zeller and Hildebrandt [17] in which the 

differences in program states are calculated between 

executions of a successful test and a failed test through their 

memory graphs. To test suspiciousness of variables, a 

program is tested with successful test and values of variables 

are replaced with related values from the same place in a 

failed test, and program execution is repeated. A variable is 

considered as suspicious when a same failure is observed. 

The delta tool is very popular in software industry and is 

being used extensively for automated debugging. Cause 

transition technique is an extension of delta debugging 

which was proposed by Cleve and Zeller [18]. In this 

technique, when the cause of failure changes from one 

variable to another, such locations and times are identified. 

To detect cause transitions in a program execution the 

algorithm named as CTS was used. 

It is apparent that, program executions may consist of 

thousands of states and each matching point requires 

additional test executions by delta debugging to narrow 

down the causes. So, the cause transition technique is 

comparatively a high cost approach. It is also not necessary 

that the locations identified by this technique may not be the 

places where the fault exists. To overcome this issue, the 

cause transition was extended to “failure-inducing chop” by 

Gupta et al. [19]. In the first step, input output variables that 

are causes of failure are identified by delta debugging 

method. Dynamic slices are then constructed for these 

variables. Now the code is considered as suspicious which is 

at the intersection of forward and backward slicing of the 

input and output variables respectively. The delta debugging 
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still has some limitations like it is difficult  to handle 

confusing partial state replacement, errors caused by 

omission of execution and efficiency of delta debugging is 

poor. Later, this limitation was addressed by a cause 

inference model that explains the difference between a 

failed execution and a successful execution. 

A value profile based technique presented by Jeffrey et al. 

[20] helps developer in software debugging. In this method 

interesting value mapping pairs (IVMPs) are figured out in 

program statements and these values are changed so that 

correct output can be produced by failed test cases. Different 

test cases are executed to produce profiling information 

which is used to generate alternative sets of values. For each 

statement instances of every failed test case, different 

alternative value sets are used to perform value 

replacements. Then, each statement is given a rank on the 

basis of these IVMPs as per the number of failed executions 

where at least one interesting value mapping pair is 

identified for that statement. This statement ranking helps 

identifying the location of fault. 
 

Zhang et al. [21] studied that a fault within a statement 

may spread a sequence of infected program states before the 

failure is noticed. They also said that, a particular program 

statement which is executed by a series of failed test cases 

might not be the root cause of the failure. This can be 

explained by an example, suppose that a statement T on a 

branch B has the function of setting up a null pointer 

variable. It is further assumed that this pointer variable will 

not be used to execute any function, until a different distant 

(in context of data or control dependence) statement T’ on a 

branch B’ has been accessed, which will cause the program 

failure. If T is exercised in many executions through various 

test cases that do not reveal any failure, the statement T or 

its directly related branches cannot be really identified as 

suspicious. The coverage based techniques like Tarantula 

will give higher suspiciousness rank to T’ than T, in case of 

above explained scenario. If data flow analysis is employed 

in this scenario then it will show the usage of null pointer 

and help estimating the suspiciousness of T, T’, B and B’. It 

is also important to note that data flow profiling is 

expensive.  

Zhang et al. [21] described the concept of edge profiles 

which represent successful and failed executions. A given 

program is abstracted as a CFG (control flow graph) and 

sampled a program execution as an edge profile. These edge 

profiles tell which edges of the CFG are traversed during the 

execution and quantify changes in program states over an 

edge according to the different test case executions of the 

edge. This dissimilarity between edge profiles is used to 

model how each basic block may cause failures by 

abstractly spreading infected program states to its 

neighboring basic blocks through control flow edges. In this 

way, Zhang et al. measured suspiciousness of infected 

program states propagated through each edge, related the 

basic blocks with edges through such propagation of 

infected program states, estimated suspiciousness value of 

each basic block, and demonstrated a ranked list of program 

statements which helped finally in identification of faults. 

F. Machine Learning-Based Techniques 

Machine learning based techniques can be applied to 

identify or learn the location of fault on the basis of 

statement coverage data as an input and result of execution 

of test cases i.e. success or failure.  

A fault localization technique was given by Wong and Qi 

[22] which used back-propagation neural network. The 

neural network is trained by the coverage data of test cases 

and their equivalent execution results which help neural 

network to understand the relationship between them. Then, 

the trained neural network is inputted with test cased that 

each covers only a single statement of the program and the 

probability of the faulty statement is outputted. This back-

propagation neural network was also later extended for 

object oriented programs by researchers. 

The C4.5 decision tree algorithm classifies test cases into 

different partitions so that failed test cases can be identified. 

The basis is that the different failure conditions for test cases 

can be identified based on the input and output of test cases. 

This is called category partitioning. The failure conditions 

which originate from different faults are represented by 

different paths in the decision tree. These decision tree paths 

represent rules that model different failure conditions that 

ultimately give different failure probability predictions. 

G. Data Mining-Based Techniques 

Data mining techniques, which work on the similar lines 

of machine learning, construct a model using relevant 

information extracted from data. Data mining can be used in 

fault localization for example we can identify the pattern of 

execution of statements in a program that leads to a failure. 

Due to the huge volume of data the complete execution 

traces of a program cannot be analyzed manually, so data 

mining techniques can be wisely applied to execution traces. 

Statement sub-sequences of length N from trace data, is 

known as N-grams. The N-grams occurring higher than a 

pre specified limit are searched by examining the failed 

execution traces. The confidence for a particular N-gram is 

determined by computing the conditional probability that a 

particular N-gram occurs in a given failed execution trace. 

This N-gram analysis is used to rank suspicious statements 

in a program by arranging the N-grams in descending order 

of confidence along with the corresponding statements in 

the program.  

Fault localization based on association rule analysis was 

discussed by Cellier et al. [23]. This method attempts to find 

out rules concerning the association between coverage of 

statements and corresponding execution failures. The 

occurrence of this association rule is computed. A threshold 

is chosen to specify that a selected rule is required to cover a 

minimum number of failed executions. Faults are located by 

examining the rankings of these generated rules. 

H. Model-Based Techniques 

In model based analysis of programs, models serve as 

oracles of programs being under analysis. The behavior of 

actual program and behaviors of models are compared in 

order to find out bugs in the programs. Whereas, in model 

based fault localization, models may contain bug when 

generated directly from actual programs. The expected 

results of programs provided by testing engineers or 
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programmers are compared with observed execution 

behaviors and differences are used to identify components 

of models due to which such misbehaviors are observed. 

Static or dynamic analysis is performed to find 

dependencies between statements in a program and thus 

dependency based models are generated. A functional 

dependency model was described by Mateis et al. [24] 

which used dependency based models to explain the 

structure of a program. Whereas, the logic based languages 

such as first order logic was applied to model behavior of 

the target program. They presented this functional 

dependency model for JAVA programming language 

features such as class, methods, assignment and conditional 

statements, loop constructs etc.  The unstructured control 

flows in JAVA programs like recursive method calls, jump 

and return statements, exceptions are handled by extended 

dependency based models.  

The dependence graph concept was also broadened to 

model program behavior over a group of test cases. The 

probabilistic program dependence graph was used to model 

reasoning about uncertain program behaviors that are 

possibly associated with program bugs.   

According to Wotawa et al. [25], program structure and 

behavior can be represented by dependency based models 

constructed by first order logic after analyzing the source 

code. The first order logic is also used to represent test cases 

with their expected outputs. Now, the target program under 

analysis is run with the test cases and if it fails then conflicts 

with the models and test cases are used to detect doubtful 

statements that cause the failure. The constraint on this 

study is that it only focuses on programs which do not have 

loop constructs. To deal with this limitation, Mayer and 

Stumptner [26] worked on abstraction based model which 

used abstract explanation to handle loops, heap data 

structures and recursions.  

Value based models are also used to locate bugs in 

programs by representing data flow information in 

programs. These models are appropriate for small programs 

as they are more computationally intensive.  

We now give an introduction to model checking based 

methods for fault localization that use model checkers to 

locate bugs [27].  

If a program does not work as per its requirements, or 

specifications a model checker can help by providing a 

counterexample which is a run of the program from the start 

of the program to the point where failure is noticeable. The 

programmer can trace the program line by line using a 

debugger to check the places in the counterexample to 

visualize the data. But when a program with hundreds or 

thousands line of code is to be debugged it very difficult and 

tedious to locate the bugs.  

Ball et al. [28] suggested that a model checker can be 

used to investigate all the paths of a program apart from that 

of the counter example. The execution paths that do not 

cause a failure that means the successful paths are noted 

down. Algorithms were used to identify the transitions that 

are found in the execution path of the counter example but 

not in the execution paths which executed successfully. The 

possible causes of bugs are those components of the 

program related to these transitions. This drawback of this 

method is that it is very expensive to compute all successful 

execution paths.  

Program executions can be represented by variable 

assignments.  The distance between two program executions 

can be measured by a distance metric defined by Groce et al. 

[29]. A successful execution was produced which is closest 

to counter example by a model checker. Now the difference 

between successful execution and the counter example was 

computed which provided the probable location of the bug 

with an explanation. 

IV. EVALUATION METRICS 

We know that the bugs in programs may exist non-

contiguously and across the multiple modules so the 

inspection of the suspicious code stops as soon as we find 

the first bug. The focus of fault localization is to help 

developers and coders to find the starting point of fault so 

that the error fixing can be initiated rather than to locate the 

each and every piece of code that needs to be added, 

changed or deleted related to the each bug. Because of this 

reason, we can measure the effectiveness of software fault 

localization by computing the percentage of the code that 

needs to be examined before locating the starting point of a 

bug. Here by code we mean statements, predicates, 

functions etc.  

T-score as defined below in (11) computes the fraction or 

percentage of code that we need to examine to reach to the 

place of the fault [14]. We explain this measure as follows. 

Assume a program dependence graph (G) is given for a 

faulty program (P). The graph G consists of vertices which 

represent program statements and the edges between them 

represent data and/ or control dependencies. The statements 

which contain faults are indicated by defect vertices, and 

Vdefect denotes a set of defect vertices. A fault localization 

report R, consists of a set of suspicious statements and they 

are represented as Vblamed. A developer starts debugging 

from Vblamed and performs breadth first search until he finds 

any defect vertices. The set of statements traversed during 

this search is written as Vexamined..  

 

T =
|Vexamined| 

|V|
∗ 100% (11) 

Here, |V| is the magnitude of the PDG (program 

dependence graph). Some authors use 1 - T as an equivalent 

measure of T-Score. When a fault localization report is 

provided, the T-score estimates the percentage of code that a 

programmer requires to examine before the location of fault 

is found. A small set of statements that contain location of 

fault is considered to be high quality fault localization.   

Jones and Harrold [5] used a different type of T-score to 

present the localization results of Tarantula. Tarantula gives 

a ranking of all executable statements and the T-score can 

be calculated directly by examining this ranking. A 

programmer can examine statements one by one from top of 

the ranking until a faulty statement is found. The T-score 

can be calculated as percentage of statements examined. 

This method is called ranking based T-score as against the 

PDG based T-score.  

The EXAM score or Expense score [5], [22] given in (12) 

is another measure for calculating the percentage of code 

required to be checked before reaching the location of the 

first faulty statement. 
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Exam Score =  
Number of statements examined

Total number of statements in the program
 (12) 

In [5], authors consider executable statements in place of 

total count of statements. A technique explained by Liu et 

al. [30] uses EXAM score to find percentage of predicates 

(not statements) that need to be checked. The predicates are 

arranged in descending order of their relevance to faults. 

The P-score also uses the same method as given below in 

(13). 

P − Score =  
1−base index of P in S

count of predicates in S
 X 100%  (13) 

 

Where S is the list of predicates arranged in a logical 

order (sorted), P is predicate that is most relevant to a fault 

and the 1-based index specifies the first predicate of S is 

indexed by 1 (not 0). 

We can observe that the lower the EXAM score, the fault 

localization is more effective whereas, the lower the T-score 

the technique is less helpful. 

A variation of EXAM score called total developer 

expense (D) is used to measure the total effort to locate 

faults in a program which contains multiple faults. It is the 

sum of the EXAM scores for all faults in a program. 

Wilcoxon signed rank test [31] is another metric based on 

statistical approach in which if we assume that there are two 

techniques P and Q and P is more effective than Q. We 

inspect an alternative hypothesis that Q requires inspecting 

an equal or more number of statements than P in order to 

find out the location of a bug. If the alternative hypothesis is 

accepted with a certain confidence then it leads to ascertain 

that whether P is statistically more helpful in finding out the 

fault.  Another metric that provides a global view is the total 

count of statements that needs to be inspected to find out all 

faults in a given situation. 

According to recent user studies, developers tend to 

investigate only the top 5 or top 10 elements in the 

recommendation list provided by fault localization methods 

before giving up the debugging process. The concept of 

accuracy, as defined by Sohn and Yoo [32], can be used to 

compare the efficiency of two fault localization approaches. 

It counts the number of faults that have been localized 

within the ranking's Top-N positions. 

It is essential to understand that the effectiveness of 

software fault localization techniques depend on other 

factors also such as computational cost, time and space 

complexity in terms of data collection, human efforts and 

tool support. Besides that, human factors also need to be 

considered such as debugging process of developers, how 

cause-effect chains of failures are revealed by them, how 

they work upon the solutions beyond a suspiciousness 

ranking of program code. No study has been reported that 

incorporates all these factors in an evaluation method. 

V. EXPERIMENTAL STUDY 

 In section III-C we presented two techniques that 

improve the effectiveness of existing spectrum-based fault 

localization techniques in single fault context. The first one 

was based on failed execution slice and the second 

technique utilizes the concept of fault context to improve the 

absolute rank of faulty program entities. In this section we 

present the experimental work conducted to validate the 

effectiveness of the two techniques. We use standard 

benchmark Siemens programs for experimental work. The 

Siemens suite contains seven programs and each one has a 

correct version and a set of faulty versions of the same 

program. 

A. Experimental Design 

We have conducted two sets of experiments in support of 

the two methods which improve the performance of SBFL 

and were illustrated with the help of working examples in 

section III-C. The first method uses the concept of failed 

execution slice (FES) and the second method combines the 

suspiciousness of program entity and suspiciousness of 

program entity’s fault context to improve the absolute rank 

of faulty entities in the program under test. The aims of the 

experiments are to show the improvements in performance 

of existing SBFL techniques using the two methods. We use 

Ochiai SBFL metric to compute the suspiciousness 

calculation because Ochiai is an efficient technique and has 

been often referred in the fault localization literature [33], 

[34]. The formula for the calculation of suspiciousness score 

using Ochiai method is given in (2) of section III. 

The experimental study is performed on standard 

benchmark (Siemens suite) 

[http://sir.unl.edu/portal/index.php]. It contains seven 

programs: print_tokens, print_tokens2, replace, schedule, 

schedule2, tcas and tot_info, each of which has a set of 

faulty versions [35], [36]. The details of the subject 

programs are given in Table VI. 
TABLE VI 

SUBJECT PROGRAMS USED IN EMPIRICAL STUDY 
Program LOC Faulty 

Versions 

Test 

Cases 

Brief Description 

print_tokens 565 7 4130 Lexical analyzer 

print_tokens2 510 10 4115 Lexical analyzer 

schedule 412 9 2650 Priority 

scheduler 

schedule2 307 10 2710 Priority 
scheduler 

tcas 173 41 1608 Altitude 

separation 

tot_info 406 23 1052 Information 
measure 

replace 562 32 5542 Pattern 

recognition 

Our experimentation work uses GCOV (GCC) 10.2.0 

[https://gcc.gnu.org/onlinedocs/gcc/Gcov.html] on Linux 

platform to collect the coverage data. We used different 

faulty versions of subject programs in our experimentation 

work. Table VII shows the details of the faulty versions used 

in the experimentation work performed on two methods – 

FES based and fault context based methods. We used 21 

faulty versions of Siemens programs in our experimentation. 

To compute the suspiciousness score and other results in our 

experimentation work we developed an automated tool in 

Python 3.7.3. All experiments were performed on Linux 

environment running on top of Windows 10 machine with 

Intel® Core i5 CPU 2.7 GHz and 8 GB of RAM. 

TABLE VII 
FAULTY SIEMENS VERSIONS USED IN EXPERIMENTATION 

Program FES Fault Context 

print_tokens V5 V5, V7 

print_tokens2 V5 V5, V7 

schedule V3 V2, V3 

schedule2 V6 V5,V6 

tcas V2 V2, V5 

tot_info V5 V5,V9 

replace V8 V3, V8 
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B. Evaluation Metrics 

To evaluate the effectiveness of fault localization we use 

three evaluation metrics, namely EXAM score, Top-N and 

Wilcoxon signed-rank test. 

i. EXAM score  

As given in (12) of section IV, the EXAM score is 

defined as the percentage of statements that need to be 

examined in a program before reaching to the first faulty 

statement. A lower expense score indicates a better 

performance. 

We evaluate the fault localization performance using 

EXAM score metric with absolute and relative variants. The 

absolute metric is defined as the number of statements that 

need to be examined in a program before reaching to the 

first faulty statement and relative EXAM score is defined as 

the percentage of statements that need to be examined in a 

program before reaching to the first faulty statement. So, the 

relative version of EXAM score metric is compared to the 

length of the rank list, which the program size. 

The two approaches presented in section III C (FES based 

and Fault Context based) improve the performance of 

classical SBFL methods. These two approaches improve the 

absolute rank of faulty program statement in the fault rank 

list. Therefore, the effectiveness of these new approaches 

can be measured in terms of improvement when we compare 

it with the classic SBFL metric. The improvement formula 

can be defined as. 

 

Improvement (P, Q) =  
𝑃−𝑄

𝑃
× 100%  (14) 

Where P is the absolute rank generated by the classic SBFL 

method and Q is the absolute rank given by the new 

approaches i.e. FES based and Fault Context based methods. 

ii. Top-N 

Top-N indicates the number of faults a fault localization 

technique ranks among the top-N (N=1, 5 or 10 and so on) 

positions in the ranked list. The metric would be stricter if 

we have the smaller value of N. For example, Top-5 means 

all faults are raked within top 5 positions in the ranked list. 

Top-N is a frequently used metric in the fault localization 

literature. In our study we use top-N metric to evaluate the 

effectiveness of FES and fault context based methods in 

comparison to traditional Ochiai method. 

iii. Wilcoxon Signed-Rank Test 

Wilcoxon signed-rank test is an alternative option to other 

existing hypothesis tests such as z-test and paired student’s 

t-test particularly when a normal distribution of a given 

population sample cannot be assumed [37].  

Wilcoxon signed-rank test is also utilized to give a 

comparison with a concrete statistical basis between two or 

more techniques in terms of effectiveness. In this paper our 

aim is to experimentally show that the two fault localization 

techniques i.e. FES based and Fault Context based are more 

effective as compared to the traditional Ochiai method in 

most of the cases. We compare the performance using the 

EXAM score metric which computes the total number of 

statements that a developer needs to check on all techniques 

before identifying the first faulty statement. Therefore, an 

evaluation will be conducted on the one-tailed alternative 

hypothesis that the other technique (in our case Ochiai) used 

for cross-comparison require the examination of an equal or 

greater number of statements than the two techniques (FES 

based and Fault Context based). The null hypothesis is 

stated as follows: 

H0. The number of statements examined by the traditional 

Ochiai technique is less than or equal to the number of 

statements examined by the FES based and Fault Context 

based techniques. 

Therefore, if H0 is rejected, the alternative hypothesis is 

accepted. The alternative hypothesis implies that the both 

FES based and Fault Context based techniques will require 

the examination of lesser number of statements than the 

traditional Ochiai technique which indicates that the FES 

based and Fault Context based techniques are more 

effective. 

C. Results and Discussions 

In this section, we present our detailed experimental 

results on two approaches i. e. FES based and Fault Context 

based methods described in section III C that improve the 

performance of spectrum-based (lightweight) fault 

localization.  

As described in subsection C of section V we have used 

three evaluation metrics (namely EXAM score, Top-N and 

Wilcoxon signed-rank test) for the assessment of the 

experimental results. We present the experimental results 

based on EXAM score and Top-N metrics separately for the 

FES based and Fault Context based methods in the 

following two subsections. The evaluation based on 

Wilcoxon signed-rank test is presented together for the two 

methods in the end of the results and discussions section. 

 

Experimental Results on FES based method 

In this subsection we compare the effectiveness of FES 

based method with classic Ochiai method. The experiments 

were conducted on 7 faulty versions of Siemens programs as 

shown in Table VII. 

Table VIII shows the improvement in fault localization 

performance using Failed Execution Slice (FES) based 

method. First three columns of Table VIII show the Siemens 

program name, faulty version and line of code (LOC) 

respectively. The performance of fault localization using 

classic SBFL method (Ochiai metric in our study) is shown 

in columns 4 and 5, where column 4 shows the EXAM score 

in terms of the absolute measure and column 5 shows the 

EXAM score in terms of relative measure. Similarly, the 

performance of fault localization using FES based method is 

shown in columns 6 and 7 respectively. 

We take an example of print_tokens program to compare 

the effectiveness of FES based method against the classical 

SBFL method (i. e. Ochiai). It can be observed that it takes 9 

searches to reach to the faulty statement, whereas FES 

method requires only 7 searches to locate the fault. If we 

analyze in terms of relative expense score, we can see that 

with FES based method we need to examine 1.24% of 

statements (of total LOC of print_tokens program) as 

against 1.59% statements when we use classical SBFL 

method. Therefore, we can say there is an improvement of 

22.22% when using FES based method as against classical 

SBFL method. In other words, developer’s effort has been 

reduced by 22.22% as shown in column 10 of Table VIII.  
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The last row of Table VIII summarizes the overall fault 

localization performance with the corresponding average 

values of each column. We can see there is an overall 

improvement of 27.05% in fault localization performance 

when FES based method is used. 

The comparison of fault localization performance 

between traditional Ochiai and FES based methods is also 

shown graphically in Fig. 3. The vertical axis represents the 

EXAM scores, which means the percentage of code need to 

be searched before locating the faulty statement. 

Table-IX shows results comparing fault localization 

performance between traditional Ochiai and FES based 

methods in terms of Top-N metric. It can be observed that, 

with the Ochai method we are unable to locate any faults 

among Top-1 and Top-5 positions, but we can find 28.57% 

of faults (i. e. 2 out of total 7 faults) by examining the Top-

10 positions (i. e. statements) in the suspiciousness ranking 

list. In contrast, if we see the results with FES based 

method, we are able to locate 14.29% of faults among the 

Top-5 positions and 42.86% of faults (i. e. 3 out of total 7 

faults) can be located by examining the Top-10 positions in 

the suspiciousness ranking list. Therefore, the results show 

that the FES based method is giving better fault localization 

performance as compared to the traditional Ochiai method. 

TABLE VIII 
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FES BASED METHOD 

Subject 

Program  

Version LOC Code Examined Difference Improvement % 

Using Classic 
Ochiai 

Method 

EXAM 
Score % 

Using FES 
Method 

EXAM 
Score % 

Code 
Examined 

EXAM 
Score % 

print_tokens V7 565 9 1.59 7 1.24 -2.00 -0.35 22.22 

print_tokens2 V5 510 32 6.27 25 4.90 -7.00 -1.37 21.88 

schedule V3 412 28 6.80 27 6.55 -1.00 -0.24 03.57 

schedule2 V6 307 23 7.49 11 3.58 -12.00 -3.91 52.17 

tcas V2 173 11 6.36 10 5.78 -1.00 -0.58 09.09 

tot_info V5 406 6 1.48 4 0.99 -2.00 -0.49 33.33 

replace V8 562 17 3.02 9 1.60 -8.00 -1.42 47.06 

Average 18.00 4.72 13.29 3.52 -4.71 -1.20 27.05 

 

 

Fig. 3. Comparison of Fault Localization Performance between classic Ochiai and FES based method in terms of EXAM score 
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TABLE IX 
Percentage of faults successfully located at each Top-N metric by 

Ochiai and FES based method 

Technique Top-1 Top-5 Top-10 

Traditional Ochiai 0 0 28.57 

FES based method 0 14.29 42.86 
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The fault localization results using Top-N metric shown 

in Table-IX can also be explained in other words with the 

help of Table-VIII. In case of tot_info and print_tokens 

subject programs, we need to examine 6 and 9 statements 

(see column 4) respectively in order to locate the faults. That 

means the faults can be located by examining Top-10 

statements in the suspiciousness rank list when we use 

traditional Ochiai method. 

Whereas, when we use FES based method, we need to check 

4 statements (see column 6) in case of tot_info program to 

locate the fault, which means we are checking Top-5 

statements in the ranking list. Similarly, in case of 

print_tokens, replace and tcas subject programs we need to 

check 7, 9 and 10 statements respectively to identify the 

faulty statements, which means we are examining Top-10 

statements in the ranking list to locate the faults. For the 

remaining 3 subject programs (i. e. schedule2, print_tokens2 

and schedule) we need to examine more than 10 statements 

to locate the faults as shown in Table-VIII. This can be 

termed as Top-all.  

Experimental Results on Fault Context based method 

In this subsection we compare the effectiveness of fault 

context based method with classic Ochiai method. We have 

conducted two sets of experiments on 14 faulty versions of 

Siemens programs as shown in Table VII.  

Table X and Table XI show improvements in fault 

localization performance achieved by Fault Context based 

method as against classic Ochiai method on different faulty 

versions of Siemens programs.  

TABLE X 
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FAULT CONTEXT BASED METHOD (SET-1) 

Subject 

Program  

Version LOC Code Examined   Difference Improvement 

% Using Classic 

Ochiai 
Method 

EXAM 

Score %  

Using Fault 

Context 
Method 

EXAM 

Score %  

Code 

Examined  

EXAM 

Score %  

print_tokens V5 565 17 3.01 15 2.65 -2.00 -0.35 11.76 

print_tokens2 V5 510 13 2.55 9 1.76 -4.00 -0.78 30.77 

schedule V2 412 50 12.14 15 3.64 -35.00 -8.50 70.00 

schedule2 V5 307 10 3.26 6 1.95 -4.00 -1.30 40.00 

tcas V2 173 5 2.89 4 2.31 -1.00 -0.58 20.00 

tot_info V5 406 6 1.48 4 0.99 -2.00 -0.49 33.33 

replace V3 562 51 9.07 14 2.49 -37.00 -6.58 72.55 

Average 21.71 4.91 9.57 2.26 -12.14 -2.66 39.77 

 

TABLE XI 
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FAULT CONTEXT BASED METHOD (SET-2) 

Subject 

Program  

Version LOC Code Examined Difference Improvement 

% Using Classic 

Ochiai Method 

EXAM 

Score %  

Using Fault 

Context 

Method 

EXAM 

Score %  

Code 

Examined  

EXAM 

Score %  

print_tokens V7 565 9 1.59 7 1.24 -2.00 -0.35 22.22 

print_tokens2 V7 510 14 2.75 9 1.76 -5.00 -0.98 35.71 

schedule V3 412 24 5.83 23 5.58 -1.00 -0.24 4.17 

schedule2 V6 307 23 7.49 11 3.58 -12.00 -3.91 52.17 

tcas V5 173 20 11.56 5 2.89 -15.00 -8.67 75.00 

tot_info V9 406 15 3.69 8 1.97 -7.00 -1.72 46.67 

replace V8 562 45 8.01 33 5.87 -12.00 -2.14 26.67 

Average 21.43 5.85 13.71 3.27 -7.71 -2.57 37.52 

 

 
Fig. 4. Comparison of Fault Localization Performance between classic Ochiai and Fault Context based methods in terms of EXAM score (Set-1) 
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The columns 4 and 5 show the fault localization 

performance in terms of absolute rank and EXAM score 

percentage when we use classic Ochiai method. Similarly, 

the columns 6 and 7 show the performance with respect to 

Fault Context method. The column 10 shows the 

improvement achieved by Fault Context methods in 

comparison to classic Ochiai method. For example, in case 

of print_tokens program in Table X we need to go through 

17 statements to locate the actual faulty statement and with 

fault context method we need to search only 15 statements 

to locate the fault. Therefore, we observe an improvement of 

11.76%. This means developer needs to search 11.76% less 

statements in order to reach to the faulty statement.  

In the same way when we observe print_tokens program of 

Table XI, there is an improvement of 22.22% in fault 

localization performance when we use fault context method 

as compared to the classic Ochiai method.  

The average improvement is shown in the last row of 

Table X and Table XI. We observe an average improvement 

of 39.77% in the first set of experimental results (Set-1) 

shown in Table X, and in case of second set of experimental 

results (Set-2) shown in Table XI has an average 

improvement of 37.52%. We see a significant improvement 

in fault localization performance when fault context method 

is used as against the classic Ochiai method.  

Therefore, it can be concluded that both FES based and fault 

context based methods further improves the fault 

localization performance. 

For better readability, the comparisons of fault 

localization performance between traditional Ochiai and 

fault context based method are also shown graphically in 

Fig. 4 and Fig. 5 for the two sets of experiments 

respectively. Both sets of experiments have been carried out 

in same experimental settings but with different faulty 

versions of Siemens programs. 

Now we compare the fault localization performance 

between Ochiai and fault context based method in terms of 

Top-N metric. 

Table-XII provides a comparison of fault localization 

results between Ochiai and fault context based methods 

using Top-N metric. When we use traditional Ochiai 

method, we are unable to find any fault in the top-1 position, 

but 7.14% (1 out of total 14 faults) of faults and 21.43% of 

faults (i. e. 3 out of total 14 faults) can be found among Top-

5 and Top-10 positions respectively. However, the fault 

context based method is also unable to locate the fault at 

Top-1 position, but it can locate 21.43% of faults (3 out of 

total 14 faults) and 35.71% of faults (i. e. 5 out of total 14 

faults) among Top-5 and Top-10 positions respectively. 

Based on the results shown in Table-XII, it can be clearly 

observed that the fault context based method provides better 

fault localization performance over traditional Ochiai 

method. 

To make the experimental conclusions more substantial, 

we now present the evaluation approach with respect to 

Wilcoxon signed-rank test. The Wilcoxon signed-rank test 

provides a reliable statistical basis for comparing the 

effectiveness of different techniques and has been widely 

used in earlier fault localization studies. 

TABLE XII 
Percentage of faults successfully located at each Top-N metric by Ochiai 

and Fault Context based method 

Technique Top-1 Top-5 Top-10 

Traditional Ochiai 0 7.14 21.43 

Fault Context based 

method 
0 21.43 35.71 

 

TABLE XIII 

The confidence with which it can be asserted that a FES-based 

approach is more effective than Ochiai 

  Subject programs of Table-VIII 

Ochiai 99% 

 

TABLE XIV 

The confidence with which it can be asserted that a Fault Context 

based approach is more effective than Ochiai 

  

Subject programs of 

Table-X 

Subject programs of 

Table-XI 

Ochiai 99% 99% 

 

 
Fig. 5. Comparison of Fault Localization Performance between classic Ochiai and Fault Context based methods in terms of EXAM score (Set-2) 
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Table XIII and Table XIV show the effectiveness 

comparison of FES based and Fault Context based methods 

respectively, as against the traditional Ochiai method using 

the Wilcoxon signed-rank test. The tables give the 

confidence of which the alternative hypothesis can be 

accepted (that the two approaches FES and Fault Context 

based methods require the examination of fewer statements 

than the compared baseline approach that is Ochiai). One 

can observe that with 99% confidence (with a significance 

level of 0.01), FES and Fault Context based methods are 

more efficient than the traditional Ochiai method on all 

faulty versions. In other words, we find that the EXAM 

scores of FES and Fault Context based methods are 

statistically better than that of the traditional Ochiai method. 

Therefore, the results from the Wilcoxon signed-rank test 

evidently show that the FES based and Fault Context based 

methods are more effective than the classic Ochiai on 

Siemens programs, and can further improve the performance 

of existing SBFL methods such as Ochiai. The results are 

also consistent with our previous conclusion that the two 

methods perform better than the compared technique Ochiai 

in terms of the Exam score measure. 

VI. CONCLUSION 

The need of more advanced techniques for software fault 

localization requires more time and resources as software 

systems are turn out to be more convoluted and larger in 

scale. It is necessary that software engineers and system 

analysts involved in software development possess a good 

understanding of currently available techniques of fault 

identification and should have familiarity with the emerging 

trends in this important area. This paper attempts to review 

traditional and some recent works on software fault 

localization which will help researchers and software 

developers to better understand the developments in the area 

of software fault localization. 

In this paper, we have emphasized on spectrum-based or 

lightweight fault localization because of its popularity in the 

field of software fault localization. We have explained with 

the help of a simple working example the process of 

spectrum-based fault localization by using the classic SBFL 

techniques like Tarantula and Ochiai. 

Considering the ongoing developments in the field of 

SBFL we have illustrated two techniques which further 

improve the effectiveness of traditional SBFL methods in 

single fault context. The first technique makes use of failed 

execution slices to improve the fault detection efficiency of 

existing classic SBFL methods. The second technique works 

on the concept of suspiciousness of program entity and the 

suspiciousness of its fault context. The fault context of a 

program entity can be defined as the set of other program 

entities that were executed in the same failed execution apart 

from that program entity itself. This technique combines the 

suspiciousness of a program entity and the suspiciousness of 

its fault context to generate the final suspiciousness score 

which results in improved absolute rank of a faulty program 

entity.  

This paper also includes a brief review on some standard 

metrics that are used to measure the effectiveness of fault 

localization techniques. The metrics mainly measure the 

effectiveness of fault localization technique in terms of how 

much code the developer needs to examine before locating 

the first faulty program entity such as a statement. The 

metrics discussed mainly include T-Score, the EXAM/ 

Expense score, P-Score, Top-N and Wilcoxon signed rank 

test. 

The two approaches which are based on the concepts of 

Failed Execution Slice and Fault Contexts are evaluated 

experimentally on standard benchmarks Siemens programs 

to compare their effectiveness against the classic Ochiai 

method. Overall, the experiment results show that the two 

approaches further improve the performance of existing 

SBFL techniques significantly.  

We believe that this paper will provide the software 

engineering community a wide ranging idea of the key 

issues pertaining to the demanding field of software fault 

localization and will also suggest new ideas for future 

research. For future work, our study will be extended to 

further improve the performance of existing SBFL 

techniques by investigating the impact of test suites on fault 

localization.   
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