

Abstract— Software fault localization is a task of isolating

the statements which cause faults in a program. Fault

localization is one of the monotonous, time consuming and

prohibitively expensive, yet very important activities in

program debugging. Manual testing and debugging is very

infeasible due to the escalating scale and complexity of

software systems. So, there is a strong need for automated

techniques which can help developers locating bugs in

programs without much human interference. This necessity

has given rise to the development of a variety of fault

localization techniques, each of which deals with the problem

in its own way. This paper presents an overview of such

techniques with some key issues and concerns relevant to

software fault localization. In particular, this paper focuses on

spectrum-based software fault localization (SBFL) techniques

and reviews two recent approaches in detail that further

improve its performance. These two approaches which are

based on the concepts of Failed Execution Slice and Fault

Context are evaluated experimentally on seven standard

benchmark Siemens programs to compare their effectiveness

against the classic Ochiai method. The experimental results

show that the two approaches improve SBFL performance by

an average of 27.05% and 38.64% respectively against the

classic Ochiai technique.

Index Terms— Software fault localization, execution trace,

debugging, failure, program spectrum, program slicing, failed

execution slice, fault context.

I. INTRODUCTION

oday the influence of software is reasonably

everywhere. At the present time, software is key

element to many systems and processes from the safety

point of view such as healthcare, aeronautics, industrial

plants, nuclear energy etc. This development has been

continuously increasing the scale and complexity of

software systems day by day. Unfortunately it has resulted

in many software bugs that remain undetected during the

development process and ultimately passes to the end user

which may result in huge losses because of failures. The

significant proportion of cost of fixing software bugs is

Manuscript received June 28, 2021; revised February 9, 2022.

Amol Saxena is a PhD candidate of Department of Computer Sc.
Engineering, SCIT, Manipal University Jaipur, Jaipur, Rajasthan, India-

303007 (Phone: +91-9982776883, email: amolsaxena2015@gmail.com)

Dr. Roheet Bhatnagar is a Professor of Computer Sc. & Engineering
Department, SCIT, Manipal University Jaipur, Jaipur, Rajasthan, India-

303007 (email: roheet.bhatnagar@jaipur.manipal.edu)

Dr. Devesh Kumar Srivastava is a Professor of Information Technology
Department, SCIT, Manipal University Jaipur, Jaipur, Rajasthan, India-

303007 (email: devesh988@yahoo.com)

passed to the software users and rest is absorbed by the

developers and vendors.

The objective of fault localization is to identify the

defective program elements which lead to software failures.

In other words, fault localization is the process to identify

the locations of faults in software programs. Previously the

task of fault localization was performed manually which

was very tedious, time consuming and prone to failures as

many bugs remain undetected. This manual process of

localizing faults in today’s large scale complex and safety

critical software systems is prohibitively expensive. Another

problem of manual fault detection is that it depends on

experience, judgment and perception of developers and

testing engineers to identify the code that causes software

failure. These limitations have given rise to the requirement

of developing more scientific techniques for fault

localization. It is also important to develop techniques that

can fully or partially automate the task of identification of

faulty code in software systems. The research is

continuously going on in this direction and many techniques

and concepts have been developed that are helping software

professionals to improve the quality of the software and to

improve the bug localization process. As advances are being

made from both theoretical and practical perspective in the

field of software fault localization, it is important to give an

overview of current techniques related to fault localization

to facilitate those who want to contribute in this area. In

software fault localization literature many studies have been

proposed that further improve the performance of existing

classical fault localization methods. This paper describes

two such techniques in detail and experimentally evaluates

their effectiveness against the classic SBFL technique

(Ochiai in our study).

It is necessary to give brief definitions of the following

terms which appear frequently in this paper. A failure occurs

when a service differ from its accepted behavior. An error

can be defined as a state or condition that may cause a

failure and a fault or bug is the primary source of an error

[1]. The main contributions of this paper are summarized

below.

 A review of the basic and advanced software fault

localization techniques and examining their issues and

concerns.

 This paper illustrates the traditional spectrum-based

fault localization technique and some of the recent

methods that further improve its performance.

 Provides an overview of some standard metrics that are

used to evaluate the effectiveness of software fault

localization techniques.

Software Fault Localization: Techniques, Issues

and Remedies

Amol Saxena, Roheet Bhatnagar, and Devesh Kumar Srivastava

T

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

mailto:devesh988@yahoo.com

 Experimentally evaluates two recent techniques on a

standard benchmark (Siemens test suite) to compare

their effectiveness against the classic SBFL method

Ochiai.

The rest of the paper is organized as follows: the second

section briefly discusses about the conventional fault

localization techniques, and then categorization of more

advanced techniques of fault localization is presented in

third section. This section illustrates the traditional methods

of spectrum-based fault localization and also illustrates

some recent techniques by which the effectiveness of

spectrum-based fault localization can be improved. The first

technique discussed here is based on the failed execution

slice and the second method utilizes the concept of fault

context in SBFL to improve the absolute rank of faulty

program entities. A brief review of other software fault

localization technique is also provided in section three. An

overview of various evaluation metrics that are used to

measure the effectiveness of fault localization techniques is

presented in section four. The section five presents a

detailed experimental study to evaluate the effectiveness of

the two techniques (i. e. failed execution slice and fault

context) against the classic SBFL method Ochiai. In the end

conclusion is presented in section six.

II. CONVENTIONAL FAULT LOCALIZATION TECHNIQUES

To give a basic overview of fault identification, this

section explains some traditional and instinctive techniques

of fault localization.

A. Program Logging

To monitor variable values and other state information of

the program, statements such as print are inserted into the

code. This creates a program log, which is used by

developers to detect the underlying cause of failure in case

of abnormal program behavior is detected.

B. Assertions

Assertions are added by developers in the form of

constraints which are required to be always true during the

correct execution of a program code. Assertions are

specified in the program as conditional statements that

terminate the program if evaluated to false. In this way,

incorrect or faulty execution of a program can be detected

by assertions.

C. Breakpoints

With the help of breakpoints the user can temporarily stop

the execution of a program when it reaches a certain point

and thus allows a user to examine the current state of

variables and intermediate results. User can observe

development of a bug after a breakpoint is activated. This

approach is adopted by tools for example GNU GDB and

Microsoft Visual Studio Debugger.

D. Profiling

In order to optimize a program, profiling can be used by

analyzing run time metrics such as memory usage and

execution speed. Profiling is helpful in debugging in the

following manner – detecting when a function execute

unexpectedly and identifies the code responsible for that,

discovering the state of memory leak and investigating the

side effects of lazy evaluation i.e. evaluation of expressions

is deferred until some other computation is awaiting their

results. The examples of some debugging tools that

incorporate profiling are GNU’s “gproof” and the Eclipse

plug-in “TPTP”.

III. ADVANCED FAULT LOCALIZATION TECHNIQUES

As the size and complexity of software system is

increasing continuously, traditional fault identification

techniques are insufficient to detect the root cause of

failures. This section discusses different category of fault

localization techniques. The authors illustrate the differences

between different slice-based techniques first, and then this

paper presents spectrum-based techniques with the help of

an example. The spectrum-based techniques are commonly

used in fault localization to compute suspiciousness values

of program statements to identify the location of faults that

are responsible for program failure. Many improvements in

spectrum-based methods have been proposed by various

authors time to time and two such methods that improve the

performance of spectrum-based fault localization are

explained in this paper with the help of examples. Next, we

give a brief overview of some other techniques such as

statistics-based, program state-based, machine learning

based, data mining-based and model-based techniques.

A. Slice-Based Techniques

 Program slicing is a method or approach that

conceptualizes a program into a compact manner by

removing irrelevant parts which have no effect upon the

semantics of interest. Program slicing only focuses on

selected aspects of semantics. Program slicing reduces the

search domain while developers locate faults in a program.

The idea is that when failures occurs in a program because

of an erroneous variable value at a statement, then the defect

is there in the static slice related to the variable statement

pair which restricts the search efforts to the particular slice

rather than the entire program. One limitation with static

slicing technique is that it does not work well with pointer

variables because pointers make data flow analysis

inefficient as dereferencing of pointer variables introduces

large sets of data facts which need to be stored. Equivalence

analysis improves effectiveness of data flow analysis while

working with pointer variables. It finds equivalence

relationship between memory locations accessed by a

program segment. When two memory locations are equal

then they share same data objects in a function or procedure.

Thus, it is required to figure out information for a

representative memory location by data flow analysis, and

data flow for other locations can be acquired from the

representative location.

Static slicing has a drawback that the slice for a given

variable at a given program statement contains all the

executable statements of the program that could somehow

affect the value of this variable of the slice. Consequently, it

might include some extra unnecessary statements because

run time values cannot be predicted with static slicing

method. To keep out such extra statements dynamic slicing

should be used. The dynamic slicing is constructed with

respect to the conventional static slicing criterion together

with the input sequence supplied to the program, during

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

some specific execution (dynamic information). One weak

point with dynamic slicing is that it may omit some crucial

statements which can lead to failure. The dynamic slicing

cannot find the execution omission errors which may cause

to leave out some significant statements in a program and

therefore resulting in failure. The relevant slicing concept

can be used to trace such execution omission errors by

locating faulty statements.

A third type of slicing is execution slicing which includes

statements that execute with respect to a given test case. It

gives statements executed related to a specific inputs as

against the case of static slicing which considers all inputs.

Some of the execution slice based debugging tools in

practice are xSuds at Telcordia, and eXVantage at Avaya.

The following example given in Table I demonstrates the

difference between static, dynamic and execution slicing.

Assume the sample code given in the second column of

Table I has a bug at statement S15. The third column shows

the static slice of variable maximum. This static slice

contains all statements of the program that might influence

the value of the maximum variable. The statements included

in this static slice are S1, S2, S3, S4, S6, S7, S8, S13, S14,

S16, S17, S22 and S24. The fourth column shows the

dynamic slice for variable maximum which includes

statements that affect the value of maximum with respect to

test case when a=1, b=2 and c=3. This dynamic slice is

consists of statements S1, S2, S3, S4, S6, S16, S22, and

S24.The execution slice with respect to test case a=1, b=2

and c=3 is given in column five and contains all statements

of the program executed by this test case. This execution

slice contains statements S1, S2, S3, S4, S5, S6, S16, S22,

S23, S24, and S25. Slices are difficult to understand due to

their length. The notation of barriers is proposed by Krinke

[2], which offers a filtering method for smaller program

slices and improved ability to understand.

B. Program Spectrum-Based Techniques

A program spectrum explains the execution details from

certain viewpoints, such as conditional branching or loop

free paths within procedures. The use of the program

spectrum techniques in software fault localization was

suggested by Collofello and Cousins [3]. Such spectra

information can be used to identify suspicious code which is

responsible for program crash. The program segment under

testing during execution is denoted by Executable Statement

Hit Spectrum (ESHS). This information enables to identify

components of a program involved in a failure.

i. Notations

Some notations that are used in spectrum-based

techniques are defined here. P represents a program. NCF

means “number of failed test cases that cover a program

statement”; NCS signifies the “count of successful test cases

that cover a statement”, NC symbolizes the “total number of

test cases by which a statement is covered”, NS and NF

represent the “total number of successful and failed test

cases” respectively. NUF means the “count of failed test cases

that do not cover the statement”, and NUS specifies the

“number of successful test cases that do not cover the

statement”.

ii. Techniques

For spectrum-based fault localization, some early

researches only used failed test cases. These studies found to

be ineffective. Afterwards researches used both successful

and unsuccessful test cases and highlighted the differences

between them and achieved better fault localization results.

M. Renieris et al. [4] worked on methods known as set

union and set intersection. In set union algorithm program

TABLE I

COMPARISON OF DIFFERENT TYPES OF SLICING METHODS

Stmt.

Code snippet with a bug at

statement S15

Static slice for maximum Dynamic slice for maximum

w. r. t. test case a=1, b=2, c=3

Execution slice for maximum

w. r. t. test case a=1, b=2, c=3

S1 input (a); Enter (a); Enter (a); Enter (a);

S2 input (b); Enter (b); Enter (b); Enter (b);

S3 input (c); Enter (c); Enter (c); Enter (c);

S4 int maximum; int maximum; int maximum; int maximum;

S5 int minimum; int minimum;

S6 if(a>b) if(a>b) if(a>b) if(a>b)

S7 if(a>c){ if(a>c){

S8 maximum=a; maximum=a;

S9 if(b>c)

S10 minimum=c;

S11 else

S12 minimum=b;}

S13 else else

S14 { maximum=c; { maximum=c;

S15 minimum=a;

 //correct minimum=b;}

S16 else if(b>c) { else if(b>c) { else if(b>c) { else if(b>c) {

S17 maximum=b; maximum=b;

S18 if(a>c)

S19 minimum=c;

S20 else

S21 minimum=a;}

S22 else{ maximum=c; else{ maximum=c; else{ maximum=c; else{ maximum=c;

S23 minimum=a;} minimum=a;}

S24 print(maximum); print(maximum); print(maximum); print(maximum);

S25 print(minimum); print(minimum);

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

spectra differences are determined between a failing test

case f and a set of successful test cases P. Consider S (t) as

the spectra or in other words running behavior of the

program executing the test case t. Then, A fault localization

report R is generated by determining the differences

between a failing test case f, and all passed test cases pi P.

This can be represented as R= S (f) – Upi p S(pi). This

algorithm is known as set union algorithm and is described

in [4]. The code executed by failed test cases but not

successful test cases is more suspicious than others. This is

the technique of set union methods which focuses on source

code that is executed by failed test cases but not by any of

the test cases that successfully executed the code.

As opposed to above Set Union algorithm, a different

algorithm known as Set Intersect is also explained in. As per

set intersect method, the program spectra difference between

failing test case and intersection spectra of successful test

cases is computed as localization report, R. This can be

written as R = pi p S(pi) – S(f). The code that is executed

by all the successful test cases but not failed tests is

excluded by set intersection method.

Another program spectrum-based technique is nearest

neighbor, in which a successful test run is find out that is

most similar to the failed tests based on distance metric. The

difference set of this successful and failed test is computed

that locates the fault is it is present in the difference set.

The thought of nearest neighbor resembles counterfactual

reasoning, which says that, suppose there are two events X

and Y, in world ‘w’ and X causes Y if, in all possible worlds

that are similar to ‘w’, X does not occur and Y also does not

happen.

Next, the Tarantula, a well-known ESHS based similarity

coefficient based technique is discussed. This technique

makes use of coverage and execution results of a program

under test. The execution results tell the success and failure

of the program and suspiciousness of each statement (S) is

computed as per the formula given below in (1). The

notations used here are explained in the previous section.

susp (s) =

𝑁𝐶𝐹
𝑁𝐹

𝑁𝐶𝐹
𝑁𝐹

+
𝑁𝐶𝑆
𝑁S

 (1)

A study shows that, in comparison to set union, set

intersection and nearest neighbor methods, the technique

known as Tarantula is relatively more efficient fault

localization technique because before locating the first

faulty statement in a program, Tarantula checks fewer code

statements [5]. Those statements which are executed by

same number of failed test cases are grouped together and

these groups are given ranks by the number of failed test

cases, and are arranged in descending order. Statements are

ranked on the basis of suspiciousness calculated within each

group.

Now, the authors give an example to compute the

suspiciousness values of statements of a program segment

using the Tarantula Technique [1]. Consider the code

snippet given in Table II. Here it is assumed that there are

five successful test cases (t1, t2, t4, t5 and t6) and one

unsuccessful or failed test case (t3).

The statement coverage of six test cases is shown from

third to eighth columns. The bottom row gives the execution

result of each test case. Here, ‘0’ means successful

execution of the test case and ‘1’ represents failed test case

execution. The entry in the table with an ‘1’ shows that the

corresponding test case covers the statement, while an

empty entry means that the statement is not covered. The

next two columns contain the values of NCF and NCS for

each statement of the program code. The suspiciousness

value is displayed in the eleventh column as per the

definition of Tarantula. The last column displays the ranking

of each statement. It can be observed that the faulty

statement S13 has the maximum ranking that is 1. It requires

only two searches to detect the faulty statement S13 which

has the highest suspiciousness rank of 1. As per EXAM

score only 9.09% of statements need to be searched in order

to reach to the faulty statement. Some other recent

techniques have given better performance in terms of their

usefulness at fault localization. The technique based on

TABLE II

SUSPICIOUSNESS VALUE OF PROGRAM STATEMENTS COMPUTED USING THE TARANTULA METHOD

Stmt. # Program t1 t2 t3 t4 t5 t6 NCF NCS Suspiciousness Ranking

S1 input (a); 1 1 1 1 1 1 1 5 0.50 4

S2 input (b); 1 1 1 1 1 1 1 5 0.50 4

S3 input (c); 1 1 1 1 1 1 1 5 0.50 4

S4 int maximum; 1 1 1 1 1 1 1 5 0.50 4

S5 int minimum; 1 1 1 1 1 1 1 5 0.50 4

S6 if(a>b) 1 1 1 1 1 1 1 5 0.50 4

S7 if(a>c){ 1 1 1 1 2 0.71 3

S8 maximum=a; 1 1 0 2 0.00 12

S9 if(b>c) 1 1 0 2 0.00 12

S10 minimum=c; 1 0 1 0.00 12

S11 else minimum=b;} 1 0 1 0.00 12

S12 else { maximum=c; 1 1 0 1.00 1

S13 minimum=a;

 //correct minimum=b;}

 1 1 0 1.00 1

S14 else if(b>c) { 1 1 1 0 3 0.00 12

S15 maximum=b; 1 1 0 2 0.00 12

S16 if(a>c) 1 1 0 2 0.00 12

S17 minimum=c; 1 0 1 0.00 12

S18 else minimum=a;} 1 0 1 0.00 12

S19 else{ maximum=c; 1 0 1 0.00 12

S20 minimum=a;} 1 0 1 0.00 12

S21 print(maximum); 1 1 1 1 1 1 1 5 0.50 4

S22 print(minimum); 1 1 1 1 1 1 1 5 0.50 4

Execution results

(0=successful, 1=Failed)

0 0 1 0 0 0

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

similarity coefficient given by Ochiai [1] is more effective

than Tarantula. Its formula is given below in (2).

𝑠𝑢𝑠𝑝 (𝑂𝑐ℎ𝑖𝑎𝑖) =
𝑁𝐶𝐹

√𝑁F x (𝑁𝐶𝐹+ 𝑁𝐶𝑆)
 (2)

Naish et al. [6] worked on fault localization techniques

for programs having single and multiple bugs. Two such

techniques are O and OP respectively. Experimental data

suggest both O and OP both are more efficient methods in

comparison with Tarantula and Ochiai as far as single bug

programs are concerned.

It was also found that O is a better approach for single

bug programs and OP is good for programs which have

multiple bugs. The technique O (ranking metric)

characterizes the suspiciousness of a statement S as given

below in (3).

𝑠𝑢𝑠𝑝(𝑠) =
−1

𝑁𝑈𝑆,

𝑖𝑓 𝑁𝑈𝐹 >0

otherwise
 (3)

Here it is assumed that, with respect to single bug

programs, NUF is always zero for the faulty statements. For

statements with positive suspiciousness values, the

probability of them being faulty is relative to NUS. The

technique OP was proposed for better performance in case of

programs with multiple bugs. It suggests that the statements

with larger NCF and smaller NCS are moved to the top

ranking with the help of the following (4).

susp(𝑠) = 𝑁𝐶𝐹 −
𝑁𝐶𝑆

𝑁S+ 1
 (4)

The use of data flow spectra in improving effectiveness of

spectrum-based fault localization is given by Ribeiro et al.

[7]. The data flow in a program means defining a variable

i.e. assigning value to it and its subsequent references i.e.

the use of that variable takes place when its value is referred

to. The data flow spectrum is related to all such paths

between every point where a variable is assigned a value

and its subsequent use (p-use, predicate computation and c-

use, value computation). This is also called definition-use

associations (DUA). Ribeiro et al. [7] carried out

experiments and compare the use of data flow spectrum

(DUA) and control flow spectrum (lines) in fault

localization. They concluded that data flow spectrum

located more bugs and allows the programmer to examine

less code than control flow (line spectrum) for different

ranking metrics such as Tarantula, Ochiai, and Jaccard etc.

iii. Issues and Concerns

This section discusses some issues related to spectrum-

based fault localization techniques. The contribution of

failed and successful test cases is not properly explained by

the spectrum-based techniques. The program statements are

divided into two groups i.e. suspicious and unsuspicious

groups. The statements that are executed by at least one

failed test case are part of suspicious group, whereas the

remaining program statements are contained in unsuspicious

group. The suspicious statements are considered to be risky

and for these risk factor is calculated. The unsuspicious

statements are just assigned lowest values. However, the

problem is that the test cases which executed successfully

may contain bugs. Wong et al. [1] said that each additional

test case whether successful or failed is helps in finding

program bugs. As per their study, for a statement or piece

of code, executed by the first failed test case, the computed

suspiciousness value will be greater than or equal to the

second failed test executed on that piece of code. Similarly,

the suspiciousness value computed by second failed test

case will be greater than or equal to the third failed test case

that executes the code, and so on. If we compare the total

contribution in locating program bugs by all the successful

tests and all the failed tests on a piece of cede, it was found

that the contribution by failed test is more than the

contribution by successful test cases. Fault localization

methods often compare failed tests with successful tests so it

would be advantageous to know which successful test case

should be chosen for comparison to reduce the search area

of the fault. Wong and Qi [8] recommend that the successful

test cases whose execution sequence is most similar to that

of a failed one should be chosen. This similarity comparison

is based on control flow based difference metric.

The ranking of the statements will be the same if they

have same suspiciousness values. For example “if”

statements execute in the same way and it is likely that these

statements will be assigned same suspiciousness value in

spectrum- based techniques. In case of these ties, besides

statement coverage, additional information of frequency of

statement execution is also utilized. Xu et al. [9] analyzed

different tie breaking methods like confidence based

methods, data dependency based and statement order based

methods.

Zhao et al. [10] used the program control flow graph to

study program execution because only coverage information

cannot be used to analyze execution paths. They discover

the relationship between failed execution and control flows

and explained the mapping of distribution of failed

execution to different control flows. They determined that

how each block is related with failure and also verified that

how a block is bug free by comparing the distributions of

blocks on the same failed execution paths.

C. Techniques to Improve the Efficiency of Spectrum-Based

Fault Localization

The next two sub-sections illustrate two methods that can

improve the performance of the spectrum-based fault

localization. The first method makes use of failed execution

slice to improve the effectiveness of spectrum-based fault

localization. The second method combines the

suspiciousness of program entity and suspiciousness of

program entity’s fault context in order to improve the

absolute rank of faulty entities in the program.

i. Efficient Spectrum-Based Fault Localization using Failed

Execution Slice

Spectrum-based techniques of fault localization can be

improved with the use of failed execution slice [11]. A set of

statements executed by a test case are referred to as

execution slice. An execution slice with respect to a failed

test case is called failed execution slice. This method, first

computes the suspiciousness score of each statement of a

program under test using some existing fault localization

technique such as Tarantula, Ochiai, Jaccard etc., then scope

of fault is constrained using selective failed execution slice

(FES) which is chosen on the basis of utility evaluation

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

function f.

Spectrum-based fault localization (SFL) mainly makes

use of statement suspiciousness scores in order to detect

faulty statements in a program. There may be certain

statements that might be regarded as noise statements which

have higher suspiciousness values but still they are not the

main cause of the program failure. This method exploits this

concept and eliminates such possible noise statements from

the error report and further debugging process, thereby

improving the effectiveness of SFL methods. A key failed

execution slice (FES) is selected from all candidate failed

execution slices to help reduce the scope of fault detection

of the classical SFL methods.

a. Utility evaluation function

The primary objective is to use failed execution slice is to

remove the maximum possible noise statements that have

higher suspiciousness than the root cause. But it is

challenging problem to identify the FES from all failed

execution slices. As proposed by Shu et al. [11], the utility

of failed execution slices is measured by the following

function f as in (5).

f(Ti) = ∑ S[Ii][i]x sus[i]
𝑛

𝑖=1
 (5)

Where Ti is a failed execution slice, Ii is the

corresponding failed test case. S[Ii][i] ∈ [0,1] indicates that

whether the statement i is executed or not by the test case Ii.

Here, a 0 means the statement is not covered and 1

otherwise. n>=1 represents the number of executable

statements in the program under test. The suspiciousness

score of the statement i is denoted by sus[i]. The utility

function value is calculated for each candidate FES and an

FES with smaller utility function value is considered to be

of greater use for reducing the scope of fault detection.

b. FES-based framework

The main process of FES based fault localization is

shown in Fig. 1 and it consists of three broad steps as

follows.

i. In the first step, the suspiciousness of statements is

calculated based on a specific classic SBFL method. In

our study we have used classic Ochiai method of

spectrum-based fault localization. A debug report is

generated which consists of all statements sorted

according to their suspiciousness scores in descending

order.

ii. In the second step, a key execution slice is selected

which reduced the search space of faulty statements in

the debug report. The key execution slice is selected by

a utility evaluation function as defined as in (5).

iii. Finally, a new debugging report is generated by

intersecting the failed execution slice (step-2) and the

basic debug report generated in step-1. Based on this

new debug report, a developer examines every

statement by its suspiciousness score in descending

order until the first faulty statement is found.

c. A simple illustration of fault localization using failed

execution slice

To illustrate the efficiency of FES based method, consider

the program given in Table III. In this example, the

suspiciousness scores of statements are calculated using

Tarantula technique of fault localization. The faulty

statement is S6 with the suspiciousness score of 0.67. As per

the example, the developer needs to examine five statements

before reaching to faulty statement.

By observing Table III it is clear that there are three failed

test cases t3, t5 and t6 and their related failed execution

slices are T3, T5 and T6 respectively. The utility evaluation

function when applied to these three FESs gives f (T3) =

5.90, f (T5) = 6.79 and f (T6) = 6.79. The T3 will be

selected as key FES because it has smallest utility function

value of 5.90. The original debugging report can be

narrowed down by using selected key failed execution slice

and a new debugging report can be obtained with the

statements s1, s2, s3, s4, s5, s6, s7, s14, s15 and s20. Now, it

is required examining only two statements before finding

the faulty statement S6. When comparing the efficiency with

the traditional spectrum-based fault localization method, it is

easy to observe that there is an improvement of 60% with

this new FES based method because now only two

statements need to be examined as compared to five using

traditional method. When considering FES T5 or T6, the

reduced debug report contains statements s1, s2, s3, s4, s5,

s6, s7, s8, s9, s10 and s20. In this case it requires examining

4 statements before locating the faulty statement with an

improvement of 20% as compared to traditional method.

Fig. 1. Framework for FES based fault localization method

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

So, the effectiveness of traditional spectrum-based fault

localization methods can be improved by incorporating the

concept of fault execution slices. Based on the above

example, there are two important points can be concluded

(1) the classic SFL methods can be improved by taking the

advantage of code coverage information extracted from

failed execution slices and (2) the selection of key FES

depends on the utility evaluation method and can maximize

the efficiency of FES based technique.

Exploring the broader applicability of this approach on

different real life programs is the motivation for future

work. How this approach works with other SFL techniques

would also be interesting to note.

ii. Spectrum-based fault localization combined with fault

context

a. The concept of fault context

Spectrum-based fault localization is a practical and

efficient fault localization technique. Because of its low

computational overhead and ability to produce good results

on large code bases it is also considered as lightweight fault

localization.

Recent researches show that the spectrum-based

techniques have been instrumental to locate bugs. However,

the study carried out by Parnin and Orso [12] highlighted

that many developers do not find these techniques very

much useful if the root cause of failure is not listed in top

ranked suspicious entities in the debugging reports.

Therefore researchers have been working on to improve the

performance of SBFL methods so that the root faults appear

at higher positions in the ranking list (debugging reports) of

suspicious program elements.

One such method presented by Wang et al. [13] combines

the suspiciousness of program element and suspiciousness

of program element’s fault context in order to improve the

absolute rank of faulty elements in the program. Here, the

fault context of a program element means the other program

elements that were executed by the same failed test case.

The concept of fault context’s suspiciousness can be used in

spectrum-based fault localization techniques (e.g. Ochiai,

Jaccard, DStar, Tarantula etc) to improve the rank of root

faults in a faulty program.

It is important to note that a program entity’s overall

suspiciousness rank will be higher if the suspiciousness of

that program entity is higher and the suspiciousness of its

fault context is lower. To illustrate this idea we use an

example as given below.

b. An Illustrative Example

Consider the example program given in Table IV which

counts the number of vowels, consonants, spaces and digits

in a string.

There is a fault in basic block 3 (or statement 3) wherein

the equality comparison in incorrectly written as

line.charAt(i) == 'b'. The correct form of this comparison

would be line.charAt(i) == 'a'.

There exist a total of five test cases in this example out of

which two test cases execute successfully and three test

cases fail that means does not produce the desired output.

The program hit spectra is shown from third column to

seventh column. The entry in the table with a ‘1’ shows that

the corresponding test case covers the statement, while an

entry with a ‘0’ means that the statement is not covered. The

bottom row gives the execution result of each test case.

Here, ‘0’ means successful execution of the test case and ‘1’

represents failed test case execution. The next two columns

contain the values of NCF and NCS for each statement of the

program code. These notations have been explained in

section III-B. The suspiciousness value is displayed in the

tenth column as per the definition of Ochiai similarity

metric. The last column displays the ranking of all basic

blocks in descending order based on their suspiciousness

TABLE III

AN EXAMPLE SHOWING EXECUTION RESULTS OF A SAMPLE PROGRAM WITH AN ILLUSTRATION OF FAILED EXECUTION SLICES

Stmt.

Program t1

(1,1,1)

t2

(0,1,1)

t3

(-1, 1, 1)

t4

(-1, 0,

1)

t5

(-1,-1,-

1)

t6

(-2, -1,

-2)

t7

(-1, -1,

0)

NCF NCS Suspiciousness

S1 input(a) 1 1 1 1 1 1 1 3 4 0.50

S2 input(b) 1 1 1 1 1 1 1 3 4 0.50

S3 input(c) 1 1 1 1 1 1 1 3 4 0.50

S4 s=1; 1 1 1 1 1 1 1 3 4 0.50

S5 if (a<0){ 1 1 1 1 1 1 1 3 4 0.50

S6 s=s * a;
 //correct s=s * -a;

 1 1 1 1 1 3 2 0.67

S7 if (b<0){ 1 1 1 1 1 3 2 0.67

S8 s = s* -b; 1 1 1 2 1 0.73

S9 if (c < 0) 1 1 1 2 1 0.73

S10 s = s * -c; 1 1 2 0 1.00

S11 else if (c >0) 1 0 1 0.00

S12 s = s+ c; 0.00

S13 else s=c; 1 0 1 0.00

S14 } else if (b > 0) 1 1 1 1 0.57

S15 s = s + b; 1 1 0 1.00

S16 else s = b; 1 0 1 0.00

S17 } else if (a> 0) 1 1 0 2 0.00

S18 s = s + a; 1 0 1 0.00

S19 else s = a; 1 0 1 0.00

S20 print (s) 1 1 1 1 1 1 1 3 4 0.50

 Execution Result
(0=Successful, 1= Failed)

0 0 1 0 1 1 0

 f(ti) 5.90 6.79 6.79

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

scores. The suspiciousness score assigned to each basic

block represents the possibility of that block being the root

fault. In the example shown in Table IV below the basic

blocks b7, b8, b9 and b10 have highest suspiciousness

scores of 0.82 which is greater than the root fault b3.

Spectrum-based techniques use similarity metric to

compute the suspiciousness of program entities. The

similarity metrics of some well-known approaches are

discussed in the section III-B. These metrics use program

spectrum information derived from test case inputs to

determine the correlation between program entities and test

case results. The reasoning behind these techniques is that

the program entities frequently executed by failed test cases

are considered to be more suspicious. Thus, spectrum-based

approaches compute the suspiciousness scores of program

entities by analyzing the frequency in which these entities

execute in failing and passing test cases.

The program failure occurs when the faulty program

entities are activated in an execution and the infected states

are propagated through the program. Thus, the failure is

dependent on the fault that is triggered and its context. By

observing Table IV it is clear that b3 was activated in all test

cases but failure is observed in T3, T4 and T5. This is

because of the impact of b3’s different contexts in different

executions. In our example the root fault is b3 but it does

have highest suspicious rank, instead b7, b8, b9 and b10 are

ranked highest. Therefore, in order to improve the absolute

fault rank of suspicious statements/ blocks it is required to

combine the suspiciousness of program entities and their

fault contexts to get to the final suspiciousness scores.

In our example shown in Table IV, if we observe the

execution trace of failed test case T3 we find that the fault

context of b3 is {b1, b2, b5, b6, b7, b8, b9, b10} and the

suspiciousness score of this fault context is defined as the

sum of the suspiciousness scores of all basic blocks i.e. {b1,

b2, b5, b6, b7, b8, b9, b10}. Similarly, for the program

executed in failed test cases T4 and T5, the fault context of

b3 is {b1, b2, b4, b5, b7, b8, b9, b10} and {{b1, b2, b4, b5,

b6} respectively. The suspiciousness scores would be the

sum of the suspiciousness scores of all basic blocks or

statements of b3’s fault contexts. So, there are three

suspiciousness scores of b3’s fault context. As we know

that, a program entity’s overall suspiciousness rank will be

higher if the suspiciousness of that program entity is higher

and the suspiciousness of its fault context is lower. Hence,

we choose the minimum suspiciousness score of the three

suspiciousness scores of b3’s fault context.

The suspiciousness score of b3’s fault context can be

calculated as per the formula given below.

Sc(b3) = min [(Sb (b1)+ Sb (b2) + Sb (b5)+ Sb (b6)+ Sb (b7) +

Sb(b8)+Sb(b9)+Sb(b10)), (Sb (b1) + Sb (b2)

+ Sb (b4)+ Sb (b5)+ Sb (b7) + Sb (b8) + Sb

(b9)+Sb(b10)), (Sb (b1) + Sb (b2)+ Sb (b4)+

Sb (b5)+ Sb (b6))]

= min (6.17, 6.26, 3.57)

=3.57

Here, Sc(b3) denotes the fault context suspiciousness

score of basic block b3 and Sb (b1), Sb (b2), Sb (b5) etc

indicate the suspiciousness scores of b1, b2 and b5

respectively. Similarly, for instance, we can find out the

suspiciousness score of b7’s fault context as given below.

Sc(b7) = min [(Sb (b1)+ Sb (b2) + Sb (b3)+ Sb (b5)+ Sb (b6) +

Sb(b8)+Sb(b9)+Sb(b10)),(Sb (b1) + Sb (b2)

+ Sb (b3)+ Sb (b4)+ Sb (b5) + Sb (b8) + Sb

(b9)+Sb(b10)),(Sb (b1) + Sb (b2)+ Sb (b3)+

Sb (b4)+ Sb (b5)+ Sb (b6))]

= min (6.13, 6.21, 4.34)

=4.34

In our example basic blocks b7, b8, b9 and b10 are ranked

higher than the root fault b3. These blocks were influenced

by b3, and all their fault contexts include b3. So, the

suspiciousness of b7’s (or b8, b9, b10) fault context might

have higher suspiciousness score as compared to b3’s.

The following Table V summarizes the suspiciousness

scores of all the basic blocks, suspiciousness scores of fault

contexts of all basic blocks and the final overall rank of each

basic block (i.e. program entity) based on the two

suspiciousness ranks.

TABLE V

SUSPICIOUSNESS OF BASIC BLOCKS AND THEIR CONTEXTS

Basic

Block No

Ochiai Fault Context Ochiai with Fault

Context

Sb Rb Sc Rc Rb+Rc Rank

b1 0.77 5 0.36 1 6 1

b2 0.77 5 0.36 1 6 1

b3 0.77 5 0.36 1 6 1

b4 0.67 9 0.37 5 14 9

b5 0.77 5 0.36 1 6 1

b6 0.58 10 0.38 6 16 10

b7 0.82 1 0.43 7 8 5

b8 0.82 1 0.43 7 8 5

b9 0.82 1 0.43 7 8 5

b10 0.82 1 0.43 7 8 5

TABLE IV

AN EXAMPLE SHOWING THE SUSPICIOUSNESS VALUE COMPUTED USING OCHIAI TECHNIQUE

Basic

Block No

static void vowel(String line) T1 T2 T3 T4 T5 NCF NCS Suspiciousness

(Ochiai)

Rank

b1 {int vowels, consonant, digit, space; vowels = consonant = digit

= space = 0;

1 1 1 1 1 3 2 0.77 5

b2 for (int i = 0; i <line.length() ; ++i) { 1 1 1 1 1 3 2 0.77 5

b3 if (line.charAt(i) == 'b' || line.charAt(i) == 'e' || line.charAt(i) ==

'i' || line.charAt(i) == 'o' || line.charAt(i) == 'u')

 // correct line.charAt(i) == 'a'

1 1 1 1 1 3 2 0.77 5

b4 ++vowels; 1 0 0 1 1 2 1 0.67 9

b5 else if ((line.charAt(i) >= 'a' && line.charAt(i) <= 'z')) 1 1 1 1 1 3 2 0.77 5

b6 ++consonant; 1 1 1 0 1 2 2 0.58 10

b7 else if (line.charAt(i) >= '0' && line.charAt(i) <= '9') 0 0 1 1 0 2 0 0.82 1

b8 ++digit; 0 0 1 1 0 2 0 0.82 1

b9 else if (line.charAt(i) == ' ') 0 0 1 1 0 2 0 0.82 1

b10 ++space;}} 0 0 1 1 0 2 0 0.82 1

 Execution Result (0=Successful, 1= Failed) 0 0 1 1 1

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

c. Framework

The main process of this fault context based approach is

shown in Fig. 2. This approach mainly consists of the

following three steps.

i. The program under test is executed with test suites

containing failed and passed test cases, and program

spectrum data is collected.

ii. Then using one of the existing classic SBFL techniques

(Ochiai in our study) suspiciousness scores are

computed for program statements and their fault

contexts.

iii. Based on the two suspiciousness scores, the final

improved suspiciousness rank list of program

statements is generated in the form of a debugging

report.

Now we formally describe the steps of the fault context

based approach of fault localization [13].

Let P={e1, e2, e3, …,ey} be a faulty program which

contains program entities ei. Let T = {t1, t2, …, tn} be a test

suite containing ti test cases. This test suite T can be divided

into two subsets Tp and Tf which represent passed and failed

test cases respectively. As per our example we have Tp =

{t1, t2} and Tf = {t3, t4, t5}. Similar to existing spectrum-

based approaches we first collect the program spectra by

executing the program under test P with the input of test

cases Tp and Tf. We then compute and analyses the

suspiciousness scores of each program entity and their fault

contexts. Finally, a ranking list in descending order for P is

generated that shows the likelihood of each program entity

to be faulty. This approach has three major steps as

explained below.

Computation of suspiciousness for program entities

In this step we collect program spectra or coverage matrix

M, by executing the program P with the input of test suite T.

The result vector r is collected which contains the results

data as per the execution of passing (Tp) and failing (Tf) test

cases. We then compute the suspiciousness score for every

program entity by using a spectrum-based similarity metric.

In our case we use Ochiai metric as given in (2) of section

III - B.

Computation of suspiciousness for fault context of program

entities

In this step we formally define the fault context. For a

failed execution i, the covered set of program entities are

represented as eci = {c1,…, cj, …, ck}. The fault context of cj

is the set of all program entities covered by the failed

execution of ti except the entity cj itself. The fault context of

cj can be denoted as follows.

faultcontextc (cj, ti) = eci / cj (6)

The cj’s suspiciousness score can be calculated as the

summation of all suspiciousness scores of program entities

eci in test case execution ti except for the entity cj.

Sc (cj, ti) = ∑Sb (eci(k)) (7)

In case if there are more than one fault contexts for the

program entity cj in Tf, then we have to find the minimum of

these fault contexts for cj. The fault context of cj can be

defined as.

faultcontextc (cj) = {eci / cj | i ∈ set of failed test executions} (8)

Sc (cj) = min(Sb (ej, ti) | i ∈ set of failed test executions) (9)

Fault ranking list generation

After the steps 1 and 2, two fault rank list can be

generated, first for the suspiciousness scores of program

entities, and second for their fault contexts. In this step we

further generate a new third rank list.

Assume S is a program entity then the rank of S will be

higher in the new ranking list, if the suspiciousness score Sb

(S) is higher and the suspiciousness score of its fault context

Sc (S) is lower.

To create a new fault ranking list R we first create two

fault ranking lists for a faulty program, Rb and Rc where, Rb

is in descending order of Sb and Rc is in ascending order of

Sc. The two ranking lists are combined to generate the new

ranking list R as follows. Assume ei and ej are two

suspicious program entities and ei has ranks Rb
i and Rc

i , and

ej has ranks Rb
j

 and Rc
j
 . In the new fault ranking list R, ei is

ranked higher than ej if and only if Rb
i + Rc

i <= Rb
j

 + Rc
j
.

By observing Table IV we can see that with traditional

method of fault localization it takes 7 searches to reach to

the faulty statement S3. Whereas with the new fault context

based approach we need to search only 3 statements to reach

to the faulty statement. That means the developer’s effort

will be reduced by 57.14% because of improvement in

absolute rank of suspicious program entity.

D. Statistics Based Techniques

Dynamic fault localization techniques do not make use of

prior knowledge of semantics of programs under test. These

techniques however, identifies whether an execution is

successful or failed. So, dynamic techniques locate program

bugs by differentiating unsuccessful and successful

execution runs. The techniques based on predicate

evaluations are promising methods of fault localization [14].
Fig. 2. Framework for fault context based fault localization method

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

Program run time behavior is characterized in the form of

statistics such as evaluations of conditionals and function

return values. For example, the predicate “i < STRLEN”

where the variable i is an index and it is being checked

whether or not it is exceeding the max length of the buffer.

In this way, the statistics of multiple executions at run time

are collected and recorded for later analysis. A statistical

debugging method known as LIBLIT05 [14] is discussed

here for a reference. For each conditional or predicate P in a

program Pr, LIBLIT05 computes two conditional

probabilities as given below.

Prob1= Prob (Pr fails | P is ever observed)

and

Prob2= Prob (Pr fails | P is ever observed as true)

Then the difference of probabilities Prob2 – Prob1,

indicates the relevance of P to the fault. That means, a

predicate is related to a fault, if there is a correlation

between its true evaluation and the program failure. We can

also say that those predicates that have the above difference

Prob2- Prob1 <=0, can be discarded. The importance scores

of remaining predicates are calculated and these predicates

are prioritized as per their scores. These important scores

indicate the relationship between predicates and program

faults. Those predicates which have higher scores are

examined first.

Another statistical model based approach was known as

SOBER which was proposed by Liu et al. [14]. This fault

localization technique does not use any prior knowledge of

program semantics. This technique ranks suspicious

predicates. The evaluation patterns of predicates consider

both successful and unsuccessful executions in SOBER

technique. This method considers a predicate as faulty, if its

evaluation pattern in unsuccessful executions differs

considerably from the successful executions. When a test

case is executed, it is possible that a predicate P is evaluated

as true more than once. The following formula of (10) gives

the probability that the predicate P is evaluated true in each

execution of a test case.

π (P) =
𝑛(𝑡)

𝑛(𝑡)+ 𝑛(𝑓)
 (10)

Where n(t) and n(f) are number of times P is evaluated as

true and false respectively. Now, the distribution of π (P) in

successful and failed executions of test cases is checked. If

there is a significant difference in the distribution of π (P) in

failed and successful executions then P is considered as

faulty.

Cross tabulation is another statistical analysis based

technique for fault localization that calculates

suspiciousness of program statements [15]. This technique

utilizes information related to execution results i.e. success

or failure and statement coverage information with respect

to different test cases. The structure of crosstab is such that

it has two columns that specify two categorical variables –

covered and not covered; and it has two row wise

categorical variables for successful and failed executions.

The dependence or independence between coverage of each

statement and execution results is determined using a

hypothesis test. The degree of association between the

execution results and coverage of each statement is

measured using chi square statistic test. So, the

suspiciousness of each statement depends on this degree of

association.

So, it is important to note that the methods like SOBER and

LIBLIT05 are used to only rank predicates which are likely

to cause errors whereas crosstab method is used to find

suspicious program elements like statements, functions,

predicate etc.

A predicate with two or more conditions is called a short

circuit evaluation and it may occur often in program

execution. In this short circuit evaluation if first condition is

suffice to evaluate the result of the predicate then, the rest of

the conditions that follow will not be executed or evaluated.

So, short circuit evaluations of individual predicates can be

identified and a set of evaluation sequences for each

predicate is generated. The “debugging through evaluation

sequence approach (DES)” uses such information and can

be compared with predicate based approaches like SOBER

and Liblit05.

Another statistical method which uses the behavior of two

sequentially connected predicates in the execution was

studied by You et al. [16]. For each execution of a test case

a weighted execution graph was constructed where nodes of

the graph represent predicates and edges denote transition of

two sequential predicates. A suspiciousness value is

computed for each edge to measure the possibility of its

fault proneness.

E. Program State-Based Techniques

Variables and their values at run time make program state

which can be an indicator for bug localization. One of the

approaches of program state based technique is to change

the values of some of the variables to find out which one

causes erroneous program execution. Delta debugging was

suggested by Zeller and Hildebrandt [17] in which the

differences in program states are calculated between

executions of a successful test and a failed test through their

memory graphs. To test suspiciousness of variables, a

program is tested with successful test and values of variables

are replaced with related values from the same place in a

failed test, and program execution is repeated. A variable is

considered as suspicious when a same failure is observed.

The delta tool is very popular in software industry and is

being used extensively for automated debugging. Cause

transition technique is an extension of delta debugging

which was proposed by Cleve and Zeller [18]. In this

technique, when the cause of failure changes from one

variable to another, such locations and times are identified.

To detect cause transitions in a program execution the

algorithm named as CTS was used.

It is apparent that, program executions may consist of

thousands of states and each matching point requires

additional test executions by delta debugging to narrow

down the causes. So, the cause transition technique is

comparatively a high cost approach. It is also not necessary

that the locations identified by this technique may not be the

places where the fault exists. To overcome this issue, the

cause transition was extended to “failure-inducing chop” by

Gupta et al. [19]. In the first step, input output variables that

are causes of failure are identified by delta debugging

method. Dynamic slices are then constructed for these

variables. Now the code is considered as suspicious which is

at the intersection of forward and backward slicing of the

input and output variables respectively. The delta debugging

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

still has some limitations like it is difficult to handle

confusing partial state replacement, errors caused by

omission of execution and efficiency of delta debugging is

poor. Later, this limitation was addressed by a cause

inference model that explains the difference between a

failed execution and a successful execution.

A value profile based technique presented by Jeffrey et al.

[20] helps developer in software debugging. In this method

interesting value mapping pairs (IVMPs) are figured out in

program statements and these values are changed so that

correct output can be produced by failed test cases. Different

test cases are executed to produce profiling information

which is used to generate alternative sets of values. For each

statement instances of every failed test case, different

alternative value sets are used to perform value

replacements. Then, each statement is given a rank on the

basis of these IVMPs as per the number of failed executions

where at least one interesting value mapping pair is

identified for that statement. This statement ranking helps

identifying the location of fault.

Zhang et al. [21] studied that a fault within a statement

may spread a sequence of infected program states before the

failure is noticed. They also said that, a particular program

statement which is executed by a series of failed test cases

might not be the root cause of the failure. This can be

explained by an example, suppose that a statement T on a

branch B has the function of setting up a null pointer

variable. It is further assumed that this pointer variable will

not be used to execute any function, until a different distant

(in context of data or control dependence) statement T’ on a

branch B’ has been accessed, which will cause the program

failure. If T is exercised in many executions through various

test cases that do not reveal any failure, the statement T or

its directly related branches cannot be really identified as

suspicious. The coverage based techniques like Tarantula

will give higher suspiciousness rank to T’ than T, in case of

above explained scenario. If data flow analysis is employed

in this scenario then it will show the usage of null pointer

and help estimating the suspiciousness of T, T’, B and B’. It

is also important to note that data flow profiling is

expensive.

Zhang et al. [21] described the concept of edge profiles

which represent successful and failed executions. A given

program is abstracted as a CFG (control flow graph) and

sampled a program execution as an edge profile. These edge

profiles tell which edges of the CFG are traversed during the

execution and quantify changes in program states over an

edge according to the different test case executions of the

edge. This dissimilarity between edge profiles is used to

model how each basic block may cause failures by

abstractly spreading infected program states to its

neighboring basic blocks through control flow edges. In this

way, Zhang et al. measured suspiciousness of infected

program states propagated through each edge, related the

basic blocks with edges through such propagation of

infected program states, estimated suspiciousness value of

each basic block, and demonstrated a ranked list of program

statements which helped finally in identification of faults.

F. Machine Learning-Based Techniques

Machine learning based techniques can be applied to

identify or learn the location of fault on the basis of

statement coverage data as an input and result of execution

of test cases i.e. success or failure.

A fault localization technique was given by Wong and Qi

[22] which used back-propagation neural network. The

neural network is trained by the coverage data of test cases

and their equivalent execution results which help neural

network to understand the relationship between them. Then,

the trained neural network is inputted with test cased that

each covers only a single statement of the program and the

probability of the faulty statement is outputted. This back-

propagation neural network was also later extended for

object oriented programs by researchers.

The C4.5 decision tree algorithm classifies test cases into

different partitions so that failed test cases can be identified.

The basis is that the different failure conditions for test cases

can be identified based on the input and output of test cases.

This is called category partitioning. The failure conditions

which originate from different faults are represented by

different paths in the decision tree. These decision tree paths

represent rules that model different failure conditions that

ultimately give different failure probability predictions.

G. Data Mining-Based Techniques

Data mining techniques, which work on the similar lines

of machine learning, construct a model using relevant

information extracted from data. Data mining can be used in

fault localization for example we can identify the pattern of

execution of statements in a program that leads to a failure.

Due to the huge volume of data the complete execution

traces of a program cannot be analyzed manually, so data

mining techniques can be wisely applied to execution traces.

Statement sub-sequences of length N from trace data, is

known as N-grams. The N-grams occurring higher than a

pre specified limit are searched by examining the failed

execution traces. The confidence for a particular N-gram is

determined by computing the conditional probability that a

particular N-gram occurs in a given failed execution trace.

This N-gram analysis is used to rank suspicious statements

in a program by arranging the N-grams in descending order

of confidence along with the corresponding statements in

the program.

Fault localization based on association rule analysis was

discussed by Cellier et al. [23]. This method attempts to find

out rules concerning the association between coverage of

statements and corresponding execution failures. The

occurrence of this association rule is computed. A threshold

is chosen to specify that a selected rule is required to cover a

minimum number of failed executions. Faults are located by

examining the rankings of these generated rules.

H. Model-Based Techniques

In model based analysis of programs, models serve as

oracles of programs being under analysis. The behavior of

actual program and behaviors of models are compared in

order to find out bugs in the programs. Whereas, in model

based fault localization, models may contain bug when

generated directly from actual programs. The expected

results of programs provided by testing engineers or

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

programmers are compared with observed execution

behaviors and differences are used to identify components

of models due to which such misbehaviors are observed.

Static or dynamic analysis is performed to find

dependencies between statements in a program and thus

dependency based models are generated. A functional

dependency model was described by Mateis et al. [24]

which used dependency based models to explain the

structure of a program. Whereas, the logic based languages

such as first order logic was applied to model behavior of

the target program. They presented this functional

dependency model for JAVA programming language

features such as class, methods, assignment and conditional

statements, loop constructs etc. The unstructured control

flows in JAVA programs like recursive method calls, jump

and return statements, exceptions are handled by extended

dependency based models.

The dependence graph concept was also broadened to

model program behavior over a group of test cases. The

probabilistic program dependence graph was used to model

reasoning about uncertain program behaviors that are

possibly associated with program bugs.

According to Wotawa et al. [25], program structure and

behavior can be represented by dependency based models

constructed by first order logic after analyzing the source

code. The first order logic is also used to represent test cases

with their expected outputs. Now, the target program under

analysis is run with the test cases and if it fails then conflicts

with the models and test cases are used to detect doubtful

statements that cause the failure. The constraint on this

study is that it only focuses on programs which do not have

loop constructs. To deal with this limitation, Mayer and

Stumptner [26] worked on abstraction based model which

used abstract explanation to handle loops, heap data

structures and recursions.

Value based models are also used to locate bugs in

programs by representing data flow information in

programs. These models are appropriate for small programs

as they are more computationally intensive.

We now give an introduction to model checking based

methods for fault localization that use model checkers to

locate bugs [27].

If a program does not work as per its requirements, or

specifications a model checker can help by providing a

counterexample which is a run of the program from the start

of the program to the point where failure is noticeable. The

programmer can trace the program line by line using a

debugger to check the places in the counterexample to

visualize the data. But when a program with hundreds or

thousands line of code is to be debugged it very difficult and

tedious to locate the bugs.

Ball et al. [28] suggested that a model checker can be

used to investigate all the paths of a program apart from that

of the counter example. The execution paths that do not

cause a failure that means the successful paths are noted

down. Algorithms were used to identify the transitions that

are found in the execution path of the counter example but

not in the execution paths which executed successfully. The

possible causes of bugs are those components of the

program related to these transitions. This drawback of this

method is that it is very expensive to compute all successful

execution paths.

Program executions can be represented by variable

assignments. The distance between two program executions

can be measured by a distance metric defined by Groce et al.

[29]. A successful execution was produced which is closest

to counter example by a model checker. Now the difference

between successful execution and the counter example was

computed which provided the probable location of the bug

with an explanation.

IV. EVALUATION METRICS

We know that the bugs in programs may exist non-

contiguously and across the multiple modules so the

inspection of the suspicious code stops as soon as we find

the first bug. The focus of fault localization is to help

developers and coders to find the starting point of fault so

that the error fixing can be initiated rather than to locate the

each and every piece of code that needs to be added,

changed or deleted related to the each bug. Because of this

reason, we can measure the effectiveness of software fault

localization by computing the percentage of the code that

needs to be examined before locating the starting point of a

bug. Here by code we mean statements, predicates,

functions etc.

T-score as defined below in (11) computes the fraction or

percentage of code that we need to examine to reach to the

place of the fault [14]. We explain this measure as follows.

Assume a program dependence graph (G) is given for a

faulty program (P). The graph G consists of vertices which

represent program statements and the edges between them

represent data and/ or control dependencies. The statements

which contain faults are indicated by defect vertices, and

Vdefect denotes a set of defect vertices. A fault localization

report R, consists of a set of suspicious statements and they

are represented as Vblamed. A developer starts debugging

from Vblamed and performs breadth first search until he finds

any defect vertices. The set of statements traversed during

this search is written as Vexamined..

T =
|Vexamined|

|V|
∗ 100% (11)

Here, |V| is the magnitude of the PDG (program

dependence graph). Some authors use 1 - T as an equivalent

measure of T-Score. When a fault localization report is

provided, the T-score estimates the percentage of code that a

programmer requires to examine before the location of fault

is found. A small set of statements that contain location of

fault is considered to be high quality fault localization.

Jones and Harrold [5] used a different type of T-score to

present the localization results of Tarantula. Tarantula gives

a ranking of all executable statements and the T-score can

be calculated directly by examining this ranking. A

programmer can examine statements one by one from top of

the ranking until a faulty statement is found. The T-score

can be calculated as percentage of statements examined.

This method is called ranking based T-score as against the

PDG based T-score.

The EXAM score or Expense score [5], [22] given in (12)

is another measure for calculating the percentage of code

required to be checked before reaching the location of the

first faulty statement.

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

Exam Score =
Number of statements examined

Total number of statements in the program
 (12)

In [5], authors consider executable statements in place of

total count of statements. A technique explained by Liu et

al. [30] uses EXAM score to find percentage of predicates

(not statements) that need to be checked. The predicates are

arranged in descending order of their relevance to faults.

The P-score also uses the same method as given below in

(13).

P − Score =
1−base index of P in S

count of predicates in S
 X 100% (13)

Where S is the list of predicates arranged in a logical

order (sorted), P is predicate that is most relevant to a fault

and the 1-based index specifies the first predicate of S is

indexed by 1 (not 0).

We can observe that the lower the EXAM score, the fault

localization is more effective whereas, the lower the T-score

the technique is less helpful.

A variation of EXAM score called total developer

expense (D) is used to measure the total effort to locate

faults in a program which contains multiple faults. It is the

sum of the EXAM scores for all faults in a program.

Wilcoxon signed rank test [31] is another metric based on

statistical approach in which if we assume that there are two

techniques P and Q and P is more effective than Q. We

inspect an alternative hypothesis that Q requires inspecting

an equal or more number of statements than P in order to

find out the location of a bug. If the alternative hypothesis is

accepted with a certain confidence then it leads to ascertain

that whether P is statistically more helpful in finding out the

fault. Another metric that provides a global view is the total

count of statements that needs to be inspected to find out all

faults in a given situation.

According to recent user studies, developers tend to

investigate only the top 5 or top 10 elements in the

recommendation list provided by fault localization methods

before giving up the debugging process. The concept of

accuracy, as defined by Sohn and Yoo [32], can be used to

compare the efficiency of two fault localization approaches.

It counts the number of faults that have been localized

within the ranking's Top-N positions.

It is essential to understand that the effectiveness of

software fault localization techniques depend on other

factors also such as computational cost, time and space

complexity in terms of data collection, human efforts and

tool support. Besides that, human factors also need to be

considered such as debugging process of developers, how

cause-effect chains of failures are revealed by them, how

they work upon the solutions beyond a suspiciousness

ranking of program code. No study has been reported that

incorporates all these factors in an evaluation method.

V. EXPERIMENTAL STUDY

 In section III-C we presented two techniques that

improve the effectiveness of existing spectrum-based fault

localization techniques in single fault context. The first one

was based on failed execution slice and the second

technique utilizes the concept of fault context to improve the

absolute rank of faulty program entities. In this section we

present the experimental work conducted to validate the

effectiveness of the two techniques. We use standard

benchmark Siemens programs for experimental work. The

Siemens suite contains seven programs and each one has a

correct version and a set of faulty versions of the same

program.

A. Experimental Design

We have conducted two sets of experiments in support of

the two methods which improve the performance of SBFL

and were illustrated with the help of working examples in

section III-C. The first method uses the concept of failed

execution slice (FES) and the second method combines the

suspiciousness of program entity and suspiciousness of

program entity’s fault context to improve the absolute rank

of faulty entities in the program under test. The aims of the

experiments are to show the improvements in performance

of existing SBFL techniques using the two methods. We use

Ochiai SBFL metric to compute the suspiciousness

calculation because Ochiai is an efficient technique and has

been often referred in the fault localization literature [33],

[34]. The formula for the calculation of suspiciousness score

using Ochiai method is given in (2) of section III.

The experimental study is performed on standard

benchmark (Siemens suite)

[http://sir.unl.edu/portal/index.php]. It contains seven

programs: print_tokens, print_tokens2, replace, schedule,

schedule2, tcas and tot_info, each of which has a set of

faulty versions [35], [36]. The details of the subject

programs are given in Table VI.
TABLE VI

SUBJECT PROGRAMS USED IN EMPIRICAL STUDY
Program LOC Faulty

Versions

Test

Cases

Brief Description

print_tokens 565 7 4130 Lexical analyzer

print_tokens2 510 10 4115 Lexical analyzer

schedule 412 9 2650 Priority

scheduler

schedule2 307 10 2710 Priority
scheduler

tcas 173 41 1608 Altitude

separation

tot_info 406 23 1052 Information
measure

replace 562 32 5542 Pattern

recognition

Our experimentation work uses GCOV (GCC) 10.2.0

[https://gcc.gnu.org/onlinedocs/gcc/Gcov.html] on Linux

platform to collect the coverage data. We used different

faulty versions of subject programs in our experimentation

work. Table VII shows the details of the faulty versions used

in the experimentation work performed on two methods –

FES based and fault context based methods. We used 21

faulty versions of Siemens programs in our experimentation.

To compute the suspiciousness score and other results in our

experimentation work we developed an automated tool in

Python 3.7.3. All experiments were performed on Linux

environment running on top of Windows 10 machine with

Intel® Core i5 CPU 2.7 GHz and 8 GB of RAM.

TABLE VII
FAULTY SIEMENS VERSIONS USED IN EXPERIMENTATION

Program FES Fault Context

print_tokens V5 V5, V7

print_tokens2 V5 V5, V7

schedule V3 V2, V3

schedule2 V6 V5,V6

tcas V2 V2, V5

tot_info V5 V5,V9

replace V8 V3, V8

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

B. Evaluation Metrics

To evaluate the effectiveness of fault localization we use

three evaluation metrics, namely EXAM score, Top-N and

Wilcoxon signed-rank test.

i. EXAM score

As given in (12) of section IV, the EXAM score is

defined as the percentage of statements that need to be

examined in a program before reaching to the first faulty

statement. A lower expense score indicates a better

performance.

We evaluate the fault localization performance using

EXAM score metric with absolute and relative variants. The

absolute metric is defined as the number of statements that

need to be examined in a program before reaching to the

first faulty statement and relative EXAM score is defined as

the percentage of statements that need to be examined in a

program before reaching to the first faulty statement. So, the

relative version of EXAM score metric is compared to the

length of the rank list, which the program size.

The two approaches presented in section III C (FES based

and Fault Context based) improve the performance of

classical SBFL methods. These two approaches improve the

absolute rank of faulty program statement in the fault rank

list. Therefore, the effectiveness of these new approaches

can be measured in terms of improvement when we compare

it with the classic SBFL metric. The improvement formula

can be defined as.

Improvement (P, Q) =
𝑃−𝑄

𝑃
× 100% (14)

Where P is the absolute rank generated by the classic SBFL

method and Q is the absolute rank given by the new

approaches i.e. FES based and Fault Context based methods.

ii. Top-N

Top-N indicates the number of faults a fault localization

technique ranks among the top-N (N=1, 5 or 10 and so on)

positions in the ranked list. The metric would be stricter if

we have the smaller value of N. For example, Top-5 means

all faults are raked within top 5 positions in the ranked list.

Top-N is a frequently used metric in the fault localization

literature. In our study we use top-N metric to evaluate the

effectiveness of FES and fault context based methods in

comparison to traditional Ochiai method.

iii. Wilcoxon Signed-Rank Test

Wilcoxon signed-rank test is an alternative option to other

existing hypothesis tests such as z-test and paired student’s

t-test particularly when a normal distribution of a given

population sample cannot be assumed [37].

Wilcoxon signed-rank test is also utilized to give a

comparison with a concrete statistical basis between two or

more techniques in terms of effectiveness. In this paper our

aim is to experimentally show that the two fault localization

techniques i.e. FES based and Fault Context based are more

effective as compared to the traditional Ochiai method in

most of the cases. We compare the performance using the

EXAM score metric which computes the total number of

statements that a developer needs to check on all techniques

before identifying the first faulty statement. Therefore, an

evaluation will be conducted on the one-tailed alternative

hypothesis that the other technique (in our case Ochiai) used

for cross-comparison require the examination of an equal or

greater number of statements than the two techniques (FES

based and Fault Context based). The null hypothesis is

stated as follows:

H0. The number of statements examined by the traditional

Ochiai technique is less than or equal to the number of

statements examined by the FES based and Fault Context

based techniques.

Therefore, if H0 is rejected, the alternative hypothesis is

accepted. The alternative hypothesis implies that the both

FES based and Fault Context based techniques will require

the examination of lesser number of statements than the

traditional Ochiai technique which indicates that the FES

based and Fault Context based techniques are more

effective.

C. Results and Discussions

In this section, we present our detailed experimental

results on two approaches i. e. FES based and Fault Context

based methods described in section III C that improve the

performance of spectrum-based (lightweight) fault

localization.

As described in subsection C of section V we have used

three evaluation metrics (namely EXAM score, Top-N and

Wilcoxon signed-rank test) for the assessment of the

experimental results. We present the experimental results

based on EXAM score and Top-N metrics separately for the

FES based and Fault Context based methods in the

following two subsections. The evaluation based on

Wilcoxon signed-rank test is presented together for the two

methods in the end of the results and discussions section.

Experimental Results on FES based method

In this subsection we compare the effectiveness of FES

based method with classic Ochiai method. The experiments

were conducted on 7 faulty versions of Siemens programs as

shown in Table VII.

Table VIII shows the improvement in fault localization

performance using Failed Execution Slice (FES) based

method. First three columns of Table VIII show the Siemens

program name, faulty version and line of code (LOC)

respectively. The performance of fault localization using

classic SBFL method (Ochiai metric in our study) is shown

in columns 4 and 5, where column 4 shows the EXAM score

in terms of the absolute measure and column 5 shows the

EXAM score in terms of relative measure. Similarly, the

performance of fault localization using FES based method is

shown in columns 6 and 7 respectively.

We take an example of print_tokens program to compare

the effectiveness of FES based method against the classical

SBFL method (i. e. Ochiai). It can be observed that it takes 9

searches to reach to the faulty statement, whereas FES

method requires only 7 searches to locate the fault. If we

analyze in terms of relative expense score, we can see that

with FES based method we need to examine 1.24% of

statements (of total LOC of print_tokens program) as

against 1.59% statements when we use classical SBFL

method. Therefore, we can say there is an improvement of

22.22% when using FES based method as against classical

SBFL method. In other words, developer’s effort has been

reduced by 22.22% as shown in column 10 of Table VIII.

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

The last row of Table VIII summarizes the overall fault

localization performance with the corresponding average

values of each column. We can see there is an overall

improvement of 27.05% in fault localization performance

when FES based method is used.

The comparison of fault localization performance

between traditional Ochiai and FES based methods is also

shown graphically in Fig. 3. The vertical axis represents the

EXAM scores, which means the percentage of code need to

be searched before locating the faulty statement.

Table-IX shows results comparing fault localization

performance between traditional Ochiai and FES based

methods in terms of Top-N metric. It can be observed that,

with the Ochai method we are unable to locate any faults

among Top-1 and Top-5 positions, but we can find 28.57%

of faults (i. e. 2 out of total 7 faults) by examining the Top-

10 positions (i. e. statements) in the suspiciousness ranking

list. In contrast, if we see the results with FES based

method, we are able to locate 14.29% of faults among the

Top-5 positions and 42.86% of faults (i. e. 3 out of total 7

faults) can be located by examining the Top-10 positions in

the suspiciousness ranking list. Therefore, the results show

that the FES based method is giving better fault localization

performance as compared to the traditional Ochiai method.

TABLE VIII
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FES BASED METHOD

Subject

Program

Version LOC Code Examined Difference Improvement %

Using Classic
Ochiai

Method

EXAM
Score %

Using FES
Method

EXAM
Score %

Code
Examined

EXAM
Score %

print_tokens V7 565 9 1.59 7 1.24 -2.00 -0.35 22.22

print_tokens2 V5 510 32 6.27 25 4.90 -7.00 -1.37 21.88

schedule V3 412 28 6.80 27 6.55 -1.00 -0.24 03.57

schedule2 V6 307 23 7.49 11 3.58 -12.00 -3.91 52.17

tcas V2 173 11 6.36 10 5.78 -1.00 -0.58 09.09

tot_info V5 406 6 1.48 4 0.99 -2.00 -0.49 33.33

replace V8 562 17 3.02 9 1.60 -8.00 -1.42 47.06

Average 18.00 4.72 13.29 3.52 -4.71 -1.20 27.05

Fig. 3. Comparison of Fault Localization Performance between classic Ochiai and FES based method in terms of EXAM score

1.59

6.27
6.80

7.49

6.36

1.48

3.02

1.24

4.90

6.55

3.58

5.78

0.99
1.60

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

print_tokens print_tokens2 schedule schedule2 tcas tot_info replace

EXAM Score % (Classic Ochiai) EXAM Score % (FES)

TABLE IX
Percentage of faults successfully located at each Top-N metric by

Ochiai and FES based method

Technique Top-1 Top-5 Top-10

Traditional Ochiai 0 0 28.57

FES based method 0 14.29 42.86

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

The fault localization results using Top-N metric shown

in Table-IX can also be explained in other words with the

help of Table-VIII. In case of tot_info and print_tokens

subject programs, we need to examine 6 and 9 statements

(see column 4) respectively in order to locate the faults. That

means the faults can be located by examining Top-10

statements in the suspiciousness rank list when we use

traditional Ochiai method.

Whereas, when we use FES based method, we need to check

4 statements (see column 6) in case of tot_info program to

locate the fault, which means we are checking Top-5

statements in the ranking list. Similarly, in case of

print_tokens, replace and tcas subject programs we need to

check 7, 9 and 10 statements respectively to identify the

faulty statements, which means we are examining Top-10

statements in the ranking list to locate the faults. For the

remaining 3 subject programs (i. e. schedule2, print_tokens2

and schedule) we need to examine more than 10 statements

to locate the faults as shown in Table-VIII. This can be

termed as Top-all.

Experimental Results on Fault Context based method

In this subsection we compare the effectiveness of fault

context based method with classic Ochiai method. We have

conducted two sets of experiments on 14 faulty versions of

Siemens programs as shown in Table VII.

Table X and Table XI show improvements in fault

localization performance achieved by Fault Context based

method as against classic Ochiai method on different faulty

versions of Siemens programs.

TABLE X
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FAULT CONTEXT BASED METHOD (SET-1)

Subject

Program

Version LOC Code Examined Difference Improvement

% Using Classic

Ochiai
Method

EXAM

Score %

Using Fault

Context
Method

EXAM

Score %

Code

Examined

EXAM

Score %

print_tokens V5 565 17 3.01 15 2.65 -2.00 -0.35 11.76

print_tokens2 V5 510 13 2.55 9 1.76 -4.00 -0.78 30.77

schedule V2 412 50 12.14 15 3.64 -35.00 -8.50 70.00

schedule2 V5 307 10 3.26 6 1.95 -4.00 -1.30 40.00

tcas V2 173 5 2.89 4 2.31 -1.00 -0.58 20.00

tot_info V5 406 6 1.48 4 0.99 -2.00 -0.49 33.33

replace V3 562 51 9.07 14 2.49 -37.00 -6.58 72.55

Average 21.71 4.91 9.57 2.26 -12.14 -2.66 39.77

TABLE XI
IMPROVEMENT IN FAULT LOCALIZATION PERFORMANCE WITH FAULT CONTEXT BASED METHOD (SET-2)

Subject

Program

Version LOC Code Examined Difference Improvement

% Using Classic

Ochiai Method

EXAM

Score %

Using Fault

Context

Method

EXAM

Score %

Code

Examined

EXAM

Score %

print_tokens V7 565 9 1.59 7 1.24 -2.00 -0.35 22.22

print_tokens2 V7 510 14 2.75 9 1.76 -5.00 -0.98 35.71

schedule V3 412 24 5.83 23 5.58 -1.00 -0.24 4.17

schedule2 V6 307 23 7.49 11 3.58 -12.00 -3.91 52.17

tcas V5 173 20 11.56 5 2.89 -15.00 -8.67 75.00

tot_info V9 406 15 3.69 8 1.97 -7.00 -1.72 46.67

replace V8 562 45 8.01 33 5.87 -12.00 -2.14 26.67

Average 21.43 5.85 13.71 3.27 -7.71 -2.57 37.52

Fig. 4. Comparison of Fault Localization Performance between classic Ochiai and Fault Context based methods in terms of EXAM score (Set-1)

3.01 2.55

12.14

3.26 2.89

1.48

9.07

2.65
1.76

3.64

1.95 2.31

0.99

2.49

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

print_tokens print_tokens2 schedule schedule2 tcas tot_info replace

EXAM Score % (Classic Ochiai) EXAM Score % (Fault Context method)

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

The columns 4 and 5 show the fault localization

performance in terms of absolute rank and EXAM score

percentage when we use classic Ochiai method. Similarly,

the columns 6 and 7 show the performance with respect to

Fault Context method. The column 10 shows the

improvement achieved by Fault Context methods in

comparison to classic Ochiai method. For example, in case

of print_tokens program in Table X we need to go through

17 statements to locate the actual faulty statement and with

fault context method we need to search only 15 statements

to locate the fault. Therefore, we observe an improvement of

11.76%. This means developer needs to search 11.76% less

statements in order to reach to the faulty statement.

In the same way when we observe print_tokens program of

Table XI, there is an improvement of 22.22% in fault

localization performance when we use fault context method

as compared to the classic Ochiai method.

The average improvement is shown in the last row of

Table X and Table XI. We observe an average improvement

of 39.77% in the first set of experimental results (Set-1)

shown in Table X, and in case of second set of experimental

results (Set-2) shown in Table XI has an average

improvement of 37.52%. We see a significant improvement

in fault localization performance when fault context method

is used as against the classic Ochiai method.

Therefore, it can be concluded that both FES based and fault

context based methods further improves the fault

localization performance.

For better readability, the comparisons of fault

localization performance between traditional Ochiai and

fault context based method are also shown graphically in

Fig. 4 and Fig. 5 for the two sets of experiments

respectively. Both sets of experiments have been carried out

in same experimental settings but with different faulty

versions of Siemens programs.

Now we compare the fault localization performance

between Ochiai and fault context based method in terms of

Top-N metric.

Table-XII provides a comparison of fault localization

results between Ochiai and fault context based methods

using Top-N metric. When we use traditional Ochiai

method, we are unable to find any fault in the top-1 position,

but 7.14% (1 out of total 14 faults) of faults and 21.43% of

faults (i. e. 3 out of total 14 faults) can be found among Top-

5 and Top-10 positions respectively. However, the fault

context based method is also unable to locate the fault at

Top-1 position, but it can locate 21.43% of faults (3 out of

total 14 faults) and 35.71% of faults (i. e. 5 out of total 14

faults) among Top-5 and Top-10 positions respectively.

Based on the results shown in Table-XII, it can be clearly

observed that the fault context based method provides better

fault localization performance over traditional Ochiai

method.

To make the experimental conclusions more substantial,

we now present the evaluation approach with respect to

Wilcoxon signed-rank test. The Wilcoxon signed-rank test

provides a reliable statistical basis for comparing the

effectiveness of different techniques and has been widely

used in earlier fault localization studies.

TABLE XII
Percentage of faults successfully located at each Top-N metric by Ochiai

and Fault Context based method

Technique Top-1 Top-5 Top-10

Traditional Ochiai 0 7.14 21.43

Fault Context based

method
0 21.43 35.71

TABLE XIII

The confidence with which it can be asserted that a FES-based

approach is more effective than Ochiai

 Subject programs of Table-VIII

Ochiai 99%

TABLE XIV

The confidence with which it can be asserted that a Fault Context

based approach is more effective than Ochiai

Subject programs of

Table-X

Subject programs of

Table-XI

Ochiai 99% 99%

Fig. 5. Comparison of Fault Localization Performance between classic Ochiai and Fault Context based methods in terms of EXAM score (Set-2)

1.59

2.75

5.83

7.49

11.56

3.69

8.01

1.24
1.76

5.58

3.58
2.89

1.97

5.87

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

print_tokens print_tokens2 schedule schedule2 tcas tot_info replace

EXAM Score % (Classic Ochiai) EXAM Score % (Fault Context method)

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

Table XIII and Table XIV show the effectiveness

comparison of FES based and Fault Context based methods

respectively, as against the traditional Ochiai method using

the Wilcoxon signed-rank test. The tables give the

confidence of which the alternative hypothesis can be

accepted (that the two approaches FES and Fault Context

based methods require the examination of fewer statements

than the compared baseline approach that is Ochiai). One

can observe that with 99% confidence (with a significance

level of 0.01), FES and Fault Context based methods are

more efficient than the traditional Ochiai method on all

faulty versions. In other words, we find that the EXAM

scores of FES and Fault Context based methods are

statistically better than that of the traditional Ochiai method.

Therefore, the results from the Wilcoxon signed-rank test

evidently show that the FES based and Fault Context based

methods are more effective than the classic Ochiai on

Siemens programs, and can further improve the performance

of existing SBFL methods such as Ochiai. The results are

also consistent with our previous conclusion that the two

methods perform better than the compared technique Ochiai

in terms of the Exam score measure.

VI. CONCLUSION

The need of more advanced techniques for software fault

localization requires more time and resources as software

systems are turn out to be more convoluted and larger in

scale. It is necessary that software engineers and system

analysts involved in software development possess a good

understanding of currently available techniques of fault

identification and should have familiarity with the emerging

trends in this important area. This paper attempts to review

traditional and some recent works on software fault

localization which will help researchers and software

developers to better understand the developments in the area

of software fault localization.

In this paper, we have emphasized on spectrum-based or

lightweight fault localization because of its popularity in the

field of software fault localization. We have explained with

the help of a simple working example the process of

spectrum-based fault localization by using the classic SBFL

techniques like Tarantula and Ochiai.

Considering the ongoing developments in the field of

SBFL we have illustrated two techniques which further

improve the effectiveness of traditional SBFL methods in

single fault context. The first technique makes use of failed

execution slices to improve the fault detection efficiency of

existing classic SBFL methods. The second technique works

on the concept of suspiciousness of program entity and the

suspiciousness of its fault context. The fault context of a

program entity can be defined as the set of other program

entities that were executed in the same failed execution apart

from that program entity itself. This technique combines the

suspiciousness of a program entity and the suspiciousness of

its fault context to generate the final suspiciousness score

which results in improved absolute rank of a faulty program

entity.

This paper also includes a brief review on some standard

metrics that are used to measure the effectiveness of fault

localization techniques. The metrics mainly measure the

effectiveness of fault localization technique in terms of how

much code the developer needs to examine before locating

the first faulty program entity such as a statement. The

metrics discussed mainly include T-Score, the EXAM/

Expense score, P-Score, Top-N and Wilcoxon signed rank

test.

The two approaches which are based on the concepts of

Failed Execution Slice and Fault Contexts are evaluated

experimentally on standard benchmarks Siemens programs

to compare their effectiveness against the classic Ochiai

method. Overall, the experiment results show that the two

approaches further improve the performance of existing

SBFL techniques significantly.

We believe that this paper will provide the software

engineering community a wide ranging idea of the key

issues pertaining to the demanding field of software fault

localization and will also suggest new ideas for future

research. For future work, our study will be extended to

further improve the performance of existing SBFL

techniques by investigating the impact of test suites on fault

localization.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu & F. Wotawa, “A Survey on

Software Fault Localization”, IEEE Transactions on Software

Engineering, 42(8), 707–740, 2016.
[2] J. Krinke, Slicing, Chopping, and Path Conditions with

Barriers. Software Quality Journal, 12(4), 339–360, 2004.

[3] J. S. Collofello & L. Cousins, “Towards automatic software fault
localization through decision-to-decision path analysis,” in Proc. Nat.

Comput. Conf., pp. 539–544, June 1987.

[4] M. Renieris & S. P. Reiss “Fault localization with nearest neighbour
queries” in Proc. Int. Conf. Autom. Softw. Eng., Montreal, QC,

Canada, pp. 30–39, 2003.

[5] J. A. Jones & M. J. Harrold “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. Int. Conf. Autom.

Softw. Eng., Long Beach, CA, USA, pp. 273–282, Nov. 2005.

[6] L. Naish, H. J. Lee & K. Ramamohanarao, “A model for spectra-
based software diagnosis”, ACM Transactions on Software

Engineering and Methodology, 20(3), 1–32, 2011.

[7] H. Ribeiro, P. Roberto de Araujo, M. Chaim, H. Souza and F. Kon,
"Evaluating data-flow coverage in spectrum-based fault localization,"

in 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Porto de Galinhas, Recife,
Brazil, pp. 1-11, 2019.

[8] W. E. Wong, & Y. Qi, “Effective program debugging based on

execution slices and inter-block data dependency”, Journal of Systems
and Software, 79(7), 891–903, (2006).

[9] X. Xu, V. Debroy, W. Eric Wong & D. Guo, “TIES WITHIN FAULT

LOCALIZATION RANKINGS: EXPOSING AND ADDRESSING
THE PROBLEM”, International Journal of Software Engineering and

Knowledge Engineering, 21(06), 803–827, (2011).

[10] L. Zhao, L. Wang & X. Yin, “Context-Aware Fault Localization via
Control Flow Analysis”, Journal of Software, 6(10), 2011.

[11] T. Shu, L. Wang and J. Xia, "Fault Localization Using a Failed

Execution Slice," 2017 International Conference on Software

Analysis, Testing and Evolution (SATE), Harbin, pp. 37-44, 2017.

[12] C. Parnin and A. Orso, “Are automated debugging techniques actually

helping programmers?,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis - ISSTA ’11, 2011.

[13] Yong WANG, Zhiqiu HUANG, Yong LI & Bingwu FANG,

“Lightweight fault localization combined with fault context to
improve fault absolute rank” Sci. China Inf. Sci., vol. 60, no. 9, 2017.

[14] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, & S. P. Midkiff,

“Statistical Debugging: A Hypothesis Testing-Based
Approach”, IEEE Transactions on Software Engineering, 32(10),

831–848, 2006.

[15] W. E. Wong, V. Debroy, & D. Xu, “Towards Better Fault
Localization: A Crosstab-Based Statistical Approach”, IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 42(3), 378–396, 2012.
[16] Zunwen You, Zengchang Qin and Zheng Zheng, "Statistical fault

localization using execution sequence" 2012 International Conference
on Machine Learning and Cybernetics, Xian, pp. 899-905, 2012.

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

[17] A. Zeller & R. Hildebrandt, “Simplifying and isolating failure-

inducing input”, IEEE Transactions on Software Engineering, 28(2),
183–200, 2002.

[18] H. Cleve and A. Zeller, "Locating causes of program failures,"

Proceedings. 27th International Conference on Software Engineering,
ICSE 2005., Saint Louis, MO, USA, 2005, pp. 342-351, 2005.

[19] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code

using failure-inducing chops” in Proc. Int. Conf. Autom. Softw. Eng.,
Long Beach, CA, USA, pp. 263–272, Nov. 2005.

[20] D. Jeffrey, N. Gupta and R. Gupta, “Fault localization using value

replacement,” in Proc. Int. Symp. Softw. Testing Anal., Seattle, WA,
USA, pp. 167–178, Jul. 2008.

[21] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang and X. Wang, “Capturing

propagation of infected program states,” in Proc. 7th Joint Meeting
Eur. Softw. Eng. Conf. ACM SIGSOFT Int. Symp. Found. Softw.

Eng., New York, NY, USA, pp. 43–52, 2009.

[22] W. E. Wong & Y. Qi “BP NEURAL NETWORK-BASED
EFFECTIVE FAULT LOCALIZATION”, International Journal of

Software Engineering and Knowledge Engineering, 19(04), 573–597,

2009.
[23] P. Cellier, M. Ducasse, S. Ferre, & O. Ridoux “Formal concept

analysis enhances fault localization in software,” in Proc. Int. Conf.

Formal Concept Anal., Montreal, QC, Canada, pp. 273–288, Feb.

2008.

[24] C. Mateis, M. Stumptner, and F. Wotawa, “Modeling Java programs

for diagnosis,” in Proc. Eur. Conf. Artif. Intell., Berlin, Germany, pp.
171–175, 2000.

[25] F. Wotawa, M. Stumptner, and W. Mayer, “Model-based debugging
or how to diagnose programs automatically” in Proc. Int. Conf. Ind.

Eng., Appl. Artif. Intell. Expert Syst., Cairns, Qld., Australia, pp.

746–757, 2002.
[26] W. Mayer and M. Stumptner, “Approximate modeling for debugging

of program loops” in Proc. Int. Workshop Principles Diagnosis,

Carcassonne, France, pp. 87–92, 2004.
[27] A. Griesmayer, S. Staber, & R. Bloem, Fault localization using a

model checker. Software Testing, Verification and Reliability, 20(2),

149–173, 2009.
[28] T. Ball, M. Naik, & S. K. Rajamani From symptom to cause. ACM

SIGPLAN Notices, 38(1), 97–105, 2003.

[29] A. Groce, “Error explanation and fault localization with distance
metrics” Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA,

USA, 2005.

[30] Liu & J. Han, “Failure proximity”, Proceedings of the 14th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering - SIGSOFT ’06/FSE-14, 2006.

[31] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault
localization using DStar (D*)” in Proceedings of 6th International

Conference of Software Security Rel., Washington, D.C., USA, pp.

21–30, 2012.
[32] J. Sohn and S. Yoo, “FLUCCS: Using code and change metrics to

improve fault localization,” in Proceedings of the 26th ACM

SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2017. ACM, 2017, pp. 273–283.

[33] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A

practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009.

[34] Cherry Oo, and Hnin Min Oo, "Automatic Program Repair of Java

Single Bugs using Two-level Mutation Operators," IAENG
International Journal of Computer Science, vol. 47, no.2, pp223-233,

2020.

[35] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its

potential impact,” Empir. Softw. Eng., vol. 10, no. 4, pp. 405–435,

2005.
[36] A. Zakari, S. P. Lee, K. A. Alam, and R. Ahmad, “Software fault

localisation: a systematic mapping study,” IET Softw., vol. 13, no. 1,

pp. 60–74, 2019.
[37] A. Zakari, S. P. Lee, and I. A. T. Hashem, “A single fault localization

technique based on failed test input,” Array, vol. 3–4, no. 100008, p.

100008, 2019.

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_03

Volume 49, Issue 2: June 2022

__

