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Abstract—Edge-Cloud Cooperative Computing (E3C) is an
efficient way to address the resource scarcity issue of mobile
devices by edge servers with low network delays and the
cloud with abundant computing resources. To improve the
user satisfaction which directly affects the profit and the
reputation of service providers, we focus on the task offloading
problem for E3C in this paper. We design an integer genetic
algorithm incorporating earliest deadline first (EDF) to map
each chromosome as a task offloading solution. Our method
uses each gene of a chromosome to represent the computing core
that the corresponding task assigned to, and decides the task
execution order by EDF in each computing core. Experiment
results show that our method achieves better accepted ratio
and resource efficiency than several offloading methods based
on heuristics, the particle swarm optimization, and the binary
genetic algorithm.

Index Terms—edge cloud, genetic algorithm, task offloading,
task scheduling

I. INTRODUCTION

Nowadays, mobile devices and applications are all around
us. But most of the time, a mobile device cannot satisfy
the requirements of its user. This is mainly because the
device has limited capabilities of resources and energy. By
exploiting the cloud resources for extending the capability
of devices, Mobile Cloud Computing (MCC) can address
this issue [1], [2]. While, the cloud computing has a poor
network connection with devices. This can result in that the
demands of network delay-sensitive applications cannot be
met. To address this problem, edge computing is exploited
to reduce the network distance between devices and clouds,
by placing some edge servers close to user devices [3]. By
combining both advantages of MCC and edge computing, the
Edge-Cloud Cooperative Computing (E3C) is a promising
way to satisfy various requirements of Quality of Service
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(QoS) in both the computation delay and the network latency
for mobile users.

For a service provider, how to improve the user satisfaction
with high resource efficiency is a problem that must be
solved. This is because the user satisfaction and the resource
efficiency affect the provider’s service cost and reputation
[4], [5]. Task offloading is one of the most efficient way to
address the problem. Task offloading decides which location,
which computing node, and what order for task processing.
These three sub-decision problems are respectively named
as offloading decision, task assignment, and task ordering
[3]. Most of existing works only concerned one or two of
these decision problems. Some works didn’t concern the
offloading decision problem. They ignore the capacity of
device resources even though user devices have comparable
resources to personal computer nowadays [6]. Some other
works left the offloading decision making to users. These
works suppose users have expertise in the offloading de-
cision. Thus, we study on the task offloading for jointly
solving the three sub-decision problems to improve the user
satisfaction and the resource efficiency for providing services
by E3C.

Unfortunately, the task offloading problem is strongly
NP-hard [7]. This means there is no applicable method to
solve the problem precisely. Thus, to solve this problem in
polynomial time complexity, two kinds of methods, heuristics
[8] and meta-heuristics [9], are exploited by existing works.
A heuristic method is exploiting a local search strategy for a
specific problem to provide a local optimal solution. Heuris-
tics usually take little time. Meta-heuristics use some random
methods and generalized local search or global search strate-
gies. In general, meta-heuristic methods cost much more
computation time but can provide a better performance,
compared with heuristic methods. Thus, in this paper, we
combine the benefits of both heuristics and meta-heuristics
to design a hybrid method for addressing the task offloading
problem in E3C. To be specific, we exploit the genetic
algorithm (GA) [10] to address the offloading decision and
the task assignment sub-problems, and apply the earliest
deadline first (EDF) to solve the task ordering sub-problem.
This is because GA is one of the most representative meta-
heuristics, and usually has a good performance. EDF is a
heuristic method specially designed for scheduling deadline-
constrained tasks. In addition, GA can be implemented easily,
and has been used for solving optimization problems in
various fields [11]–[16].

In this paper, we concern the task offloading for E3C
environments with deadline constraints, with the exploita-
tion of computing resources in local devices. We aim at

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_25

Volume 49, Issue 2: June 2022

 
______________________________________________________________________________________ 



optimizing the user satisfaction and the resource efficiency.
In this paper, we use the number of completed tasks and
the resource utilization for quantifying the user satisfaction
and the resource efficiency, respectively. Our method is also
applicable for other metrics. To address the problem in
reasonable time, we propose a hybrid heuristic method by
integrating EDF into GA. The proposed method exploits the
global search ability of GA with integer coding to decide the
assignment of tasks to computing cores. In the implemen-
tation of GA, a chromosome represents a solution of joint
offloading decision and task assignment sub-problems. There
is a one-to-one correspondence between tasks and genes
of each chromosome. The value of a gene represents the
core where the corresponding task is assigned. For the sub-
problem of task ordering, the proposed method applies EDF
for each computing core. To evaluate the proposed method,
we conduct extensive simulated experiments. Experiment
results show that our proposed method achieves 20.7%–
21.2x better user satisfaction and 3.1%–120% better resource
efficiency than several existing heuristics and meta-heuristics.

In the following, we present the formulation of the task
offloading problem and our hybrid heuristic method respec-
tively in section II and section III. We illustrate the simulated
experiment environment and analysis experiment results in
section IV. We illustrate related works in section V. In
section VI, we conclude our work.

II. PROBLEM STATEMENT

We consider a E3C system, as shown in Fig. 1. The
system consists of multiple user devices, several edge com-
puting centres (edge for short), and one cloud. Each edge
is equipped with one or more servers (ES). The cloud
provides several types of cloud servers (CS). For each user,
its request tasks can be processed locally if its device has
enough resources. Otherwise, some tasks can be offloaded
to ESs or CSs for their executions. In general, each device
has a wireless network connection with an edge. Each ES
processes tasks offloaded by user devices that have network
connections with the ES. When there is no available re-
sources in the local device or ESs for some tasks, these tasks
will be offloaded to CSs that is rented in the cloud.

In the considered E3C system, there are M user devices,
E ESs, and C CSs. Without loss of generality, we use
si, 1 ≤ i ≤ M + E + C to respectively represent these
devices/servers. When 1 ≤ i ≤ M , si represents ith device.
If M + 1 ≤ i ≤ M + E, si is (i − M )th ES. When
M +E +1 ≤ i ≤M +E +C, si represents (i−M −E)th
CS. For si, there are ni computing core, and each core
has gi computing capacity. We use binary constants zil,
1 ≤ i, l ≤ M + E + C to represent the network topology
of the system. The value of zil is the bandwidth between si
and sl. if there is no network connection between si and sl,
zil = 0. In addition, zii =∞, which means there is no data
transmission delay within a device/server.

There are T tasks (denoted by tj , 1 ≤ j ≤ T ) needed
to be processed by the system. We use binary constants oij ,
1 ≤ i ≤M , 1 ≤ j ≤ T to identify the ownership relationship
between tasks and devices. If tj is launched by si, oij = 1,
and otherwise oij = 0. We use dj to represent the deadline
of tj , which means tj must be finished before dj for the
user satisfaction. Without loss of generality, we assume d1 ≤

User Devices

Edge Servers

Cloud Servers ...

...

Fig. 1. The edge-cloud cooperative computing (E3C) environment.

d2 ≤ . . . ≤ dT . We concern hard deadline tasks in this paper,
i.e., a task is accepted only when its deadline constraint is
met. We denote the amounts of the input data and the output
data as inj and outj for tj , respectively. We represent the
amount of computing resource required by tj as comj . Then
the processing time (ptij) of tj when it is assigned to one
core of si can be calculated by Eq. (1)-(4). Where ctij is
the computing time.

∑M
l=1 oljzli is the network bandwidth

between si and the device that launches tj . itij and otij are
the data transmission delays of the input data and the output
data.

ptij = itij + ctij + otij (1)

itij =
ini∑M

l=1 oljzli
(2)

ctij =
comj

gi
(3)

otij =
outi∑M

l=1 oljzli
(4)

To formulate the task offloading problem, we express the
solution by the binary variables defined as Eq. (5), where
xijk represents whether tj is assigned to kth computing core
of si for the task processing.

xi,j,k =

{
1, if tj is assigned to kth core of si
0, else ,

1 ≤ i ≤M + E + C, 1 ≤ j ≤ T, 1 ≤ k ≤ nj (5)

Then the number of tasks that are assigned to a core for
processing in the system, i.e., the number of accepted tasks,
is N =

∑T
j=1

∑M+E+C
i=1

∑nj

k=1 xi,j,k.
For tasks assigned to a computing core, with deadline

constraints, they can be finished only when each of them can
be finished in the increasing order of deadline [17]. Then for
all tasks assigned to a core, we can derive their finish time,
on the basis of the earliest-deadline-first execution sequence.
In this paper, we assume the bottleneck resource is either
the computing or the input network bandwidth for tasks’
processing. This is because the amount of the output data
is usually much less than that of the input data in the real
world.

In a computing core, the computing of a task can be
started only when the transfer of its input data is completed
and the core is available to the task. When tj assigned to
kth core of si, The earliest finish time of transferring its
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input data is
∑j

m=1 xi,m,k ·iti,m. Where
∑j−1

m=1 xi,m,k ·iti,m
is transfer time exhausted by tasks with earlier deadline.
The earliest available time of a computing core for a task
is the completion time of the computing of tasks with
earlier deadline. Hence, for tj assigned to kth core of
si, the earliest available time of computing resources is
max1≤m<j{xi,m,k ·(ftm−oti,m)}. Where ftm is tm’s finish
time, and therefore, ftm−oti,m is the computing completion
time of tm. Then the earliest start time of tj’s computing
when it is assigned to kth core of si is max{

∑j
m=1 xi,m,k ·

iti,m,max1≤m<j{xi,m,k · (ftm − oti,m)}}. Thus its finish
time ftj can be calculated by Eq. (6).

ftj =
M+E+C∑

i=1

nj∑
k=1

xi,j,k · (max{
j∑

m=1

xi,m,k · iti,m,

max
1≤m<j

{xi,m,k · (ftm − oti,m)}}+ ctij + otij),

1 ≤ j ≤ T (6)

For each computing node (device or server), the occu-
pied time is the latest time of finishing tasks processed in
the node, i.e., max1≤k≤ni

max1≤j≤T {xi,j,k · ftj}. So the
accumulated amount of occupied computing resources is∑M+E+C

i=1 (ni ·max1≤k≤ni
max1≤j≤T {xi,j,k · ftj}). While

the effective computing resources for task processing is
the computing resources consumed by accepted tasks, i.e.,∑T

j=1

∑M+E+C
i=1

∑nj

k=1(xi,j,k ·comj). Therefore, the overall
CPU utilization of the E3C system, U , can be calculated by
Eq. (7).

U =

∑T
j=1

∑M+E+C
i=1

∑nj

k=1(xi,j,k · comj)∑M+E+C
i=1 (ni ·max1≤k≤ni

max1≤j≤T {xi,j,k · ftj})
(7)

Based on the above formulating, we can model the task
offloading problem as the following optimization problem.

Maximizing N + U (8)

Subject to:

(2)− (7) (9)
ftj ≤ dj (10)
xi,j,k ∈ {0, 1},
1 ≤ i ≤M + E + C, 1 ≤ j ≤ T, 1 ≤ k ≤ nj (11)

In this optimization problem, the decision variables in-
clude xi,j,k ∈ {0, 1}, 1 ≤ i ≤ M + E + C, 1 ≤ j ≤
T, 1 ≤ k ≤ nj . And there are two objectives, maximizing
the number of accepted tasks and the overall computing
utilization, as shown in Eq. (8). The utilization is no more
than 1, thus, the number of accepted tasks is the major
optimization objective. Constraints (9) is calculating the
objective values and the finish time of each task. Constraints
(10) restricts deadlines of accepted tasks. Constraints (11)
represent the binary requirements for the decision variables.
There are some solvers, e.g., lp solve [18], can be applied
for solving the problem. But these solvers are exponential
computational complexity at worst, and thus are not suitable
to large scale systems. Thus, in the next section, we design
a hybrid method by combining GA and EDF to provide the
solution for the task offloading problem.

III. HYBRID HEURISTIC TASK OFFLOADING METHOD

In this section, we exploit the global search ability of GA
and the heuristic search of EDF to provide a task offloading
solution for E3C systems. Our hybrid GA method is outlined
in Algorithm 1.

As shown in Algorithm 1, our method first initializes chro-
mosomes with randomly generated genes. A chromosome is
representing an assignment solution of tasks to computing
cores in the E3C. We exploit an integer encoding method
to encode an assignment solution into a chromosome. In
each chromosome, genes have a one-to-one corresponding
relationship with tasks, and denote the computing cores
where tasks are assigned.

Algorithm 1 The hybrid heuristic task offloading method
Input: The information of tasks and resources of the E3C system;
Output: The task offloading solution with optimized accepted

ratio and resource efficiency;
1: initializing chromosomes randomly;
2: while the terminal condition is not satisfied do
3: calculating the fitness value for each chromosome using

Algorithm 2;
4: updating the best fitness fitnessbest and the corresponding

chromosome chbest;
5: crossing chromosomes using single point crossover with a

certain probability;
6: mutating chromosomes using uniform mutation with a certain

probability;
7: selecting chromosomes by tournament selection;
8: end while
9: return the solution decoded from chbest based on Algorithm

2;

As exampled in Fig. 2, there are 2 user devices, one ES,
and one CS with one core in an E3C environment. Each
device or the ES has 2 cores. dcij is jth core of ith device. eci
is ith core of ES. vci represents the CS core. Three tasks are
launched by a device. Tasks launched by the first device are
t1, t2, t3, respectively. Tasks launched by the second device
are represented by t4, t5, t6, respectively. In such situation,
five candidate cores can be used for processing each task,
i.e., two device cores, two ES cores and the CS core. These
candidate cores are respectively numbered as 1–5 for each
task. Then, the chromosome (2, 3, 2, 1, 4, 5) is representing
that t1 and t3 will be processed in the second local core, t4
is assigned to the first local core, t2 and t5 are respectively
offloaded to the first and the second ES cores, and t6 is
offloaded to the ES.

Computing Cores:

Tasks:

Genes: 2 3 2 1 4 5

t4 t5 t6t1 t2 t3

D
ec

od
in

g

dc21 ec2 vc1dc12 ec1 dc12

En
co

di
ng

Fig. 2. An example of the integer encoding method.

Then, our method calculates the fitness value for each
chromosome to evaluate the performance of the correspond-
ing task offloading solution. As we focus on optimizing the
user satisfaction and the resource efficiency in this paper, we
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define the fitness (fitness) of a chromosome as the number
of accepted tasks (N ) plus the overall resource utilization
(U ) adopting the corresponding offloading solution, i.e.,

fitness = N + U (12)

Where N can be achieved in the procedure of decoding the
chromosome into the offloading solution, as shown in line
4 in Algorithm 2. The overall resource utilization (U ) can
be calculated by dividing the exhausted resource amount for
task processing by the total resource amount.

As a chromosome is representing an assignment of tasks
to cores, a task ordering method for each core is needed for
decoding the chromosome into a task offloading solution. We
concern tasks with hard deadline requirements, thus adopt
the earliest deadline first (EDF) ordering method because of
its optimal accept ratio in such scenario [17], see line 3 in
Algorithm 2.

Algorithm 2 Calculating fitness value for a chromosome
Input: The chromosome;
Output: The fitness value;
1: decoding the chromosome into the mapping between tasks and

computing cores;
2: for each computing core do
3: ordering the execution of tasks assigned to the core in the

increasing order of deadline;
4: accumulating the number of accepted tasks;
5: end for
6: calculating the fitness value using Eq. (12);
7: return the fitness value;

After calculating fitness values for all chromosomes, our
method selects and records the chromosome with the best
fitness (see in line 4 of Algorithm 1), and evolves the popula-
tion adopting operators of crossover, mutation and selection,
respectively shown in lines 5 and 7 of Algorithm 1. We adopt
single point crossover to cross two random chromosomes,
which generating two new chromosomes. The uniform mu-
tation is applied to guarantee the chromosome diversity.
After generating offspring by crossover and mutation, we
use tournament selection to eliminate bad chromosomes for
population evolution. To improve the chromosome diversity,
we view integers as binary when conducting the crossover
and mutation operators. Such as, for two genes of 3 (011
in binary) and 4 (100 in binary), there is only two possible
offspring when doing crossover operator in integer, while
six in binary (011, 100, 000, 111, 010, 101 in binary). Our
method repeats these above procedures until the terminal
condition is satisfied. There are two terminal conditions can
be set: (i) the best fitness is not improved several times
continuously, (ii) the number of evolution repeats reaches
the maximum. In this paper, we adopt the second terminal
condition.

The benefits of our method mainly include the following
three aspects. (1) We encode an assignment of tasks to
computing cores into a chromosome. This can make better
use of the global search ability of GA than existing meta-
heuristic methods which encoded the assignment of tasks
to computing servers. (2) We exploit an integer encoding
method to represent the solution space, which results in
a much less solution space than binary encoding-based
methods for a task offloading problem. This leads to a much

more possibility for achieving a global best solution. (3) We
integrate the EDF method into GA procedures to combine the
benefits of both local and global search, which is helpful for
improving the performance of GA in both the convergence
speed and the solution quality.

IV. PERFORMANCE EVALUATION

In this section, for evaluating our method, we first illustrate
established simulated experiment environment. Simulation
parameters are set referring to existing works. Then, we
deeply analyse the experiment results to verify the perfor-
mance superiority of our method.

A. Experiment Design

In our simulated E3C environment, there are 20 devices,
2 edge computing centres, and 1 CS type. The connectivity
between every device and each edge is set randomly. An
edge is equipped with 1–4 servers. A core of a device has 1–
2GHz computing capacity. For each ES or CS, the computing
capacity is set as 2–3GHz for each core. Every device
launches 1–100 tasks. Thus, in the simulated environment,
there are about 1000 tasks on average. For each task, it
requires 100–200GHz computing resources, has 20–500MB
input data, and must be finished within 100–1000 seconds.
The bandwidth between a device and an ES is set as 10–
100Mbps. The bandwidth between a device and a CS is 1–
100Mbps. For our method, we set both the population size
and the maximum repeat number for the terminal condition
as 1000. The probabilities of crossover and mutation are set
to 0.1 and 0.5, respectively.

We compare our method (represented as GA EDF) with
the following classical and up-to-date methods, First Fit
(FF), First Fit Decreasing (FFD), Earliest Deadline First
(EDF), Earliest Finish Time Frist (EFTF) [19], Least Average
Completion Time (LACT) [20], Least Slack Time First
(LSTF) Mahmud et al. [21], Particle Swarm Optimization
(PSO) [22], Hybrid Genetic and EDF with binary encoding
(GA EDF BIN) [23].

We focus on the following performance aspects of these
methods.

• User satisfaction strongly affects the income and the
reputation of service providers [24]. We use three met-
rics to quantify the user satisfaction, the accept ratio,
the accumulated computing size of accepted tasks, and
the total amount of data processed by accepted tasks.
For each metric, a greater value is better.

• Resource efficiency largely determines the cost of
service provision. Two metrics are used for quantifying
the resource efficiency in this paper. One is the overall
utilization of computing resources, which is one of the
most commonly used metric for performance evaluation.
Another is the cost efficiency which is the ratio between
the accumulated computing size of finished tasks in the
cloud and the cost of rented cloud resources.

• Processing efficiency is the amount of workload pro-
cessed per unit time. We use two metrics for its quan-
tifications, which are the computing rate and the data
processing rate. The computing rate is the processed
computing size per unit time, which is calculated by
dividing the completed computing size by the the latest
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finish time. The data processing rate is the ratio between
the total amount of input data processed by accepted
tasks and the latest finish time.

The experimental results are shown in fig. 3–9. We scale
each value of each method by one of FF for each metric.
Each experiment is repeated 11 times, and the median is
reported.

B. Experiment Results

1) User Satisfaction: Fig. 3–5 show the relative perfor-
mance of various methods in user satisfaction. As shown
in these figures, we can see that our method achieves
20.7%–9.18x greater accepted ratio, 42.8%–21.2x larger fin-
ished computing size, and 32.8%–9.32x more processed data
amount, compared with other methods. These results prove
that our method has better performance in user satisfaction.

GA EDF has 20.7%–60.2% better user satisfaction than
heuristic methods, as shown in Fig. 3–5. This proves that
meta-heuristics can achieve better performance than heuris-
tics in task offloading. The main advantage of meta-heuristics
is their global searching abilities which benefit from ex-
ploited randomness methods. But if meta-heuristic based
methods don’t designed carefully, they may achieve a very
poor performance. For example, GA EDF BIN achieves
above 86% less accepted ratio than heuristic methods.

The main reason that GA EDF has much better perfor-
mance than GA EDF BIN is that the solution space of
GA EDF is much smaller than that of GA EDF BIN, which
makes great improvement in search efficiency. For example,
considering an edge-cloud system with eight tasks and each
task has eight candidate core for its processing. When using
integer encoding of GA EDF, the size of the solution space
is 88. While the solution space size is 264 when using binary
encoding of GA EDF BIN, as there are 8 ∗ 8 = 64 genes
for each chromosome and each gene has two possible values
(0 or 1). In this case, GA EDF BIN has a 230 time larger
solution space than GA EDF. In addition, the size of solution
space is increased with the task number and the candidate
core number of each task, exponentially.

Compared with PSO, our method can achieve much better
performance in user satisfaction. The main reason is that PSO
employs the meta-heuristic searching strategy for the solution
of task assignments to servers, and applies heuristic searching
strategy for the task assignment and the task ordering in
each server. This can dramatically shrink the search space
for meta-heuristics, but don’t make full use of their global
searching ability [24]. As proved by previous works [25],
fine-grained resource allocation helps to improve the resource
efficiency. Thus, our method uses the computing core as the
resource granularity when making the offloading decision by
GA meta-heuristic searching strategy, which helps to achieve
a better user satisfaction, as proved by the experiment results.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Accepted Ratio

Fig. 3. The relative accepted ratios achieved by various task offloading
methods.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Computing Size of Accepted Tasks

Fig. 4. The relative accepted task sizes achieved by various task offloading
methods.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Amount of Processed Data

Fig. 5. The relative processed data amounts achieved by various task
offloading methods.

2) Resource Efficiency: Fig. 6 and 7 give the resource ef-
ficiency achieved by various offloading methods. Compared
with other methods, our method has 3.11%–120% higher
resource utilization and 4.84%–131% better cost efficiency1,
as shown in Fig. 6 and Fig. 7, respectively. Benefiting from
the integration of EDF heuristic into GA meta-heuristic, our
method achieves the best resource efficiency.

In general, the resource utilization is related to the ratio
between the waiting time of input data and the comput-
ing time exhausted for task executions. When there are a
longer time for waiting input data, more computing resources
are idle, and thus the resource utilization is lower. Thus,
GA EDF BIN has the worst resource utilization, because it
has much grater rDC than other methods. rDC represents the
ratio between the input data amount and the computing size
of accepted tasks. rDC achieved by GA EDF BIN is more

1GA EDF BIN doesn’t have a valid value of the cost efficiency because
no task is offloaded to the cloud when employing it for task offloading.
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than twice than that by FF, while others achieve comparable
rDC to FF. In addition, in our experiment, the correlation
coefficient of rDC and the resource utilization is -0.81. Thus,
it is a promising research issue to study on the measurement
of the resource efficiency by task characteristics in distributed
computing systems. This is very helpful for e.g. resource
allocation and performance evaluation. Meanwhile, a greater
degree of parallelism can lead to a shorter accumulated
waiting time for input data. This is because it is more likely
to appear the situation that the input data transmission of a
task is completed before its previous task is finished. Thus
because our method can finish the most tasks, it achieves the
best resource efficiency.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Resource Utilization

Fig. 6. The relative overall resource utilizations achieved by various task
offloading methods.

0
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0.6
0.8

1
1.2
1.4

Cost Efficiency

Fig. 7. The relative overall resource utilizations achieved by various task
offloading methods.

3) Processing Efficiency: Fig. 8 and 9 are respectively
showing the relative computing rates and data processing
rates achieved by various offloading methods. As shown in
these figures, our method has 40.3%–20.5x greater com-
puting rate and 32.3%–9.17x faster data processing rate,
compared with other methods. The processing efficiency is
decided by the paralleling speed ratio. Our method provides
the maximum accepted ratio, as shown in Fig. 3, i.e., finishes
the most tasks. This implies that our method achieves a
higher degree of parallelism than other methods in overall.
And thus, our method has the best processing efficiency.

0
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1
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1.4
1.6

Finished Computing Size per Second

Fig. 8. The relative computing rates achieved by various task offloading
methods.
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Fig. 9. The relative data processing rates achieved by various task
offloading methods.

C. Discussion

According to the experimental results, the hybrid of GA
and EDF can achieve better performance than each of them,
by combining the global search ability of GA and the
heuristic local search ability of EDF. Meantime, GA EDF
use the integer encoding method which improve the search
efficiency by reducing the solution space size. These are
two main benefits of GA EDF, the integration of meta-
heuristic algorithm and heuristic method and the reduction
of the solution space. Thus, there are two research directions
for improving the performance of task scheduling strategies.
The first one is studying on the hybrid approach of various
meta-heuristic algorithms and heuristic methods, such as
integrating the crossover and mutation operators into PSO
for its particle updating. Another is to design a new encoding
method to reduce the size of solution space as much as
possible.

V. RELATED WORK

As edge computing and cloud computing are two promis-
ing ways to address the resource scarcity problem of mobile
devices, there have been several works focusing on the task
offloading problem to improve the performance of task exe-
cution for these computing environments. Such as, Zakaryia
et al. [26] proposed a generic algorithm based offloading
method for optimizing the overall execution time of offloaded
tasks in an edge computing environment with deadline
constraints. Their proposed GA-based method encoded a
mapping between task and edge servers into a chromosome.
In addition, this work considered that each edge node pro-
vided its resources in form of homogeneous virtual machines,
which limited the scope of application. The method proposed
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by Liu et al. [19] greedily offloaded a task to the edge server
providing the minimum finish time, and reduced the amount
of the data transferred between servers by task redundant
executions, for optimizing the finish time of a workflow.
The redundant execution can greatly increase the resource
consumption, which leads to a low resource efficiency. These
works focused on the execution time optimization, which
may cost many resources.

By combining the benefits of both edge computing and
cloud computing, Thanh et al. [27] proposed a heuristic
method to place the Virtual Network Functions (VNFs) of
linear Service Function Chains (SFCs) in E3C environments
with Fat-Tree network topology for optimizing the accep-
tance ratio of offloaded requests. The proposed method first
made the offloading decision by gradually moving VNFs
from edges to the cloud with the satisfaction of resource
capacity constraints. Then, the method placed each VNF
with the idea of First Fit (FF) in each edge or the cloud,
and heuristically conducted VNF migrations to improve the
network distance of VNFs within each SFC. At last, the
heuristic method applied the breadth first search to find the
shortest network path for a pair of VNFs that belonged
to a SFC and were allocated to different computing tiers,
and constructed a set of physical network links according
to VNF locations for each edge. Dedas [20] was designed
for optimizing the number of tasks that meet the deadlines
and minimizing the average completion time (ACT) of the
tasks. In an edge server or the cloud, Dedas inserted the
new task in a server or replaced a scheduled task by the
new task to generate a feasible schedule with less ATC.
By the scheduling idea, Dedas iteratively assigned the new
task to the edge server such that the number of completed
tasks is maximized and ACT is minimized. A task is dis-
patched to the cloud only if edge resources cannot satisfy
its requirements. These proposed methods are designed for
only one kind of applications, which may lead to a low
resource efficiency without exploiting the complementarity
of resource requirements for various applications [28]. Xie
et al. [22] designed an improved PSO scheduling method
for executing a workflow on E3C concerning the tradeoff
between the finish time and the resource cost. While for
simplification, they assumed all network bandwidths between
any two servers are identical. Aburukba et al. [23] studied
on the offloading problem optimizing the weighted sum of
all request delays with deadline constraints. They formulated
the problem as a Mixed Integer Linear Programming (MILP)
problem which is NP-Hard, and proposed a binary GA
algorithm to solve the MILP problem, where each gene
represented a map between a task and a computing core of
an E3C server. Chen et al. [29] designed a task scheduling
method based on PSO which using the the crossover and
mutation operators for the particle updating. Ma et al. [30]
adopted a load balance strategy for improving the revenue,
which ignoring the resource heterogeneity in E3C systems.

All of above works did not exploit the resources of user
devices for processing tasks. Thus, Fizza et al. [31] as
well as Elashri and Azim [32] focused on the offloading
problem with applying the computing resources of local
devices for processing some tasks. The method proposed
by Fizza et al. [31] first scheduled tasks to local devices
in the priority order of hard, firm, and soft deadline tasks,

and then offloaded as many as tasks to the edge processors
with optimized communication delay when all task cannot
be finished by local resources. For tasks whose requirements
cannot be satisfied by local or edge processors, their method
offloaded them to the cloud. Elashri and Azim [32] tried
to improve the computing energy consumption for real-time
embedded systems with the periodic resource model. Their
method adjusted the processor speed of each device into the
minimal value such that hard real-time tasks can be finished
within their respective deadline locally. They also processed
weak real-time tasks locally when these tasks’ requirements
cannot be met to edge servers. For soft real-time tasks
with high power consumptions and processor usages, they
considered to offload these tasks to the cloud. This work
did not concern the economic cost of cloud resources, when
making offloading decisions. This may lead to many tasks
offloaded to the cloud, and thus result in a high cost for cloud
resources.

Different from these existing works, our work focuses
on optimizing both the user satisfaction and the overall
resource efficiency for E3C environments, considering the
exploitation of the local device resources for processing
tasks. Our work focuses on jointly solving the problems of
offloading decision, task assignment, and task ordering.

VI. CONCLUSIONS

In this paper, we focus on the task offloading problem in
E3C environments. We aim at optimizing the user satisfaction
and the resource efficiency. We first formulate the problem as
a binary non-linear programming, and then propose a hybrid
method by combining the global search ability of GA and
the heuristic search strategy of EDF to solve the problem.
Simulated experimental results prove that our method has
better performance in both user satisfaction and resource
efficiency, compared with several existing heuristic and meta-
heuristic methods.

In this paper, we focus on independent tasks, as done in
many published works. Independent tasks are a kind of very
common application in real world. While the inter-dependent
relationship among tasks of workflow jobs remarkably in-
creases the complexity of task scheduling with the complex
network topology in a E3C. In the next, we will study on
the scheduling of dependent tasks in E3C, to extend the
application scope of our method.
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