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Abstract—A new backstepping-based sliding mode control
strategy to realize the stabilization of a class of fractional-
order system is introduced in this paper. We assume that
the system is fluctuated by unmodeled dynamics and external
disturbances, meanwhile, the bounds of these uncertainties and
the system parameters are unknown in advance. The effect of
nonsymmetrical dead-zone input is taken into account in this
paper. To deal with these unknown parameters, a sliding mode
surface is proposed and some adaptive update laws are assigned.
Then the indirect Lyapunov theory is given to analyze the
stability of every subsystem. Simulation results are presented
to prove the correctness and feasibility of the given control
strategy.

Index Terms—Backstepping-based sliding mode control,
Fractional-order system, Nonsymmetrical dead-zone, Unmod-
eled dynamics.

I. INTRODUCTION

FRACTIONAL calculus is a generalization of traditional
integer order calculus, the history of fractional calculus

is more than 300 years, which can be traced back to the
contribution by Euler, Leibniz and other famous mathemati-
cians [1,2]. It was found that, with the help of fractional
calculus, many systems in interdisciplinary fields can be
described more accurately, such as viscoelastic system [3],
dielectric polarization [4], electrode-electrolyte polarization
[5], finance systems and electromagnetic waves [6]. That is to
say, fractional calculus provides a superb instrument for the
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description of memory and hereditary properties of various
materials and processes.

At present, The study of fractional-order system has be-
come an active research field. In particular, the control and
stabilization of fractional-order systems has attracted exten-
sive attention in various scientific fields. The results show
that the fractional-order controller applied to the fractional-
order system can obtain better control effect than the in-
teger controller, such as, fractional-order PIλDµ control [7],
fractional-order terminal sliding mode control [8], fractional-
order fuzzy control [9], fractional-order finite-time sliding
mode control [10], and so on.

Backstepping is a recursive controller design method, if
virtual controller and part of Lyapunov function are designed
step by step, then a common Lyapunov function of the
whole system can be derived from the above operations.
This method can guarantee the global stability, tracking and
transient performance of nonlinear systems [11]. Take into
consideration of the excellent performance of backstepping
method, more and more researchers began to pay attention
to this potential problem. It is reported that there are many
preeminent literatures for the backstepping-based control
or synchronization of fractional-order chaotic system have
been existed. For instance, Luo [12] applied adding one
power integrator to the robust control and synchronization
of fractional-order system. Shukla [13,14] used backstepping
method to realize the stabilization and synchronization of
fractional-order chaotic system. Wei [15,16] adopted back-
stepping technique to investigate the stability of fractional-
order nonlinear system.

However, almost all the above mentioned methods for
control or stabilizing of fractional-order system assume that
the system parameters are know in advance. As a matter
of fact, many systems parameters cannot be exactly known
in advance. The control object will be not achieved under
the effect of unknown uncertainties. Therefore, it is urgent
to consider the influence of unknown parameters in control
or stabilizing fractional-order systems. Another important
problem encountered in practice is the input nonlinearity.
This kind of control input nonlinearity can be regarded as a
cause of performance degradation or even worse, instability
of a system. So, it is clear that the effect of input nonlinearity
must be taken into account when analyzing and implement-
ing a control scheme.

Motivated by the above discussions, in this paper, the
stabilization problem of fractional-order system with non-
symmetric dead-zone nonlinear input by using adaptive
backstepping-based sliding mode control technique is inves-
tigated. For compensation the nonlinear input, a fractional-
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order auxiliary system is constructed to generate necessary
signal. Some appropriate estimation rules are given to deal
with the system parameters and the unknown upper bound of
uncertainties. The frequency distributed model of fractional
integrator and indirect Lyapunov stability theory are used to
verify the stability and design virtual controller for every
subsystem. Through designing virtual controllers step by
step, a comprehensive actual controller is finally determined.

The remaining part of this paper is organized as follows:
Section 2 introduces the relevant definitions, lemmas, and
frequency distributed model. Main results are presented in
Section 3. Some simulation results are provided in Section
4 to show the effectiveness of the proposed method. Finally,
conclusions are given in Section 5.

II. PRELIMINARIES

The Riemann-Liouville, Caputo definition are main defi-
nitions of fractional calculus

Definition 1 The α th-order Riemann-Liouville fractional
integration of function f(t) is given by

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)
1−α dτ (1)

where Γ(·) is the Gamma function.
Definition 2 For n − 1 < α ≤ n, n ∈ R, the α th-order

Riemann-Liouville fractional derivative of function f(t) is
defined as

t0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

f(τ)

(t− τ)α−n+1
dτ

=
dn

dtn
In−αf(t) (2)

Definition 3 The α th-order Caputo fractional derivative
of function f(t) is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ, m− 1 < α < m
dm

dtm f(t), α = m
(3)

where m is the smallest integer number, larger than α.
Lemma 1 (see [17]). Let x = 0 be an equilibrium point

for either Caputo or RL fractional nonautonomous system:

Dqx(t) = f(x, t) (4)

where q ∈ (0, 1) and f(x, t) satisfies the Lipschitz condition
with Lipschitz constant l > 0. Assume that there exists a
Lyapunov function V (t, x(t)) satisfying

α1||x||a ≤ V (t, x(t)) ≤ α2||x||
V̇ (t, x(t)) ≤ −α3||x|| (5)

where α1, α2, α3 and a are positive constants and || · ||
denotes an arbitrary norm. Then the equilibrium point of
system (4) is asymptotically stable.

Lemma 2 (see [18]). Consider a nonlinear fractional-order
system

Dαx(t) = f(x(t)) (6)

where α ∈ (0, 1). Then the system can be equivalently
converted to the following continuous frequency distributed
model

∂z(ω, t)

∂t
= −ωz(ω, t) + f(x(t))

x(t) =

∫ ∞

0

µα(ω)z(ω, t)dω (7)

where µα(ω) =
sin(απ)
πωα and z(ω, t) is the true state of the

system.

III. MAIN RESULTS

Backstepping technique is suitable for research strict feed-
back system, which can be described as follows

Dαx1 = g1(x1, t)x2 + δT1 F1(x1, t) + f1(x1, t)

Dαx2 = g2(x1, x2, t)x3 + δT2 F2(x1, x2, t) + f2(x1, x2, t)

...
Dαxn−1 = gn−1(x1, x2, ..., xn−1, t)xn + δTn−1Fn−1(x1, x2,

..., xn−1, t) + fn−1(x1, x2, ..., xn−1, t)

Dαxn = gn(x1, x2, ..., xn, t)u+ δTnFn(x1, x2, ..., xn, t)

+fn(x1, x2, ..., xn, t) (8)

where δi is the system parameters vector of the i-th state
equation, gi(·), Fi(·), fi(·) for i = 1, 2, ..., n are known,
smooth nonlinear functions. This paper investigates a class
of typical fractional-order strict feedback system, it has the
following form

Dαx1 = x2 + δT1 F1(x1) + f1(x1) + ∆f1(X) + d1(t)

Dαx2 = x3+δT2 F2(x1, x2)+f2(x1, x2) + ∆f2(X) + d2(t)

...
Dαxn = kΨ(u(t))+δTnFn(X) + fn(X)+∆fn(X) + dn(t)

(9)

where α ∈ (0, 1), X = [x1, x2, ..., xn]
T is state vari-

ables vector, k is non-zero constant, δi is unknown system
parameters vector, Fi(·) and fi(·) are system nonlinear
parts, ∆fi(X) and di(t) for i = 1, 2, ..., n respectively are
unmodeled dynamics and external disturbance. Ψ(u(t)) is
nonsymmetrical dead-zone input.

Assumption 1. The nonsymmetrical dead-zone function is
described as follows:

Ψ(u(t)) =

 ρ+(u(t)− u+), u(t) ≥ u+

0, −u− < u(t) < u+

ρ−(u(t) + u−), u(t) ≤ −u−

(10)

where ρ+, ρ−, u+, u− are strictly positive parameters, and
the slope parameters ρ+ and ρ− are bounded, i.e., there exist
known constants ρ1 and ρ2 such that max{ρ+, ρ−} = ρ1 and
min{ρ+, ρ−} = ρ2. Further, the nonsymmetrical dead-zone
function can be rewritten as

Ψ(u(t)) = ρ(t)u(t) + ∆u(t) (11)

where

ρ(t) =

{
ρ+, u(t) > 0
ρ−, u(t) ≤ 0

(12)

∆u(t) =

 −ρ+u+, u(t) ≥ u+

−ρ(t)u(t), −u− < u(t) < u+

ρ−u−, u(t) ≤ −u−

(13)

A typical nonsymmetrical dead-zone function is depicted
in Figure 1.
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Figure 1. A typical nonsymmetrical dead-zone function

Remark 1. Many fractional-order systems can be de-
scribed as equation (9), such as, fractional-order gyro system,
fractional-order Genesio-Tesi system, fractional-order Arneo-
do system, and so on.

For using backstepping-based sliding mode control strate-
gy, transformation variables are firstly assigned as

ξ1 = x1 − σ1

ξi = xi − ϑi−1 − σi, i = 2, 3, ..., n. (14)

where ϑj(j = 1, 2, ..., n − 1) is virtual controller to be
determined later. σj(j = 1, 2, ..., n) is the virtual signal
generated by the following auxiliary fractional-order system
to compensate the nonlinear input

Dασi = σi+1 − ciσi, i = 1, 2, ..., n− 1.

Dασn = k∆u(t)− cnσn (15)

where ci > 0, cn > 0.
For handling the unknown bounded uncertainties, the

following assumption is given.
Assumption 2. The unmodeled dynamics and external dis-

turbance are unknown bounded, which satisfy the following
conditions

|∆fi(X)| ≤ βi1|ξi|
|di(t)| ≤ βi2 (16)

where βi1 and βi2 are unknown positive constants. In this
paper, the sliding mode surface can be constructed as

sp=Dα−1ξp +

∫ t

0

(
ξp + sgn(ξp)

)
dτ (17)

in which p = 1, 2, ..., n. Taking the derivative of s with
respect time, we have

ṡp = Dαξp +
(
ξp + sgn(ξp)

)
(18)

when system trajectories arrived at the sliding mode surface,
we have ṡ = 0, that is

Dαξp = −ξp − sgn(ξp) (19)

according the sliding mode dynamics, the virtual controller
can be determined as

ϑ1 = −m1s1 − ξ2 − δ̂T1 F1 − f1 − (β̂11|ξ1|+ β̂12)sgn(s1)

−c1σ1 − (ξ1 + sgn(ξ1))

ϑj = −mjsj − ξj+1 − δ̂Tj Fj − fj − (β̂j1|ξj |+ β̂j2)sgn(sj)

+Dαϑj−1 − cjσj − (ξj + sgn(ξj))

(20)

where j = 2, 3, ..., n − 1. mi > 0, Fi and fi are the abbre-
viations of Fi(·) and fi(·). δ̂i, β̂i1 and β̂i2 are estimations
of δi, βi1 and βi2 for i = 1, 2, ..., n, respectively. Denote
δ̃i = δ̂i − δi, β̃i1 = β̂i1 − βi1, β̃i2 = β̂i2 − βi2 as parameters
estimation errors, which adaptive update laws are designed
as

Dαδ̃i = Dαδ̂i = Fisi

Dαβ̃i1 = Dαβ̂i1 = ηi1|ξi||si|, ηi1 > 0

Dαβ̃i2 = Dαβ̂i2 = ηi2|si|, ηi2 > 0 (21)

Theorem 2. Consider the system (9) with nonsymmetrical
dead-zone nonlinear input, if the system is controlled by the
following controller

u(t)=
1

kρ2

(
−mn|sn| − |δ̂n|T |Fn| − |fn| − |β̂n1||ξn| − |β̂n2|

−|Dαϑn−1|−cn|σn|−|ξn+sgn(ξn)|
)
sgn(sn) (22)

then the system trajectories can converge to the sliding
surface si(i = 1, 2, ..., n) = 0 asymptotically.

Proof. Step 1: The first new subsystem can be obtain
according to equations (9), (14) and (15)

Dαξ1 = Dαx1 −Dασ1

= x2 + δT1 F1 + f1 +∆f1(X) + d1(t)− σ2 + c1σ1

= ξ2 + ϑ1 + δT1 F1 + f1 +∆f1(X) + d1(t) + c1σ1

(23)

according to Lemma 2, the parameters adaptation laws (21)
can transform into the frequency distributed model, that is

∂z
δ̃1
(ω, t)

∂t
= −ωz

δ̃1
(ω, t) + F1s1

δ̃1 =

∫ ∞

0

µα(ω)zδ̃1
(ω, t)dω

∂z
β̃11

(ω, t)

∂t
= −ωz

β̃11
(ω, t) + η11|ξ1||s1|

β̃11 =

∫ ∞

0

µα(ω)zβ̃11
(ω, t)dω

∂z
β̃12

(ω, t)

∂t
= −ωz

β̃12
(ω, t) + η12|s1|

β̃12 =

∫ ∞

0

µα(ω)zβ̃12
(ω, t)dω (24)

selecting the Lyapunov function as

V1 =
1

2
s21 +

1

2

∫ ∞

0

µα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

+
1

2η11

∫ ∞

0

µα(ω)z
2

β̃11

(ω, t)dω

+
1

2η12

∫ ∞

0

µα(ω)z
2

β̃12
(ω, t)dω (25)

taking the derivative of V1 with respect to time, it yields

V̇1 = s1ṡ1 −
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω + β̃12|s1| (26)
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substituting ṡ1 from equation (18) into equation (26), one
has

V̇1 = s1
[
Dαξ1 + (ξ1 + sgn(ξ1))

]
−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11
(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω + β̃12|s1| (27)

substituting the new subsystem (23) into the above equation

V̇1 = s1
[
ξ2 + ϑ1 + δT1 F1 + f1 +∆f1(X)

+d1(t) + c1σ1 + (ξ1 + sgn(ξ1))
]

−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12

(ω, t)dω + β̃12|s1| (28)

replacing ϑ1 from equation (20) into equation (28) and using
Assumption 2, we have

V̇1 ≤ s1
[
−m1s1 − δ̃T1 F1 − (β̂11|ξ1|+ β̂12)sgn(s1)

]
+ β11

×|ξ1||s1|+ β12|s1|−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

+δ̃T1 F1s1−
1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω + β̃12|s1|

= −
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11
(ω, t)dω

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω −m1s

2
1 < 0 (29)

because of V̇1 < 0, then s1, δ̃1, β̃11, β̃12 are all asymptoti-
cally converge to zero.

Step 2: The second subsystem about ξ2 can be established
as

Dαξ2 = Dαx2 −Dαϑ1 −Dασ2

= x3 + δT2 F2 + f2 +∆f2(X) + d2(t)−Dαϑ1

−σ3 + c2σ2

= ξ3 + ϑ2 + δT2 F2 + f2 +∆f2(X) + d2(t)

−Dαϑ1 + c2σ2 (30)

similar to the step 1, the frequency distributed model of
adaptive estimation laws can be constructed as

∂z
δ̃2
(ω, t)

∂t
= −ωz

δ̃2
(ω, t) + F2s2

δ̃2 =

∫ ∞

0

µα(ω)zδ̃2
(ω, t)dω

∂z
β̃21

(ω, t)

∂t
= −ωz

β̃21
(ω, t) + η21|ξ2||s2|

β̃21 =

∫ ∞

0

µα(ω)zβ̃21
(ω, t)dω

∂z
β̃22

(ω, t)

∂t
= −ωz

β̃22
(ω, t) + η22|s2|

β̃22 =

∫ ∞

0

µα(ω)zβ̃22
(ω, t)dω (31)

selecting the Lyapunov function as

V2 = V1 +
1

2
s22 +

1

2

∫ ∞

0

µα(ω)z
T

δ̃2
(ω, t)z

δ̃2
(ω, t)dω

+
1

2η21

∫ ∞

0

µα(ω)z
2

β̃21
(ω, t)dω

+
1

2η22

∫ ∞

0

µα(ω)z
2

β̃22

(ω, t)dω (32)

thus its derivative can be described as

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−m1s
2
1 + s2ṡ2 + δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2|

(33)

substituting ṡ2 from equation (18) into (33) and according
to equation (30), one obtains

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−m1s
2
1 + s2

[
Dαξ2 + (ξ2 + sgn(ξ2))

]
+δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2|

= −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −m1s
2
1

+s2
[
ξ3 + ϑ2 + δT2 F2 + f2 +∆f2(X) + d2(t)

−Dαϑ1+c2σ2+ (ξ2+ sgn(ξ2))
]

+δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2| (34)

replace ϑ2 from equation (20) into the above equation, we
have

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω
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−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −m1s
2
1

+s2
[
−m2s2 − δ̃T2 F2 − (β̂21|ξ2|+ β̂22)sgn(s2)

]
+β21|ξ2||s2|+ β22|s2|+ δ̃T2 F2s2 + β̃21|ξ2||s2|
+β̃22|s2|

≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−m1s
2
1 −m2s

2
2 (35)

since V̇2 < 0, then s2, δ̃2, β̃21, β̃22 are all asymptotically
converge to zero.

Step i: We continue to investigate the i-th new subsystem
with transformation variables, that is

Dαξi = Dαxi −Dαϑi−1 −Dασi

= xi+1 + δTi Fi + fi +∆fi(X) + di(t)

−Dαϑi−1 − σi+1 + ciσi

= ξi+1 + ϑi + δTi Fi + fi +∆fi(X) + di(t)

−Dαϑi−1 + ciσi (36)

similar to the above steps, the frequency distributed model
of adaptive estimation laws can be constructed as

∂z
δ̃i
(ω, t)

∂t
= −ωz

δ̃i
(ω, t) + Fisi

δ̃i =

∫ ∞

0

µα(ω)zδ̃i
(ω, t)dω

∂z
β̃i1

(ω, t)

∂t
= −ωz

β̃i1
(ω, t) + ηi1|ξi||si|

β̃i1 =

∫ ∞

0

µα(ω)zβ̃i1
(ω, t)dω

∂z
β̃i2

(ω, t)

∂t
= −ωz

β̃i2
(ω, t) + ηi2|si|

β̃i2 =

∫ ∞

0

µα(ω)zβ̃i2
(ω, t)dω (37)

selecting the Lyapunov function as

Vi = Vi−1 +
1

2
s2i +

1

2

∫ ∞

0

µα(ω)z
T

δ̃i
(ω, t)z

δ̃i
(ω, t)dω

+
1

2ηi1

∫ ∞

0

µα(ω)z
2

β̃i1
(ω, t)dω

+
1

2ηi2

∫ ∞

0

µα(ω)z
2

β̃i2

(ω, t)dω (38)

taking the derivative of Vi, and using the deduce results of
the above steps, one has

V̇i ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω

−
i−1∑
j=1

mjs
2
j + siṡi + δ̃Ti Fisi

+β̃i1|ξi||si|+ β̃i2|si| (39)

substituting ṡi from equation (18) into (39), and considering
equations (16), (20) and (36), it yields

V̇i ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω

−
i−1∑
j=1

mjs
2
j + si

[
Dαξi + (ξi + sgn(ξi))

]
+δ̃Ti Fisi + β̃i1|ξi||si|+ β̃i2|si|

≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω −

i−1∑
j=1

mjs
2
j

+si
[
−misi − δ̃Ti Fi − (β̂i1|ξi|+ β̂i2)sgn(si)

]
+βi1|ξi||si|+ βi2|si|+ δ̃Ti Fisi + β̃i1|ξi||si|+β̃i2|si|

≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −
i∑

j=1

mjs
2
j (40)

because of V̇i < 0, then si, δ̃i, β̃i1, β̃i2 can converge to zero
asymptotically.

Step n: The last subsystem with transformation variable
ξn is determined as

Dαξn = Dαxn −Dαϑn−1 −Dασn

= kΨ(u(t)) + δTnFn + fn +∆fn(X) + dn(t)

−Dαϑn−1 − k∆u(t) + cnσn

= kρ(t)u(t) + δTnFn + fn +∆fn(X)

+dn(t)−Dαϑn−1 + cnσn (41)

the overall Lyapunov function is selected as

Vn = Vn−1 +
1

2
s2n +

1

2

∫ ∞

0

µα(ω)z
T

δ̃n
(ω, t)z

δ̃n
(ω, t)dω

+
1

2ηn1

∫ ∞

0

µα(ω)z
2

β̃n1
(ω, t)dω
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+
1

2ηn2

∫ ∞

0

µα(ω)z
2

β̃n2
(ω, t)dω (42)

taking the derivative of Vn with respect time, and according
to Assumption 2, one has

V̇n ≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −
n−1∑
j=1

mjs
2
j

+sn
[
kρ(t)u(t) + δTnFn + fn +∆fn(X) + dn(t)

−Dαϑn−1 + cnσn + (ξn + sgn(ξn))
]

+δ̃TnFnsn + β̃n1|ξn||sn|+ β̃n2|sn|

≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −
n−1∑
j=1

mjs
2
j

+kρ(t)snu(t) + |fn||sn|+ |Dαϑn−1||sn|
+cn|σn||sn|+ |ξn + sgn(ξn)||sn|
+|δ̂n|T |Fn||sn|+ |β̂n1||ξn||sn|+ |β̂n2||sn| (43)

since ρ(t)/ρ2 = 1 + a(t), where a(t) is a some piecewise
positive function, we have

kρ(t)snu(t) = (1 + a(t))
[
−mns

2
n − |δ̂n|T |Fn||sn|

−|fn||sn| − |β̂n1||ξn||sn| − |β̂n2||sn|
−|Dαϑn−1||sn| − cn|σn||sn|
−|ξn + sgn(ξn)||sn|

]
≤ −mns

2
n − |δ̂n|T |Fn||sn| − |fn||sn|

−|β̂n1||ξn||sn| − |β̂n2||sn|
−|Dαϑn−1||sn| − cn|σn||sn|
−|ξn + sgn(ξn)||sn| (44)

substituting (44) into (43), it yields

V̇n ≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω

−
n∑

j=1

mjs
2
j (45)

because of V̇n < 0, that is the system trajectories (9) with
nonsymmetical dead-zone input can reach to sliding mode
surface gradually, thus the proof is completed.

Theorem 2. Consider the sliding mode dynamics (19), the
system is stable and its state trajectories converge to zero
asymptotically.

Proof. Step 1: For the first sliding mode dynamic, the
corresponding frequency distributed model is

∂zξ1(ω, t)

∂t
= −ωzξ1(ω, t)−

(
ξ1 + sgn(ξ1)

)
ξ1 =

∫ ∞

0

µα(ω)zξ1(ω, t)dω (46)

selecting the following Lyapunov function

W1 =
1

2

∫ ∞

0

µα(ω)z
2
ξ1(ω, t)dω (47)

taking the derivation of W1 with respect time, one has

Ẇ1 = −
∫ ∞

0

ωµα(ω)z
2
ξ1(ω, t)dω + ξ1

(
− ξ1 − sgn(ξ1)

)
= −

∫ ∞

0

ωµα(ω)z
2
ξ1(ω, t)dω − ξ21 − |ξ1| (48)

Obviously, Ẇ1 < 0, according to Lemma 1, the first
sliding mode dynamics is asymptotical stable, that is ξ1 → 0
as t → ∞.

Step 2: According to the second sliding mode dynamics in
equation (19), its frequency distributed model can be written
as

∂zξ2(ω, t)

∂t
= −ωzξ2(ω, t)−

(
ξ2 + sgn(ξ2)

)
ξ2 =

∫ ∞

0

µα(ω)zξ2(ω, t)dω (49)

selecting the following Lyapunov candidate function for

W2 = W1 +
1

2

∫ ∞

0

µα(ω)z
2
ξ2(ω, t)dω (50)

taking the derivation of W2, and according to the above
deduced results, we have

Ẇ2 ≤−
2∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω−

2∑
j=1

ξ2j −
2∑

j=1

|ξj | (51)

Similarly, Ẇ2 < 0, according to Lemma 1, the second
sliding mode dynamics is asymptotical stable, that is ξ2 → 0
as t → ∞.

Step i: We continue to investigate the stability of the i-th
sliding mode dynamics, which frequency distributed model
is

∂zξi(ω, t)

∂t
= −ωzξi(ω, t)−

(
ξi+sgn(ξi)

)
ξi =

∫ ∞

0

µα(ω)zξi(ω, t)dω (52)

choosing the following form Lyapunov function

Wi = Wi−1 +
1

2

∫ ∞

0

µα(ω)z
2
ξi(ω, t)dω (53)

taking the time derivation of Wi, one has

Ẇi ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω−

i∑
j=1

ξ2j −
i∑

j=1

|ξj | (54)

Indeed, Ẇi < 0, then ξi is asymptotically converge to
zero.
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Step n: In the last step, the stability of the whole sliding
mode dynamics is demonstrated, the corresponding frequen-
cy distributed model is

∂zξn(ω, t)

∂t
= −ωzξn(ω, t)−

(
ξn + sgn(ξn)

)
ξn =

∫ ∞

0

µα(ω)zξn(ω, t)dω (55)

we select the following Lyapunov function

Wn = Wn−1 +
1

2

∫ ∞

0

µα(ω)z
2
ξn(ω, t)dω (56)

its fractional order derivation is satisfying

Ẇn ≤−
n∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω−

n∑
j=1

ξ2j −
n∑

j=1

|ξj | (57)

therefore Ẇn < 0, the whole sliding mode dynamics (19) is
asymptotically stale. This completes the proof.

IV. SIMULATION RESULTS

In this section, simulation results are given to demonstrate
the effectiveness and feasibility of the proposed control
strategy. Consider the fractional-order Genesio-Tesi system
with nonlinear input, which is described as

Dαx1 = x2

Dαx2 = x3

Dαx3 = Ψ(u(t))− a1x1 − a2x2 − a3x3

+a4x
2
1 +∆f(X) + d(t) (58)

where a1 = 1, a2 = 1.1, a3 = −0.232, a4 = 1, δ3 =
[a1, a2, a3, a4]

T , F3 = [−x1,−x2,−x3, x
2
1]

T , ∆f(X) =
−0.01cos(x3) and d(t) = 0.02sin(3t) are unmodeled dy-
namics and external disturbance, respectively. Firstly, consid-
ering Ψ(u(t)) as nonsymmetrical dead-zone nonlinear input,
that is

Ψ(u(t)) =

 2(u(t)− 1.5), u(t) ≥ 1.5
0, −1 ≤ u(t) ≤ 1.5

4(u(t) + 1), u(t) ≤ −1
(59)

the parameters m1 = m2 = m3 = 5, c1 = c2 = c3 = 2,
η31 = 5, η32 = 2, the initial conditions are chosen as
x1(0) = −0.3, x2(0) = 0.1, x3(0) = −0.2, δ̂3(0) =
[0.1, 0.1, 0.1, 0.1]T , β̂31(0) = 0, β̂32(0) = 0, α = 0.8. Once
the actual controller u(t) is activated, the state trajectories
of subsystem with transformation variables are presented
in Figure 2, it is clearly that all state trajectories tends to
zero gradually, which demonstrates that using the proposed
control scheme, the adaptive stabilization of the controlled
system with nonsymmetrical dead-zone nonlinear input is
achieved.
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Figure 2. Time history of transformation system with
nonsymmetrical dead-zone input

All above simulation results sufficiently demonstrated that
the proposed control scheme is effective in stabilizing this
kind of uncertain fractional-order nonlinear system with
nonsymmetrical dead-zone input.

V. CONCLUSIONS

This paper investigated a backstepping-based sliding mod-
e control scheme for adaptive stabilization of a class of
fractional-order system. The system is perturbed by un-
known bounded uncertainties, and system parameters are
unknown in advance. The effect of nonsymmetrical dead-
zone nonlinear input is taken into account in the design
of actual controller. In order to compensate the influence
of nonlinear input, an auxiliary fractional-order system is
introduced to generate the necessary virtual signal. To deal
with the unknown parameters and unknown uncertainties,
a proper sliding mode surface is established to determine
the adaptive update laws. For verify the stability of the
controlled system, the frequency distributed model is used so
that indirect Lyapunov function can be applied. Simulation
results demonstrated the feasibility and effectiveness of the
proposed control scheme.
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