
       

Improved ECG Denoising using CEEMAN based 

on Complexity Measure and Nonlocal Mean 

Approach 

Abstract— Measurement of cardiac electrical activity also 

known as electrocardiogram (ECG) is prone to a variety of noise 

which deteriorates the accuracy of extracted clinical 

parameters. Raw ECG signals are non-liner and non-stationary 

in nature which limits the use of traditional filters for denoising. 

The complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN), an advanced version of Ensemble 

Empirical Mode Decomposition (EEMD), has shown usefulness 

in denoising ECG. However, it suffers from initial noisy intrinsic 

mode functions (IMFs) which are difficult to identify and 

denoise. Studies have shown various methods from information 

theory perspective to identify such noise corrupted IMFs. 

However, none of the study could provide a consummate 

solution. This article proposes the use of sample entropy to 

identify the noisy IMFs and utilize the non-local mean 

smoothening technique to reduce the effect of noise. Proper 

identification of noisy IMFs followed by adaptive smoothing 

using the NLM algorithm improves denoising performance of 

the CEEMDAN algorithm. The proposed method is verified 

considering real ECG data from MIT-BIH. The comparative 

analysis from the results suggests the use of the proposed 

method for improved performance of denoising of ECG signals 

under the influence of higher noise. 

 
Index Terms— CEEMDAN, NLM, ECG, Sample Entropy, 

Denoising algorithms 

I. INTRODUCTION 

The process to extract the vital parameters from noisy 

biomedical signals presents challenges due to the overlap of 

noise with the information content[1]. In the case of 

electrocardiogram (ECG), high-frequency noise from 

muscles overlaps with the QRS complex, and low-frequency 

components are corrupted by the baseline wandering and 

movement artifacts[1]. Denoising ECG with the traditional 

brick type filters results in the removal of important 

information that limits the accurate estimation of the medical 

parameters. Hence, denoising based on the information 

content is critical for efficient ECG denoising.  

Almost all the biomedical signals are nonlinear and non-

stationary which requires adaptive denoising techniques 

based on the characteristic of noise[1]. Reliability of wearable 

sensing and remote health monitoring depends on the quality 

extracted parameters from the acquired ECG signals[2][3]. 

Accuracy of the estimated ECG parameters highly depends 

on the distortion from various artifacts and noise[4]. 

Preprocessing algorithms which reduce the effect of such 

distortions are considered the heart of wearable technologies. 

Though wavelet based thresholding techniques have shown 

effectiveness in reduction of noise, they rely on manual 

tuning of threshold for better classification accuracy[5]. In 

addition, majority of these algorithms rely on the accurate 

detection of R peaks from noise corrupted ECG 

signals.  Accurate detection of R peak location is a 

challenging task in case the signal is affected by high 

frequency components from muscle movements. Though R 

peak detection algorithms have shown significant 

improvement with the use of methodologies derived from 

information theory, they lack validation on the dataset from 

wearable ECG signals[6]. Current study utilizes the 

advantage of EMD and NLM algorithms to reduce the effect 

of noise while overcoming the limitation with the use of 

complexity measure of sample entropy. The effectiveness of 

the proposed method is verified with various performance 

measures and comparative analysis.  

Empirical Mode Decomposition (EMD) based denoising is 

well known for such requirements as it offers the 

decomposition of the original signal into intrinsic mode 

functions (IMF) which are relatively easier to analyze[7]. 

Usually during the denoising process, the high-frequency 

noise components are removed from the initial IMFs whereas 

the trend component is removed based on the last IMF for 

signal reconstruction. Though EMD based reconstruction is 

error-free, it suffers from mode mixing where the same 

oscillations appear in more than one IMF which is difficult to 

understand for its precise physical interpretation [8][9]. 

Noise-assisted method of Ensemble EMD (EEMD) was 

proposed by[10] to reduce the mode mixing phenomena by 

exploiting the property of white noise. This method adds a 

finite amplitude white noise to the original signal before the 

process of decomposition. The decomposition using EMD is 

repeated for different realizations of white noise. The 

ensemble mean of each IMF across all the realizations 

significantly reduces the effect of noise and guarantees the 

convergence to the original signal. The process of ensemble 

cancels the effect of added white noise. In addition, the dyadic 

nature of the IMF reduces the likelihood of mode mixing [10]. 

Though EEMD significantly reduces the effect of mode-

mixing, the number of IMFs for the same signal with different 

realizations of the white noise may differ in number. 

Moreover, the reconstruction is also not perfect due to 

residual noise. A modified EEMD named Complete 

Ensemble Empirical Mode Decomposition with Adaptive 

Noise (CEEMDAN) which provides a complete 

reconstruction of the original signal with lesser computational 

requirements was originally proposed in [11]. The algorithm 

is described in more detail in section II(A). 

The IMFs from the CEEMDAN decomposition are 
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arranged in the order from higher frequency IMFs to lower 

frequency IMFs. Usually, the higher frequency IMFs are 

noise dominant whereas lower frequency IMFs contain 

information. Studies have shown various methods and 

techniques from information theory to identify such noise 

dominant IMFs which are then denoised to improve the 

denoising performance [10-11]. For better denoising, Xu et 

al. used a correlation of IMFs with the original signal to 

identify the noise dominant IMFs for denoising with the use 

of wavelet thresholding technique[13]. The correlation-based 

techniques for the identification of noisy IMFs are limited to 

capture the linear relationships [14]. Polat & Nour used EMD 

decomposition followed by suppression of insignificant 

coefficients of DWT which is then followed by run-length 

coding in order to achieve better compression of ECG data 

[15]. This method utilizes the EMD decomposition for 

categorization of noisy components and DWT-based dead 

zone quantization for reduction of noise. Kabir & Shahnaz 

chose windowing of the first three high-frequency IMFs for 

denoising using adaptive soft thresholding from DWT[16]. 

The adopted method assumes the initial three IMFs are noise 

dominant. This approach may degrade the denoising 

performance if the actual number of noisy IMFs is more than 

three. In a similar study from Rakshit & Das to achieve higher 

denoising performance, initial three IMFs are selected and 

denoised using adaptive switching mean filtering 

operation[17]. 

While presumption of fixed number of initial IMFs for 

denoising reduces the computation complexity, it limits the 

likelihood for further improvement in case the noise is present 

in the IMF beyond the considered IMF number. CEEMDAN 

has been used in combination with other denoising techniques 

to provide hybrid solutions for better denoising performance 

[18][13]. These techniques have shown effectiveness in 

reduction of noise, however, they do not significantly remove 

the noise from the ECG. In this article, we propose a method 

to identify the number of noisy IMFs based on the measure of 

sample entropy (SampEn) and denoise them using a non-local 

mean algorithm. SampEn is a measure of complexity of 

sequence that does not depend on the information about the 

source of complexity[19] and removes the dependency on 

knowledge of noise source. It works on the similarity of the 

patterns within a sequence. Higher the complexity of a 

sequence higher is the dissimilarity of the patterns within a 

sequence. As a consequence, the SampEn measure provides 

a more reliable way for identification of noisy IMFs. After 

the identification procedure, the NLM algorithm has been 

used to reduce the effect of noise [20]. This algorithm works 

on the principle of averaging similar patches within the 

neighborhood region. NLM has proven its denoising 

performance in the area of image processing[21][22][23] due 

to its relatively simpler structure with better performance 

[21].The level of smoothening depends on the parameters like 

size of the patch, size of the neighborhood and the bandwidth. 

This article uses adaptive adjustment of these parameters for 

each IMFs separately. The parameters for the NLM algorithm 

are adjusted based on the standard deviation and SampEn of 

the IMFs. Such adaptive adjustment of the parameter shows 

improved denoising performance for the noisy ECG signals. 

This article proposes the methodology that utilizes SampEn 

as a reliable measure for detection of noisy IMFs. NLM 

smoothing is used to reduce the effect of noise from the 

detected noisy IMFs. 

Section II describes ECG attributes, CEEMDAN 

algorithm, NLM algorithm, and SampEn in more detail. The 

proposed methodology is discussed in more detail in Section 

III. The performance of the proposed method is evaluated 

with the use of standard performance evaluation metrics and 

presented in Section IV. Finally, discussion and conclusion 

of the proposed approach are presented in Section V and 

Section VI respectively. 

II. METHODOLOGY 

A. ECG acquisition and attributes 

ECG measurements are acquired by placing electrodes at 

specific locations on the surface of the body - the arms, legs 

and chest. The electrical depolarization and repolarization of 

the cardiac cells result in electrical potentials across these 

specific locations. Each depolarization creates a wave of 

electrical charge movement across the cell membrane to 

become less negative. The massive flow of the charge results 

in electrical current that can be detectable by the electrodes. 

Once the depolarization completes, the repolarization starts 

leading to reestablishment of the original condition again. 

Each cycle of depolarization and repolarization leads to 

development of varying electrical potential. These potentials 

are measured by the small electrode patches attached on the 

surface of the body. A typical pattern of ECG signal is shown 

in Fig. 1.  

 
Fig. 1 Normal ECG signal and its component 

 
TABLE I 

Normal ECG parameters 

Segment Duration(ms) Amplitude (mV) 

P wave 80-100 0.05-0.25 

PR interval 120-200 ~ 
QRS complex <120 1-1.5 

QT interval 350-460 ~ 

T wave 160 <0.5 

 

The peak of the potential can be observed on the ECG signal 

called R peak. It represents the depolarization of the 

ventricles muscles. P waves and T waves represent the 

depolarization of atria and repolarization of ventricles 

respectively. Each of these waves occur at specific instances 

and specific durations for a healthy individual. Usual normal 

range of values for these parameters are shown in Table I. 

However, these parameters are affected by noise from i) 

power line interference 2) Electromyogram noise 3) baseline 

wander and 4) relative motion of electrodes on the body 

surface. Hence, the immediate post acquisition steps involve   
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signal denoising for parameter extraction to make further 

inference about cardiac health conditions. 

B. CEEMDAN Algorithm 

CEEMDAN is based on the EEMD procedure with an 

additional advantage of the removal of reconstruction error 

while maintaining the reduced effect of mode mixing. It also 

removes the problem of different numbers of modes that exist 

in EEMD by adaptively controlling the noise. The basis of the 

CEEMDAN is ensemble averaging of the IMFs added with 

white Gaussian noise. The addition or subtraction of the noise 

is adaptively controlled by the amplitude of signal or the 

residual of the signal during the decomposition process. This 

process gradually eliminates the reconstruction error by 

iterative procedure. The steps for the decomposition 

procedure are as follows [11]. 
1. Generate I number of noisy realizations of the original 

signal x(n) by adding white noise w(n) in the signal. The 

noisy realization of the signal is given by 

𝑥𝑖(𝑛) =  𝑥(𝑛) + 𝛼𝑖  𝑤
𝑖(𝑛), 𝑖 = 1,2, … , 𝐼 (1) 

Here, 𝑤𝑖(𝑛) is the ith realization of the white noise, 𝑥𝑖(𝑛) 

is referred to as the ith group of noisy signals. 𝛼𝑖  is the 

parameter that controls the effect of the noise. 

 

2. Decompose the noisy realizations with the use of the 

EMD algorithm. The first order IMF of 𝑥(𝑛) is obtained 

by performing the ensemble average of the first order IMF 

of all I realizations as follows 

𝐼𝑀𝐹1
̅̅ ̅̅ ̅̅ ̅(𝑛) =

1

𝐼
∑ 𝐼𝑀𝐹1

𝑖(𝑛)

𝐼

𝑖=1

(2) 

Where 𝐼𝑀𝐹1
𝑖(𝑛) is the first order IMF of ith realization of 

noisy 𝑥(𝑛). 

3. Manipulate the first order residue by subtracting 𝐼𝑀𝐹1
̅̅ ̅̅ ̅̅ ̅(𝑛) 

from the original signal 𝑥(𝑛) 

𝑟1(𝑛) =  𝑥(𝑛) − 𝐼𝑀𝐹1
̅̅ ̅̅ ̅̅ ̅(𝑛) (3) 

Now, let the operator Ei(.) represent the ith order IMF of  

the signal.  

4. Perform the decomposition of the realization 𝑟1(𝑛) + 

𝛼0𝐸1(𝑤𝑖(𝑛)), 𝑖 = 1,2, . . . , 𝐼 till their first EMD mode to 

obtain second IMF of 𝑥(𝑛) as follows 

𝐼𝑀𝐹2
̅̅ ̅̅ ̅̅ ̅(𝑛) =

1

𝐼
∑ 𝐸1(𝑟1(𝑛)  + 𝛼0𝐸1(𝑤𝑖(𝑛))) 

𝐼

𝑖=1

(4) 

5. Calculate kth order residue 𝑟𝑘(𝑛)as follows 

𝑟𝑘(𝑛) =  𝑟𝑘−1(𝑛) − 𝐼𝑀𝐹𝑘
̅̅ ̅̅ ̅̅ ̅(𝑛), k = 2,3, … , K (5) 

  

6. Perform the decomposition of 𝑟𝑘(𝑛)  + 𝛼𝑘𝐸𝑘(𝑤𝑖(𝑛)),
𝑖 = 1,2, . . . , 𝐼 to obtain 𝑘 + 1th order IMF of 𝑥(𝑛) 

𝐼𝑀𝐹𝑘+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑛) = ∑ 𝐸1 (𝑟𝑘(𝑛)  + 𝛼0𝐸𝑘(𝑤𝑖(𝑛))

𝐼

𝑖=1

(6) 

7. Repetition of Step 5 and Step 6 is performed until the 

situation where the further decomposition is not possible 

due to limitations of the condition of optima that more 

than one minimum or maximum must be present in the 

IMF. The final residue is calculated as 

𝑅(𝑛) =  𝑥(𝑛) − ∑ 𝐼𝑀𝐹𝑘
̅̅ ̅̅ ̅̅ ̅(𝑛)

𝐾

𝑘=1

(7) 

Here 𝐾 is the total number of modes. Hence, the original 

signal is x(n) is expressed as 

𝑥(𝑛) =  𝑅(𝑛) + ∑ 𝐼𝑀𝐹𝑘
̅̅ ̅̅ ̅̅ ̅(𝑛)

𝐾

𝑘=1

(8) 

Equation (8) suggests the CEEMDAN provides an exact 

reconstruction of the signal in terms of IMFs and residue. 

Here 𝛼𝑖 is used to control the SNR at each decomposition 

stage. In a study from Wu & Huang, it is suggested to use a 

small value of 𝛼𝑖 for a signal dominated in high frequency 

whereas relatively larger value for a signal dominated in low 

frequency region[24]. On the other hand, Flandrin et al. 

suggested the same fixed value at each decomposition for a 

specific application[11]. In order to understand the 

decomposition from the CEEMDAN procedure, a simulated 

noisy signal of ECG is used and decomposed into 12 modes 

as shown in Fig. 2

Fig. 2 Decomposition of ECG with SNR of 0 dB using CEEMDAN 
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A noise-free signal d(n) is shown in Fig. (2-a) whereas a noisy 

signal with SNR of 0 dB is shown in Fig. (2-b). The 

corresponding IMFs from 1 to 10 are shown in Fig.  2(c-l). 

Since CEEMDAN adds noise during the decomposition 

process, some noisy IMFs are generated as shown in Fig. 2(c-

d). The number of noisy IMFs is not fixed and the 

determination requires the measure of information. In this 

article, the measure of sample entropy is used to identify such 

noisy IMF for denoising. 

C. NLM Algorithm 

Similar to the natural images, ECG signals are also of 

repetitive nature which makes the possibility for utilization of 

the NLM algorithm for denoising. Here, we use this algorithm 

considering application to one dimensional use case. The 

NLM algorithm tries to recover the true signal d from its 

noisy observations x=d+n, where n is additive white noise 

independent from true signal d. It estimates each true sample 

from its noisy observations by calculating the weighted 

average of the points in the predetermined search 

neighborhood. The algorithm assigns more weights when the 

observations are similar in the search neighborhood. If the 

observations are not similar, a relatively lesser weight is 

assigned while calculation of the average. In other words, 

similar observations are assigned higher weights in order to 

reduce the effect of noise. Averaging over N samples reduces 

the effect of noise by the factor of the square root of N. The 

estimate �̂�(𝑝) for the noisy sample 𝑥(𝑝) located at 𝑝 in NLM 

is given by[20], 

�̂�(𝑝) =
1

𝛺(𝑝)
∑ 𝑤(𝑝, 𝑞)𝑥(𝑞)

𝑞𝜖𝑁(𝑝)

(9) 

where, 𝛺(𝑝) = ∑ 𝑤(𝑝, 𝑞)𝑞  

𝑤(𝑝, 𝑞) = 𝑒𝑥𝑝(−
∑ (𝑥(𝑝 + 𝛿) − 𝑥(𝑞 + 𝛿))2

𝛿𝜖𝑃

2𝐿𝑝𝜆2
) 

Here 𝑝 is the local samples around 𝑥(𝑝), 𝜆 is the bandwidth 

parameter and controls the level of smoothening, 𝐿𝑝 is the 

patch width (2P+1) representing number of samples in the 

local sample 𝑝.  

The graphical representation of the patches is shown in Fig. 

3. Here 𝑝 and 𝑞 are the independent indexes representing the 

locations of patches of length 𝐿𝑝 within 𝑁(𝑝). If the patches 

in the current neighborhood 𝑁(𝑝) are similar then 𝑤(𝑝, 𝑞) 

will be higher and vice versa. The size of the 𝑁(𝑝) is 2S+1. 

The larger 𝑁(𝑝) accommodates relatively more number of 

patches resulting in higher smoothening. 

 

 
Fig. 3 Graphical representation of NLM parameters. The 

patch centered on 𝑝  is compared with patches centered on 𝑞  

within the region of 𝑁(𝑝) 

 

One of the key advantages of the NLM algorithm is that 

the weighting 𝑤(𝑝, 𝑞) depends on the similarity of the 

patches and not on the location of 𝑝 and 𝑞. It results in 

preservation of the edges of similar patches within the local 

structure 𝑁(𝑝) by the process of averaging which is not 

possible with typical filtering. Usually, larger 𝑁(𝑝) 

accommodates more similar patches resulting in more 

effective denoising. However, larger 𝑁 scales to more 

computational requirements.  

 

Parameter adjustment: 

The NLM denoising requires the adjustment of three 

parameters that affect the filtering operation: the patch size 

(Lp), neighborhood sample size N(p), and bandwidth 

parameter 𝜆. Generally, the patch size is termed by half-width 

R and the N(p) is specified as neighborhood half-width S. 

Based on this, the patch size and N(p) can be expressed as 

2P+1 and 2S+1 respectively. Usually, the patch size is 

selected based on the smallest feature required to preserve 

while smoothening. For example, the patch size in the case of 

ECG denoising is selected as the size of the QRS 

complex[20], and N(p) is limited by the computational 

demand. Usually, a larger neighborhood half-width S 

improves the denoising performance, however, it is correlated 

and scaled with the computational demand. Larger S requires 

larger computational time. When N(p) is selected as the entire 

signal length, the algorithm considers the global comparison 

resulting in a truly non-local mean comparison. The 

bandwidth (𝜆) is an important parameter that controls the 

level of smoothening for different patches. Larger λ produces 

excessive smoothening resulting in different patches to look 

similar whereas smaller λ produces poor smoothening 

resulting in large fluctuations to remain present. Deliberate 

selection of 𝜆 is an important aspect of any effective 

denoising application. Unnecessary larger 𝜆 may damage the 

required details whereas unnecessary smaller 𝜆 may damage 

relatively larger features. In an investigation to identify 

overall reasonable choice of 𝜆, Tracey & Miller proposed 

value of 𝜆=0.6 for overall improved performance as inferred 

by the curve of SNRimpr vs. 𝜆/σ [20]. 

One of the limitations of NLM denoising for ECG signals 

is relatively less averaging effect in the region of QRS-

complex. Comparatively higher magnitude of the R wave 

from the nearby samples requires the smaller patch size 

limited to the R peak region for effective filtering operation. 

Larger patch size that includes the Q wave and S wave region 

results in low estimation of averaging effect. It is difficult to 

differentiate this region from bit-to-bit locations. The 

decomposition from CEEMDAN adaptively separates such 

high magnitude high frequency components available in 

different IMFs. Hence parameter adjustment for each IMFs 

based on specific attributes reduces the low averaging effect 

in the nearby region of R peak. 

D. Sample Entropy 

The sample entropy (SampEn) provides a measure of 

randomness without the need for the information about the 

source of randomness. Due to this key advantage, it finds 

applicability in several domains. Though it was initially 

developed for the use of physiological data analysis, it finds 

applications in medicine[25], physiology [26], earth science 

[27], device health monitoring [28], geology [29]. The larger 

the value of SampEn the more is the complexity or 

randomness in the time series and vice versa.  

The method assesses time series for similar patches. 

Relatively frequent and similar patches result in lower value. 

In principle, SampEn (m,r,N) gives a measure of similarity 

on the basis that the two subseries of length m remain similar 

(within the tolerance set as ±r times the time series' standard 
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deviation) to the subseries of length m+1. The values closer 

to zero indicate low complexity and higher regularity in the 

time series. On the other side, higher values indicate 

relatively more randomness or the presence of significant 

amount of Gaussian noise [30]. Essentially, SampEn is the 

negative of the natural logarithm of conditional probability 

that two subseries with length m remain similar for length 

m+1. Unlike approximate entropy measure, SampEn does not 

consider the self-matching and improves the reliability of the 

measure by reducing potential bias. This makes SampEn an 

unbiased measure and eliminates its dependency on self-

matching.  

Following steps are performed to calculate the SampEn of a 

given time series[30]. 

1. Let X represent the time series of uniformly sampled N 

elements as follow 

𝑋 = {𝑥(1), 𝑥(2), . . . , 𝑥(𝑁)} 
2. X is divided into equally sized m dimensional vectors 

X(1), X(2), ..., X(N-m+1). 

where X(i) = {x(i), x(i + 1), … , x(i + m − 1) ,   
i = 1,2, . . . , N − m + 1 

here, m is referred to as an embedded dimension with 

typical values of 1 or 2. 

3. Assign the distance 𝑑𝑖𝑗  between X(i) and X(j) as follow 

   𝑑𝑖𝑗 = 𝑚𝑎𝑥(|𝑋(𝑖 + 𝑘) − 𝑋(𝑗 + 𝑘)|),   

𝑖, 𝑗 = 1,2, . . . , 𝑁 − 𝑚 + 1 ; 𝑖 ≠ 𝑗 

k = 0,1,2, . . . , m − 1 

4. Calculate the number of 𝑑𝑖𝑗  less than r and consider it as 

𝐵𝑖 . Here r is the distance parameter. Usually, it is selected 

between 0.1σ to 0.25σ. 𝐵𝑖  represent the number of m 

dimensional vectors X(i) closer to X(j) by a distance of r. 

Normalize 𝐵𝑖  by the number of vectors as follow 

Bi
m(r)  =

Bi

N − m
, i = 1,2, . . . , N − m + 1; i ≠ j 

5. Calculate the average value of 𝐵𝑖
𝑚(𝑟) as follow 

𝐵𝑚(𝑟) =
1

𝑁 − 𝑚 + 1
∑ 𝐵𝑖

𝑚(𝑟)

𝑁−𝑚+1

𝑖=1

(10) 

6. Increase the value of m by 1 and calculate 𝐵𝑚+1(𝑟) by 

following the steps from 2 to 5. 

7. The value of sample entropy is calculated as follows 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = ln(𝐵𝑚(𝑟)) − 𝑙𝑛(𝐵𝑚+1(𝑟))    (11)  
Here, the value of SampEn depends on the selection of the 

parameters m,r and N. Generally, the statistical property of 

the SampEn is in line with the statistical property of signal 

when N>500. In this article, N=2000, m=2, and r=0.25σ are 

selected for the analysis. 

III. PROPOSED METHOD 

In this article, a novel method for denoising ECG signals is 

proposed which utilizes the measure of SampEn to identify 

the noisy IMF which are subsequently smoothened using the 

NLM algorithm. IMF is categorized as noisy based on the 

value and the specific pattern of SampEn. As discussed 

earlier, it is a measure of the orderly behavior of the time 

series. Usually, higher-order IMFs are information-rich and 

the corresponding SampEn decreases due to the repetitive 

pattern of the ECG signals. In order to identify the number of 

initial IMFs with dominant effect of noise, the IMF number 

is identified from which the first three consecutive decrease 

of SampEn values are observed. Three consecutive samples 

of SampEn are considered to avoid the ambiguity with two 

samples due to possible fluctuations from the influence of 

noise as shown in Fig. 4. The IMFs after order two are 

observed with a consecutive decrease in SampEn which 

corresponds to normal orderly behavior which is in line with 

the theory of EMD. Consecutive decrease in the SampEn 

values represent orderly behavior in subsequent IMFs and 

reduced effect of noise. After the selection of noisy IMF, they 

are smoothened with the use of the NLM algorithm as 

discussed in Subsection II. Reconstruction from CEEMDAN 

decomposition is error-free, hence smoothening of higher-

order noisy IMF reduces the effect of high-frequency noise 

adaptively. Eventually, the smoothened IMFs are combined 

with the other IMFs to get the overall denoised signal. The 

block-diagram representation of the algorithm is shown in 

Fig. 5. 

The steps of the proposed algorithm are described below. 

1. Calculate the IMFs of the signal which are to be processed 

by the CEEMDAN algorithm as described in Section II. 

2.  Calculate the SampEn of each IMF as described in Section 

2.3. Select the parameters m=1 or 2, r=0.25σ of the 

selected IMF. 

3. Arrange the SampEn values in accordance with the 

corresponding IMF number. 

4. Identify the IMF number from which the SampEn 

consistently decreases for at least three consecutive 

samples. Consider each IMF before the start of such 

monotonous decrease in the SampEn as the noisy IMF. 

5. Select the noisy IMF for smoothening using the NLM 

algorithm. Select the parameter of NLM smoothing based 

on the statistical property of the IMF as discussed in 

Section II. 

6. Combine the smoothened IMF with the other IMFs to 

reconstruct the denoised ECG signal. 

 

 
Fig. 4 Sample entropy of IMFs from CEEMDAN 

IV. RESULT 

A dataset from the MIT-BIH repository is used to evaluate 

the effectiveness and robustness of the proposed method. The 

performance of the algorithm is evaluated based on the 

following standard indicators. 

a) Signal to noise ratio (SNR) 

Signal to noise ratio is defined as follows 

SNRdB = 10log
∑ d(n)2N

i=1

∑ (x̂(n)−d(n))2N
i=1

 ,  

Here, �̂�(𝑛) is the denoised signal, d(n) is the noise-free 

signal, N is the length of the signal. In the case of real 

measurements, d(n) is considered as the source data. 

Though the measured data contains noise, it facilitates the 

comparison of performance metrics for denoising 
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algorithms. Higher the SNR better is the denoising 

performance. 

b) Improvement in SNR 

Improvement in SNR is defined as follows 

 

𝑆𝑁𝑅𝑖𝑚𝑝𝑟(𝑑𝐵) = 10𝑙𝑜𝑔
∑ (𝑥(𝑛) − 𝑑(𝑛))2𝑁

𝑖=1

∑ (�̂�(𝑛) − 𝑑(𝑛))2𝑁
𝑖=1

 

c) Root mean square error (RMSE) 

RMSE is defined as following 

𝑅𝑀𝑆𝐸(�̂�, 𝑑) = √
1

𝑁
∑(�̂�(𝑛) − 𝑑(𝑛))2

𝑁

𝑛=1

 

Lower the RMSE better is the estimation performance of 

the method. 

d) Improvement in RMSE 

Improvement in RMSE is defined as follows 

𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑟 = (
𝑅𝑀𝑆𝐸(𝑥, 𝑑) − 𝑅𝑀𝑆𝐸(�̂�, 𝑑)

𝑅𝑀𝑆𝐸(𝑥, 𝑑)
) 

 

 
 

Fig. 5 Block-diagram representation of the proposed method 

A. Analysis of ECG with Normal Sinus Rhythm 

In this analysis, the recorded ECG data of arrhythmia from 

MIT-BIH is considered [30]. The database consists of ECG 

recording of 47 subjects for the duration of 30 minutes at the 

sampling rate of 360 Hz. The datasets named 100m, 101m, 

102m, 117m, and 118m are considered for the denoising 

performance analysis of the proposed algorithm. The excerpt 

of consecutive normal sinus rhythm for at least 10 bits are 

considered here. Fig. 6(a) shows the excerpt from 100m with 

a continuous line in black and noisy data (with 5 dB SNR) 

with a dotted line in black. Fig. 6(b-d) shows denoising using 

CEEMDAN, NLM, and the proposed method respectively. 

Though the real data also contains noise, it is considered to 

be the original signal for comparative analysis. Here, the 

parameters for the NLM algorithm are tuned considering the 

same methodology as described in [20].  The mean of 

SNRimpr versus λ/σ for different noise levels is shown in Fig. 

7. It is observed that relative increase in the bandwidth 

parameter for different input SNR produces variations in 

SNRimpr. Improvement in output SNR is observed when 

input SNR is poor, particularly when λ/σ is in the range 

between 0.2 to 0.5 sigma. The highest improvement of almost 

10 dB can be seen in the case when input SNR is -5 dB. On 

the other side, the decrement in SNRimpr is observed for the 

cases when input SNR is more than 5 dB.  It is indicative of 

deterioration of SNRimpr when the signal is relatively less 

affected by the noise. In order to achieve higher improvement 

for the low SNR, λ=0.5σ is selected for the NLM algorithm. 

The same value of λ is chosen for the proposed method for 

comparative analysis of the results. The change in the other 

two parameters, local patch size (P) and the neighborhood 

(M), do not result in a significant change in the SNRimpr. 

Hence, similar values as from Tracey and Miller, M=2000 

and P=10, are selected [20]. The same values of the 

parameters are used for smoothening of noisy modes from 

CEEMDAN in the proposed method except for the parameter 

bandwidth λ which is separately tuned to adjust for the large 

fluctuations within the modes. Through visual inspection 

from Fig. 6, it is evident that denoising using the NLM 

algorithm and the proposed method are better compared to 

denoising using CEEMDAN alone. For quantitative 

evaluation of performance, Table II shows improvement in 

SNR and improvement in RMSE for the selected excerpt of 

the data presented in Fig. 6. The SNRimpr from the 

CEEMDAN method, NLM algorithm, and the proposed 

method is 4.51, 5.50, and 7.89 respectively. The proposed 

method shows 74.9% and 43.4% better improvement in the 

SNR compared to CEEMDAN and NLM algorithms, 

respectively. The RMSE is calculated by considering the 

error between the original signal and the denoised signal. The 

RSME of the noisy signal is 0.21 whereas the RSME of the 

denoised signal from the proposed method is 0.08. The 

percentage improvement in the RMSE by the proposed 

method is 33.3% and 27.3% higher compared to that observed 

for CEEMDAN and NLM algorithms alone respectively.  

 
TABLE II 

Results of performance for denoising methods with input SNR of 5 dB 

Algorithm SNR of 

a noisy 
signal 

(dB) 

𝑆𝑁𝑅𝑖𝑚𝑝𝑟

 (dB) 

RMS 

error of 
a noisy 

signal 

RMS 

error of a 
denoised 

signal  

Improve-

ment in 
RMSE 

(%) 

CEEMDAN 5 4.51 0.21 0.12 42.8 

NLM 5 5.50 0.21 0.11 47.6 
Proposed 

method 

5 7.89 0.21 0.08 61.9 

      

Now, the analysis of the entire data set is considered to 

evaluate the performance of the proposed algorithm at 

different levels of input SNR. The input SNR is controlled by 

the noise amplitude. In order to consider the performance at 

the population level, the mean and standard deviation of the 

performance metric are calculated. Fig. 8 shows the mean of 

SNRimpr with different levels of input SNR.   
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Fig. 6 (a) Original signal and the noisy signal (b) denoising using NLM algorithm (c) denoising using CEEMDAN (d) denoising using the proposed method 

 

 
 
Fig. 7 Variation in SNRimpr with parameter λ for a different level of input 

SNR 

 
 
Fig. 8 Mean of Improvement in output SNR with different levels of input 

SNR 

 
 

It is observed that the mean of SNRimpr from the proposed 

method is 8.58 for -5 dB of input SNR which is 48.9% and 

6.7% higher than CEEMDAN and NLM algorithms 

respectively. Similarly, it is 52.8% and 6.3% higher for 0 dB, 

53.5%, and 47.1% higher for 5 dB, 46.6%, and 94.7% for 10 

dB of input SNR compared to the denoising using 

CEEMDAN and NLM algorithm respectively. In addition, 

the proposed method shows improved denoising in case of 

15dB of input SNR compared to NLM denoising alone. NLM 

denoising produced deteriorated quality of original ECG 

signal beyond 15dB of input SNR. The percentage 

improvement in the output SNR reduces with the increase in 

the input SNR of the signal. The proposed algorithm provides 

comparatively better performance when the signal is having 

a large influence of noise. Table III shows the improvement 

in RMSE for different levels of input SNR. The observed 

improvement in RMSE at -5dB of input SNR from the 

proposed method is 63.0% which is 36.8% and 4.5% higher 

compared to improvement in RMSE from CEEMDAN and 

NLM denoising methods respectively. Similarly, it is 39.6% 

and 4.2% higher for 0 dB, 40.2%, and 52.2% higher for 5 dB 

compared to the CEEMDAN and NLM denoising methods 

respectively. The negative value of improvement from NLM 

denoising for 15 dB input SNR shows an increase in 

distortion for the set values of the parameters. 
 
 

TABLE III 

Improvement in RMSE with different input SNR 

Algorithm -5 dB 0 dB 5 dB 10 dB 15 dB 

CEEMDAN 0.40 0.40 0.39 0.39 0.38 
NLM 0.60 0.63 0.43 0.05 -0.66 

Proposed  0.63 0.65 0.66 0.61 0.43 

 

B. Analysis of ECG with Atrial Fibrillation  

Atrial fibrillation, often known as AFib or AF prevails in the 

majority of cardiac arrhythmias. An arrhythmia is a condition 

in which the heart beats in an irregular pattern, either too 

slowly or too rapidly. When a person has AF, their heart's 

atria (two upper chambers) beat irregularly, resulting in 

inadequate blood flow from atria to the ventricles (the lower 

two chambers). Because of the uneven beat, the ventricles do 

not have enough time to fill completely which results in 

inadequate blood flow to the lungs and other regions of the 

body. This scenario can sometimes results in the production 

of blood clots, which can raise the risk of a brain stroke. 

Almost one third population with AF is asymptomatic. If the 

detection and treatment is not started in the early stage, it may 

result in formation of blood clots increasing the risk of brain 

stroke. 
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C. Analysis of ECG with Atrial Fibrillation  

Atrial fibrillation, often known as AFib or AF prevails in the 

majority of cardiac arrhythmias. An arrhythmia is a condition 

in which the heart beats in an irregular pattern, either too 

slowly or too rapidly. When a person has AF, their heart's 

atria (two upper chambers) beat irregularly, resulting in 

inadequate blood flow from atria to the ventricles (the lower 

two chambers). Because of the uneven beat, the ventricles do 

not have enough time to fill completely which results in 

inadequate blood flow to the lungs and other regions of the 

body. This scenario can sometimes results in the production 

of blood clots, which can raise the risk of a brain stroke. 

Almost one third population with AF is asymptomatic. If the 

detection and treatment is not started in the early stage, it may 

result in formation of blood clots increasing the risk of brain 

stroke. 

Here, we consider the ECG data containing the episodes 

of AF. The frequency content and the time domain 

characteristics of ECG during AF condition is different from 

the normal sinus rhythm [31]. Fig. 9 shows the typical pattern 

of ECG recording with AF case. It is evident that the RR 

interval as well as the shape of different waveforms (P,Q,R,S) 

have changed leading to variations in parameters. Precise 

estimation of the ECG parameters during this condition 

requires minimum interference from noise. Hence, publicly 

available MIT-BIH atrial fibrillation dataset [32] is used to 

test the effectiveness of the proposed denoising methodology 

against different levels of input noise. The dataset consists of 

two ECG signals recorded for 10 hours duration at a sampling 

of 250 Hz with resolution within 10 millivolt of range. Each 

rhythm is manually annotated for all 23 recordings. Here, we 

have considered the portion of the recording where an episode 

of atrial fibrillation is present and analyzed the performance 

of the proposed algorithm. Table IV shows the comparison of 

the performance of the proposed method for the case of 4 dB 

SNR. The proposed method shows almost 53.4% and 36% 

increase in the output SNR compared to CEEMDAN and 

NLM algorithms alone. 

 
TABLE IV 

Results of performance for denoising methods with input SNR of 4 dB 

Algorithm SNR of a noisy 
signal (dB) 

𝑆𝑁𝑅𝑖𝑚𝑝𝑟

 (dB) 

Improvement in RMSE 
(%) 

CEEMDAN 4 4.27 38.9% 

NLM 4 5.03 43.9% 

Proposed 
method 

4 7.90 59.7% 

    

 
Fig. 9 Sample ECG with AF episode 

 

Further analysis considering different input SNR is shown in 

Table V. The proposed method has shown 26.1% and 21.0% 

performance improvement in the presence of -5 dB input 

SNR compared to CEEMDAN and NLM algorithm alone 

respectively. Similarly, almost 75% and 25.4% improvement 

is observed in the presence of 5 dB input SNR compared to 

CEEMDAN and NLM respectively. An improvement of 

performance with 57.7% (compared to CEEMDAN alone) 

and 10% (compared to NLM alone) is observed in the 

presence of 10dB of input SNR. The proposed algorithm 

shows comparable performance with NLM smoothening 

when the input SNR is 15 dB. 

 
TABLE V 

Improvement in output SNR with different input SNR 

Algorithm -5 dB 0 dB 5 dB 10 dB 15 dB 

CEEMDAN 4.28 4.26 4.27 4.12 3.65 

NLM 4.46 7.27 5.98 5.91 6.35 
Proposed 

method 

5.40 8.84 7.50 6.50 6.37 

      

Next, we analyze the performance comparison considering 

the measure of improvement in the RMSE for the selected AF 

dataset. Table VI shows the improvement in RMSE for 

different levels of input SNR. The observed improvement in 

RMSE at -5dB of input SNR from the proposed method is 

45.0% which is 18.3% and 7.1% higher compared to 

improvement in RMSE from CEEMDAN and NLM 

denoising methods respectively. Similarly, it is 64.1% and 

12.3% higher for 0 dB, 48.7%, 16.0% higher for 5 dB, and 

36.8% and 6.1% higher for 10 dB compared to the 

CEEMDAN and NLM denoising methods respectively. 

 
TABLE VI 

Improvement in RMSE with different input SNR 

Algorithm -5 dB 0 dB 5 dB 10 dB 15 dB 

CEEMDAN 0.38 0.39 0.39 0.38 0.34 
NLM 0.42 0.57 0.50 0.49 -0.16 

Proposed 

method 

0.45 0.64 0.58 0.52 -0.03 

  

D. Verification of the Proposed Method for Improvement in 

the Performance 

The proposed method selects the IMF for denoising based on 

the specific pattern of the SampEn across IMFs. SampEn is 

calculated for each IMF by the normalization procedure as 

follows. 

SampEn𝑛𝑜𝑟𝑚 =
SampEn −  𝑆𝑎𝑚𝑝𝐸𝑛𝑚𝑖𝑛

SampEn𝑚𝑎𝑥 − SampEn𝑚𝑖𝑛
 

Here, SampEn𝑛𝑜𝑟𝑚  is the normalized value of SampEn 

across IMFs from a particular decomposition, 𝑆𝑎𝑚𝑝𝐸𝑛𝑚𝑖𝑛  

and SampEn𝑚𝑎𝑥  are the minimum and maximum SampEn 

across IMFs from a particular decomposition respectively. 

Fig. 10 shows the behavior of SampEn and SNRimpr with 

IMF number. It contains the average value of SNRimpr (on 

y1 axis), normalized SampEn (on y2 axis), and IMF number 

(on the x-axis). The input SNR of 0 dB, 5 dB, 10 dB, and 15 

dB are selected to analyze behavior of SNRimpr with 

denoising from the proposed method as shown in Fig. 10 (a)-

(d) respectively.  

It is observed that the SNRimpr increases with the order 

of the IMF for initial few IMFs. For the case with input SNR 

of 0 dB, the SNRimpr increases with smoothening by NLM 

till the inclusion of IMFs from one to four; afterward it 

gradually decreases with the inclusion of further modes of 

IMFs. In Fig. 10(a), the improvement in the SNR is observed 

till denoising of IMFs up to fourth level. Further smoothening 

beyond the fourth IMF decreases the denoising performance 

as observed from the decreased SNRimpr. The corresponding 
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SampEn increases up to the third IMF representing a possible 

high influence of noise. A significant drop in SampEn is 

observed beyond the third IMF. A similar trend is also 

observed for the input SNR of 5 dB as shown in Fig. 10(b), 

however, the corresponding SampEn starts to drop after the 

second IMF. Almost similar behavior of SampEn is also 

observed for the input SNR of 10 dB and 15 dB as shown in 

Fig. 10(c-d), however, the decrease in the SampEn starts from 

the first IMF in this case. 

 

 
Fig. 10 Analysis of Improvement in SNR with denoising IMFs (a) 

Improvement in SNR with 0 dB input noise-y1 axis, SampEn of 
IMFs-Y2 axis (b)Improvement in SNR with 5 dB input noise-y1 

axis, SampEn of IMFs-Y2 axis (c)Improvement in SNR with 10 dB 

input noise-y1 axis, SampEn of IMFs-Y2 axis (d)Improvement in 
SNR with 15 dB input noise-y1 axis, SampEn of IMFs-Y2 axis 

 

It should be noted that the increase in SNRimpr is not 

significant compared to the cases with input SNR of 0 dB and 

5 dB. Moreover, SampEn has also become almost zero when 

denoising is used from the fourth IMF onwards as observed 

from Fig. 10(c) and Fig. 10(d). It is observed that the 

maximum mean of SNRimpr for 0 dB, 5 dB, 10 dB, and 15 

dB is 8.1, 7.6, 6.2, and 4.8 respectively. It decreases with 

increased input SNR. Intuitively, a signal with high SNR 

contains less noise which results in a corresponding drop for 

further improvement. It is also observed that the mean of 

SNRimpr drops significantly with smoothening of more IMFs 

for higher input SNR as inferred from Fig. 10(c) and Fig. 

10(d). The negative values represent the start of distortion if 

the denoising is continued for the higher order IMFs.   Hence, 

it is important to decide the proper choice of a number of 

IMFs for denoising. This study utilizes the specific pattern of 

consecutive decrease in SampEn. The IMFs after such a 

pattern are considered as information-IMF and excluded from 

the step of smoothening with the use of the NLM algorithm. 

For example, the number of initial IMFs, identified to have 

dominant noise, are 3, 2, 1, and 1 as observed from Fig. 10 

(a-d) respectively. 

V. DISCUSSION 

This article describes the novel method of ECG denoising by 

smoothening of noise corrupted IMFs from the CEEMDAN 

procedure with the use of the well-known NLM algorithm. 

The CEEMDAN decomposition results in initial few IMFs 

with dominant noise components. These IMFs lie usually in 

the lower modes for ECG signals. In order to identify such 

noise dominant IMFs, a particular pattern in the values of 

SampEn is identified. The IMFs with larger SampEn are 

considered to be noisy till the drop in SampEn is observed for 

three consecutive IMFs.  
Here, the noise is assumed to have additive white 

Gaussian nature. The proposed method utilizes the NLM 

algorithm which can effectively reduce such noise by 

averaging the similar patches of a signal over a predefined 

neighborhood. In order to verify the selected number of noisy 

IMFs, SNRimpr versus IMF number is analyzed. The 

improvement in the SNR output becomes insignificant after 

the identified drop pattern in SampEn. In addition, it is also 

observed that the initial number of IMFs required for efficient 

denoising are more for lower input SNR and less for higher 

input SNR. It suggests the requirement of denoising based on 

the level of noise in the signal instead of denoising of the 

fixed number of first few initial IMFs. The effectiveness of 

the proposed method is tested with the datasets comprising 

normal sinus rhythm (without abnormality in ECG) as well as 

rhythm with atrial fibrillation (abnormal ECG patterns). Both 

these rhythms have different attributes and variations in 

power spectral density. The methodology produced almost 

comparable performance for both the cases at different input 

SNR. 

The proposed method shows superior performance 

compared to denoising using NLM or CEEMDAN alone. The 

analysis from the performance index indicates the usefulness 

of the method for ECG with high level of contamination from 

the noise. Generally, the signals from wearable ECG 

applications endured from high interference from the muscle 

noise and movement artifacts that require denoising due to 

poor SNR. Incorporation of such state of the art denoising 

methodologies can improve the estimates of the health 

parameters. Though the method has better denoising 

performance, it requires additional computational resources 

to accommodate the extra layers of processing. Hence, it is 

beneficial to use this method in the scenarios of high noise 

contamination. 

VI. CONCLUSION 

This article presents a novel ECG denoising method based on 

the selective smoothening of IMFs with the use of NLM 

denoising. The selection of noisy IMF is based on the specific 

pattern of the SampEn measure. The proposed method of 

denoising provides better performance compared to 

CEEMDAN and NLM denoising methods alone. The 

comparative analysis suggests that the proposed method is a 

suitable choice for denoising ECG signal especially when the 

signal has low SNR i.e. when the signal is under the heavy 

influence of noise. Though this method improves the 

denoising performance from either NLM or CEEMDAN 

alone, it comes at an additional cost of computational 

requirements for denoising. Apart from the additional 

computational requirement, it also uses the measure of 

SampEn which acts as a decision layer between CEEMDAN 

and NLM techniques. The future study will investigate how 

to render faster computational methods as well as better 

methodologies from an information theory perspective to 

reduce these shortfalls. 
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