TAENG International Journal of Computer Science, 49:3, [JCS 49 3 01

RBFNN Fault Diagnosis Method of Rolling
Bearing Based on Improved Ensemble Empirical
Mode Decomposition and Singular Value
Decomposition

Cheng Zhong, Yu Liu *, Jie-Sheng Wang, Zhong-Feng Li

Abstract—The ensemble empirical mode decomposition
(EEMD) can not completely eliminate the mode mixing
phenomenon due to the noise of the working environment and
weak early fault signals of rolling bearings. When the upper and
lower envelope fitting is carried out by selecting the extreme
points, EEMD can not completely eliminate the mode
mixing. There are some extreme points that affect the fitting
performance and the mean curve. The IMF components
decomposed by EEMD has the same high dimension as the
original fault signal, which leads to the result accuracy of the
classifier. Therefore, a rolling bearing radial basis neural
network (RBFNN) fault diagnosis method based on improved
EEMD-SVD was proposed. When using the EEMD algorithm,
the extreme points affecting the fitting envelope are removed,
and then the fault signals are decomposed to obtain several sets
of intrinsic mode function (IMF). Then these IMF components
as well as the largest energy ratio of several IMF components
are constructed into a new matrix, and then singular value
decomposition (SVD) was adopted to realize the matrix SVD
decomposition so as to obtain a set of low dimensional singular
values. This set of singular values is then used to replace the
original RBFNN fault signal input to perform bearing fault
diagnosis. Finally, simulation experiments based on bearing
failure data from Case Western Reserve University verify the
proposed method.

Index Terms—Rolling bearing; Fault diagnosis; Ensemble
empirical mode decomposition; Singular value decomposition;
Intrinsic mode function; Radial basis function neural network

[. INTRODUCTION

A S an important part of all kinds of modern machinery
and equipment, the' operation safety and operation
condition of rolling bearings are related to workers' safety
and enterprise's economic benefits. Statistics show that
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30%-40% of the fault sources of equipment involving
rotating machinery come from rolling bearings, Therefore, it
is very necessary to monitor the running process of rolling
bearings [1]. The monitor system is mainly to obtain signal
features by analyzing the original fault signals, which can be
roughly divided into four main processes: Collect status
information, analyze information, extract information
characteristics, classification [2]. Generally speaking, when
the rolling bearing vibrates, the signal generated by its
vibration has a lot of information, such as normal vibration
information, fault location and degree information, so how to
analyze and process vibration signals to extract effective fault
information has always been the focus and hot issue of
research [3]. Traditional signal analysis methods are linear
and stationary signals have certain effect. But in practical
engineering applications, due to equipment malfunction, load,
speed, change and the impact of noise, Because the vibration
signals obtained in the general industrial environment are not
stationary or linear signals [4-5], the old signal analysis
methods have certain limitations. In comparison, The time-
frequency domain analysis method has better performance.
Huang proposed a signal analysis method called Empirical
Mode Decomposition, which decomposes the signal into the
sum of IMF components according to the characteristics of
the signal, so as to effectively extract the characteristics of the
signal. The IMF's intentions vary. Due to the advantages of
this method, EMD has been widely used in machine
diagnosis [6]. However, EMD algorithm has many
disadvantages, such as stop condition, end effect and modal
mixing. In order to reduce the influence of patterns on EMD
signal analysis, some researchers proposed an ensemble
Empirical Mode Decomposition (EEMD) method. The main
feature of this method is to add white noise to suppress mode
stratification [7]. Currently, in the study of vibration failure
signal analysis based on EMD and EEMD, some researchers
have proposed an improved HHT and sensitive FMI method
to effectively extract the early friction failure characteristics
of large units [8]. Lu et al. proposed to use EEMD and energy
density in signal analysis and applied them to defect
diagnosis of inner ring of rotating mechanical bearings, and
achieved good results [9]. In Ref. [10], IMF components are
used to obtain envelope signals through Hilbert transform.
After calculating envelope spectrum, high-frequency
amplitude modulation signals generated by locally damaged
rolling bearings are extracted, which achieved better
diagnosis effect than traditional envelope demodulation
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methods. Zhao et al proposed the application of the EMD
based correlation dimension diagnosis method and AR model
based on IMF components [11]. Ref. [12] studied different
pattern recognition methods of bearning fault identification
based on EMD marginal spectrum. An algorithm for
automatic selection of IMF components is proposed in
literature [13]., and its advantages are verified by the
detection results of bearing vibration signals.

EEMD algorithm 1s relatively optimal for signal
decomposition. When it 18 used for fault signal
decomposition, it can effectively decompose components
with a single frequency and effectively solve the mode
mixing phenomenon of signal components. However, a large
amount of noise will be generated in the working
environment of rolling bearings [14], and the early fault
signals are relatively weak. Under the huge noise intervention
coverage, the EEMD algorithm still cannot completely
eliminate the phenomenon of mode aliasing. In addition, each
IMF component has the same high dimension as the original
fault signal. If the obtained IMF component is directly input
into the RBFNN for training without processing, it will
inevitably increase the difficulty of feature extraction and
ultimately affect the diagnosis performance. Aiming at the
existence of above two problems, when using EEMD
algorithm, the part of envelope extreme points affecting the
fitting out the envelope are deleted and the IMF components
to select the largest energy ratio of several IMF component
are used to construct another matrix. Then singular value
decomposition (SVD) was adopted to realize the matrix SVD
decomposition in order to get a set of low dimensional
singular value. The obtained singular values are used to
replace the original fault signals and be fed into RBFNN for
training. Simulation results demonstrate the feasibility of the
above methods.

II. ANALYSIS ON ROLLING BEARING FAULT

Rolling bearings exist in many large mechanical
equipment. Due to the influence of various external working
environment factors and its own working intensity, rolling
bearings have a relatively high probability of failure [15]. At
the same time, the running state of rolling bearings is of
critical significance on the whole mechanical equipment,
Therefore, it is very important to analyze the causes of the
problems of bearings and study how to monitor and diagnose
the location and degree of fault damage [16].

A. Bearing Internal Structure and Fault Types

Bearing 1s mainly composed of inner ring, outer ring,
bearing body and cage. Its internal structure 1s shown n Fig.
1. In particular, the relative failure rate of the first three parts
is the highest, the outer ring is over-matched with the bearing
seat or mechanical shell hole to play a supporting role. The
bearing body, also called a ball, roller or needle roller. Due to
the fastening of the outer ring, the motion of the rolling body
is carried out by rolling friction rather than sliding friction,
which greatly reduces the loss of the rolling body. The shape,
size and number of rolling bodies directly affect the
composite capacity and performance of bearings. In addition
to the orderly arrangement of the rolling body, the cage can
also guide the rotation of the rolling body and improve the
internal lubrication performance of the bearing. In practical

engineering applications, rolling bearings also have different
structures due to different working conditions, objectives and
requirements for bearing structure, load capacity, service
performance and other aspects [17]. The internal parameters
of rolling bearings are listed in Table 1.

B. Fault Characteristic Frequency of Rolling Bearings

When a rolling bearing fails, the contact between the fault
part and other parts of the bearing is periodic. The impact
frequency between such contacts is called the fault
characteristic frequency, and the characteristic {requency 1s
different when the fault occurs at different parts. The
characteristic frequencies of different parts can be calculated
according to the relevant parameters of the internal structure
of the bearing as shown in Fig. 1 and Table 1. The empirical
formula of failure frequency of each part can be obtaned.

The rotation frequency of the cage f,_ :
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The outer ring fault characteristic frequency f, :
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Fig. 1 Schematic diagram of inner structure of rolling bearing.

TABLE 1. INTERNAL PARAMETERS OF ROLLING BEARINGS

Name of parameter Comment declaration

Outer orbit radius (%) Mean diameter of outer orbit.
g ; Diameter of the circle where the center of the
Pltchidiameterds) rolling body is located.

Inner orbit radius (¥ ) Mean diameter of inner orbit.

Roller diameter { d') Average diameter of rolling body.

The Angle between the force direction of the
rolling body and the vertical line of the inner and
outer raceway.

Contact angle ( a)
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C. Reasons of Bearing Faults

(1) Raceway surface metal peeling. When the raceway
surface of rolling bearing is subjected to repeated impact
force, it is easy to produce constantly changing contact
stress. When the stress reaches the limit, the internal structure
surface 1s prone to fatigue spalling. Too large load of the
rolling bearing, the not correct installation, the shaft bending
and other reasons will also cause the raceway spalling.

(2) Plastic deformation. When the rolling bearing works
under a very strong static load or impact load, the local stress
on its surface will easily exceed the yield strength limit of the
material, eventually leading to plastic deformation.

(3) The cage is damaged. Improper assembly or use will
lead to cage deformation, resulting in increased f{riction
between cage and ball, and even some rolling can not roll.

(4) The creep. Due to insufficient interference in the inner
fit of the bearing, nsufficient fastening of the sleeve,
abnormal temperature rise, excessive load of the main engine
and other factors, the inside or outside diameter surface skid,
which results in mirror or discoloration.

(5) Agglutination. Gluing occurs on the contact surface of
the ball and raceway or between the ball, that is to say that the
metal spalling on one surface adheres to another surface.

(6) Rust corrosion. Partial or total surface rust, rolling
body change line rust mainly because of poor storage
environment, 1mproper packaging, insufficient anti-rust
agent, water acid solvent intrusion, or directly with the hand
bearing, etc.

(7) Bearing burn. Due to insufficient lubrication or the use
of inferior lubricating oil, as well as too compact when
assembling bearings and other reasons, it is easy to cause the
surface burn of each part of the bearing and the appearance of
backfire color.

III. EEMD SIGNAL PROCESSING ANALYSIS

Hilbert-Huang transformation is the general term for EMD
and Hilbert time spectrum. The main feature of this transform
is to adaptively transform the signals into several eigenmode
functions by using the original characteristics of the
signals. In order to make up for the old method of frequency
domain analysis, the problem of forming a fixed basis
function by recombinming signals with multiple basis
functions and selecting the best basis 1s solved. Therefore, if
the signal is not linear or stationary, HHT has obvious
advantages compared with other methods. Based on its
unique advantages of adaptive decomposition, such as
selsmic, marine, remote sensing image processing, rotating
machinery fault diagnosis and nonlinear system research.
However, this method also has some problems such as
break-point extension, determination of decomposition
criteria, and inherent limitations of Hilbert demodulation.

A. Instantaneous Freguency

The concept of frequency plays an important role in signal
analysis. A single component signal source has only one
frequency value at any time, and this frequency is called
instantaneous frequency. If it is a multi-component signal,
then there are different instantaneous frequency values at
different times. At present, instantaneous frequency is
defined as:

If there is a signal x(2)=a(t)cos®(t), its instantancous
frequency can be defined as f(t)=(d(argz,)/dt)/2x |
where Z;, is the analytic signal associated with X, . For a

given [unction x(¥) | its Hilbert transform ¥(f) can be
calculated by:
_ 1 gt Xy
y(z) - ;J:w md(g) (5)
Construct an analytic function z(?) :
oy =Xyt WV = I51(z)e'm(t) (6)

where:

¥
a, = 1fxm2 + ym2 L) = arctan(f) {7)

(£)

where, a(t) is the instantaneous amplitude function to reflect
the change of signal energy with time; @(f) 1s a function of
the instantaneous phase to reflect the change of signal
frequency with time.

Theoretically, the imaginary part of the analytic function
z(t) can be defined in different ways, and the Hilbert
transform is the convolution of signals x(t) and 1/¢ soas to
effectively highlight the local properties of the signal x(f) .
The instantaneous frequency @(f) = dp(t)/d(t) is obtained
by taking the derivative of the instantaneous phase function.

B. EMD Decomposition

Since the general non-stationary signal does not satisfy the
basic conditions of the mherent modal function, some
scholars make two assumptions: all complex signals can be
composed of several IMF components that do not affect each
other. Each IMF component does not need to limit its linear
characteristics. The
extreme points and zeros of the curve corresponding to the
eigenvector function is equal to or less than 1, and  the mean

difference between the number of

values of the maximum and mimmum extreme points
corresponding to any point in the curve are 0. The EMD
decomposition process is described as follows:

Step 1: Find all the local maximum and minimum points
of the signal x(z) .

Step 2: Cubic spline interpolation method was used to
perform cubic spline interpolation fitting for all maximum
and minimum points respectively to obtain the upper and
lower envelops. Then the mean curve m1 of the two envelops
was calculated and /= x(¥) -1 was calculated.

Step 3: hy 1s the first IMF component obtained by signal
decomposition. If not, it should replace the above xq and
continue the above two operations k times until the first IMF,
hik component 1s found. At this time, the {irst inherent mode
function is ¢, = #, . Generally, the termination criteria of

EMD algorithm is defined as:

[~ O
SD =i ®)

zo\a,m(nf
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where, this value is between (0.2,0.3) .
Step 4: Separate ¢ (#) from signal x(¢) to get:

K= x(t)—¢ (0 &)
Take #(#) as the x(7) and repeat above three steps for »
times to get the next IMF component ¢, () until the »#-th IMF

component ¢, (¢), then there will be:

() = r{)—c ()

R =10,

Step 5: After # (£) is transformed inte a monctone function,
the cycle ends, and the remaining #(f) is the average level of
the g, which 1s called the residual component. All IMF
components and residual components are superimposed to
form the original signal x(#) .

(10)

(0= e+ (1

EMD decomposition theory can be adaptive to the signal
into a single frequency component of the IMF, which solves
the problem of needing to select basis function in advance to
a certain extent of conventional time-frequency analysis
methods, such as wavelet transform and Fourier transform
because the basic functions are generated according to the
characteristics of the signal itsell from adaptation. However,
in practical engineering application, due to strong noise
interference and weak early fault signals, the IMF
components obtained by simply using EMD algorithm to
decompose the fault signals often have the phenomenon of
mode mixing. On the other hand, in the upper and lower
envelope, due to the uncertainty of the extreme at the end
point, it 1s easy to cause the end point effect. Flowchart of
EMD algorithm is shown in Fig. 2.

| Input data X{t},R=X{t},N=0 |
la
&

| Find all the maximum and minimum points |

\ Cubic spline fitting upper and lower envelope \

| Take the mean M of the upper and lower envelope \

| X{t)=H ][ Xit)=R ]

meets IMF condition

Fig. 2 Flowchart of EMD algorithm.

C. EEMD Decomposition

EEMD decomposition method is mainly to add white noise
into the signals according to the characteristic that the
average value of white noise is zero. EEMD is essentially an
improvement of EMD algorithm, and its core is still to use
EMD for decomposition. The result of decomposition is
processed on average, and the more times of average
processing, the less influence the noise brings to the result of
decomposition. Set the signal as x(f) , and the specific
decomposition steps are described as follows.

Step 1: Set the number of equalization for x(#) M and the
mnitial value i =12, M .

Step 2: Add a certain copy of random white noise #,(¢) to

signal x{¢) to form a new set of signal x, (7).

x,(0)=x{O+n i=12,...M (12)

Step 3: Perform EMD decomposition of this new set of
signals x,(#) to obtain:

£ (0= e, O+, (13)

where, # 1s the number of IMF, ¢, (#) 1s IMFs, and #, (¢) 1s
the participating component.

Step 4: Repeat Step 2-3 M times, each time adding a
certain amplitude of white noise, decompose a series of IMFs.
The IMF component ¢, () of EEMD decomposition was
obtained by means processing the set of IMFs. IMFs:

[{e.. @} {e.. 0} feu, @) n=12..N
cn(t)zﬁicm(t) i=12,  Mn=12..N (14

The flowchart of EEMD algorithm is shown in Fig. 3. For
EEMD, the introduction of white noise makes its
performance very good, but this does not mean that the
introduction of white noise can be arbitrary. When the
amplitude of the introduced white noise is too large, false
components will be generated. If the amplitude is too small,
the local extreme value of the signal will change frequently,
resulting in the phenomenon of mode aliasing. Although
there is no reliable theory to prove it at present, the standard
deviation criterion of white noise energy can be summarized

as:
e e
= [~ pB=|* (15)
eﬂ eﬂ
where, €, represents the standard deviation of the

high-frequency component, €, represents the standard
deviation of the energy of the original signal, and e,
represents the standard deviation of the energy of the white
noise. Generally, the first component is taken as the effective
high-frequency component. & and Z satisfy O<a < /2

In addition, the average processing times M 1s also a very
critical parameter, which satisfies the following relationship
with the relative error € of IMF components.
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Input data X(t}

\ Initialize the population average M \

[ Add the amplitude to the white noise,I=1 |

Xi{t)=X{t}+n\{t)

[ The EMD decom position Xy |

| Get the G \

>

N

[1=l+1]
3

1 M

Cn(t) = H ZCm(r)

i=1

Fig. 3 Flowchart of EEMD algorithm.

77
M
where, o 1s the ratio of white noise to the standard deviation
of the energy of the original signal, and M is the average
number.

In order to verify the difference between EMD, EEMD and
wavelet decomposition (WD) algorithms in the performance
of fault signal decomposition, the simulation expeniments
were designed to verify that EEMD algorithm has better
anti-mode aliasing ability. Construct the simulation signals:

e =

(16)

x(t)= sin{2x 350t )+ sin(27 -150¢)

(7
+sin( 2 -50¢)+0.1- randn (1, length (1))

The signal consists of three sinusoidal signals with
different frequencies signal.
Experimental sampling frequency f5 =1024, sampling point
N =1024. EMD, WD and EEMD were used to decompose
the signals, and the time domain and frequency domain
waveform of each component were plotted.

Fig. 4 shows the result of EMD decomposition. Fig. 4(a)
shows the time domain waveform of the fault signal and the
first four IMF components, and Fig. 4(b) shows the frequency
domain waveform of the first four IMF components. It can be
seen from the frequency domain waveform that IMF1, ITMF2
and IMF3 correspond exactly to the frequency wvalues
350,150 and 5 of the original signal expression. Their
physical meanings are very clear, fully illustrating the
effectiveness of EMD algorithm for signal decomposition.
However, a careful observation of the frequency domain
waveform shows that IMF1 and TMF3 components also have
a peak value at the frequency of about 25. In other words, the
same component has two different frequency values, which is
the phenomenon of mode aliasing. The so-called mode

and a random noise

mixing refers to the failure to effectively separate different
mode components according to the time scale, resulting in the
original different modes appearing in one mode, and the
mode mixing phenomenon of one component will also affect
the following components, which results in the loss of the
actual physical significance of the components. Fig. 5 shows
the distribution of three-layer wavelet packets of analog
signals. Fig. 5(a) shows the waveform reconstructed by
three-layer wave packet decomposition of analog signals, and
Fig. 5(b) is the spectrum of it. The time domain diagram
shows that the reconstructed signal deviates greatly from the
sinusoidal component of the original signal and loses its
physical significance. It is found that there are many peaks in
the frequency of clutter in the spectrum diagram. The main
reason 1s that the wavelet decomposition is represented by the
fixed wavelet basis function. When the original signal differs
greatly from the basis function, the reconstructed signal may
lose the physical meaning of the original signal. The EEMD
decomposition results in Fig. 6 show that it not only has the
advantages of EMD decomposition, original signals of each
component according to the high frequency to low frequency
decomposition in turn out, and first three IMF components
are almost non-existent modal aliasing phenomenon. The
same modal component appears only a peak frequency,
therefore the EEMD modal aliasing resistance 1s stronger.
The performance is better than EMD, wavelet decomposition
and other algorithms.

IV. INFLUENCE ANALYSIS OF EXTREME POINTS ON
UPPER AND LOWER ENVELOPE

The above simulation signals are relatively ideal. But in
the practical engineering applications, because the discrete
degree of different data acquisition or affected by the noise is
too big, some false extreme value point and redundancy
extreme value point will be produced. This kind of extreme
value points will cause great influence on cubic fitting to
form envelope, which easily leads to a phenomenon of
envelope. An actual simulation signal 1s shown as follows.
The sampling frequency f; in this experiment is 800Hz, and
the sampling point N is 100. The simulation signal x(?) 1s
composed of two amplitude modulation signals.

Xy, = c0s{2-500-£+ 0.8 -sin(27 -90-1)) (18)
Xy, = 08(27-1200-2+ 0.6-sin(27 -300-1)) (19
X, =X T X (20

Fig. 7is the time domain waveform of the signal. It can be
seen from Fig. 7 that there are some more obvious redundant
extreme points, such as three points with red star label. If this
kind of extreme value points are used as normal extreme
value points for cubic spline interpolation, which makes it
easy to cause over envelope phenomenon when f{itting the
upper and lower envelope. Fig. 8 shows the simulation of
fitting the upper and lower envelope by cubic spline
interpolation without removing the redundant extreme points.
As can be seen from Fig. 8, due to the influence of the
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redundancy extreme as shown in Fig. 7, the upper and lower
envelop lines cross at multiple points, that is to say that the
over-envelope phenomenon occurs. For example, between
the interval [0,10] and [70,100], the upper and lower
envelops cross heavily. Therefore, as shown in Fig. 9, the
mean curve will fluctuate greatly in the over-envelope region
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Fig. 6 EEMD decomposition results.

Fig. 10 and Fig. 11 show the envelope line and mean curve
after removing the pseudo extreme points and redundant
extreme points. It can be seen that the over-envelope
phenomenon has been effectively solved after removing
these extreme points, and the mean curve is relatively more
stable, and its variation trend is basically consistent with the
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original signal. Therefore, the performance of EEMD
algorithm can be effectively improved if the above extreme
points affecting the mean curve and the envelope are
removed when EEMD algorithm searches for extreme points
to fit the upper and lower envelope.

V. ROLLING BEARING FAULT DIAGNOSIS BASED ON
RBFNN

A. Singular Value Decomposition (SVD)

phenomenon in EMD algorithm. It can also solve the
problem of selecting the basis function in the wavelet
decomposition and the problem of constant multi-resolution
in the traditional time-frequency analysis method. However,
the decomposed intrinsic mode components are characterized
by high dimension and excessively long data. Direct input to
RBFNN for training will affect its extraction of fault features
and the learning rate of neural network. Therefore, the
singular value decomposition (SVD) method is adopted to
process the intrinsic mode components of signals. Finally,

EEMD method can suppress the mode aliasing . ) '
RBFNN is used for fault diagnosis.
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Because the singularity value of any matrix is inherent to
the matrix and has good stability, It also has good application
in image processing and signal analysis. SVD is a method of
orthogonalization of matrices. For any matrix, whether
related to rows or columns, its left and right sides can be
multiplied by an orthogonal matrix for transformation, so that
the linearly dependent rows or columns in the original matrix
can be transformed into linearly independent ones. For any
real matrix A, , assuming its rank is r , singular value
decomposition is performed on 4, , , that is, there are two
orthonormal matrices U and V' and diagonal matrix D to
satisfy:

A=UDV' @n
A, O
where U,ow =luttyeeesu,)] . D, = ,
0 o0
Vo =sVysewewv, ], ¥ =min(m,n), A, =diag(c,,0,,.....0,) ,
o,(i=12,----~r) are called singular values of matrix 4, ,

>4 >0 is an eigenvalue of matrix

and 0',=\/Z,}L|2,122...
A" A. Under the constraint W2Ay =

values of the matrix are unique.
The singular value of a matrix has the following two
characteristics.

> ], 20, the singular

(1) The singular values of the matrix have good stability;

(2) Singular values of matrices are inherent features of
matrices [18].

Based on the characteristics of the singular value of the
matrix, several components of the signal can be decomposed,
and the first five components with the largest energy
proportion can be selected as the eigenvectors of the fault
signal, which are superposed to form an eigenvector, and the
singular value of the matrix can be obtained by singular value
decomposition.

B. Radial Basis Function Neural Network (RBFNN)

Radial basis function neural network (RBFNN) is a
forward network based on function approximation theory. Its
structure is mainly composed of input layer, hidden layer and
output layer. Several signal source nodes constitute the input
layer and the structure of the hidden layer is mainly
determined by the complexity of the problem described. The
transformation function is RBF. The third layer is the output
layer, which is mainly used to give results for input
parameters [19-20]. The structure of RBFNN is shown in Fig.
12. The radial basis function usually uses the Gaussian
function. RBF neural network must be provided before
training, including an input vector, a corresponding output
vector and an extended RBF constant. The training process
can be divided into unsupervised learning (training weights
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for determining entry and exit levels) and supervised learning
{training weights {or determiming entry and exit levels).

C. Fault Diagnosis Simulation Experiments

The early fault signals of rolling bearings are relatively
weak, and the fault features are difficult to extract. However,
the diagnosis of the early fault signals can reduce the loss in
time, so as to avoid the fault developing to a more serious
point in the later stage. Therefore, in this experiment, bearing
fault signal data of Case Western Reserve University were
used to simulate early, middle and late faults by measuring
different damage diameters. The damage diameters were
0.007mm, 0.014mm and 0.021mm, respectively. In order to
verify the effectiveness of the algorithm, bearing early failure
signal data, namely damage diameter of 0.007mm, were
selected to verify the effect. The experimental data
information is listed in Table 2. A total of 4 types of fault are
normal data (represented by 1), rolling body fault
(represented by 2), inner ring fault (represented by 3), and
outer ring fault (represented by 4). A total of 160 groups of
data with damage diameter of 0.007mm are selected, and 40
groups of data are selected for each category. Data sampling
point is 10000, sampling frequency is 48KHz. The complete
flow chart of signal processing is shown in Fig. 13. EEMD
algorithm was used to decompose the signal into 14 IMF
components and eliminate redundant poles and pseudo-poles.
The ratio of energy of the first five IMF components reached
97% through calculation. Therefore, the first five IMF
components were selected as the eigenvector matrix, and the
five eigenvalues o,(=1,2,3,4,5) of each fault signal were
obtained according to the process shown in Fig. 13. 160 sets
of data were processed according to the process shown in Fig.
13, and the data sets were randomly scrambled. Randomly
selects 60 samples from the dataset to train the RBF neural
network, and the remaining 100 samples are used to test the
accuracy of the system.

Hidden layer
Input layer (RBF layer) Output layer
|
o
Xy
O
'xM
i w?
Fig. 12 Structure of radial basis function neural network.
TABIE 2. EXPERIMENTAL DATA INFORMATION TABLE
Bearing Number of  Single sample  Damage to the
fault samples data points diameter Caiggory
Normal 40 10000 0.000 1
Rolling
body fault 40 10000 0.007 2
Ingezring 40 10000 0.007 3
fault
Rl ilng 40 10000 0.007 4
fault

| QOriginal fault signal ‘

EEMD decomposition (Redundant extremum
points and pseudo extremum points are
removed>

IMF1 | IMF2| - | IMFn |

‘ SVD extracts the eigenvalues ‘

o

| Radial basis neural network |

Fig. 13 Fault diagnosis flowchart of improved EEMD-SVD-RBFNN.

Since the output value predicted by the RBFNN for
samples 1s a {loating point number close to the sample label,
So for the intuition of the result, the predicted value is
specified as follows. Suppose the predicted value of the
network for the sample type is x , the sample type is
c,(j=1234).Ifc,-05<x<c,+05, the value of x is
Jj . In other words, if the predicted value falls within the
range of 0.5 in the left and right fields of a certain category, it
is considered that the predicted value of the sample belongs
to this category. Such treatment can improve the feasibility of
the classification system.

First of all, above data sets are used to directly calculate the
IMF components based on EEMD decomposition, wavelet
decomposition and EMD decomposition respectively. Then
they are fed into RBFNN for training without any processing.
The test results are shown in Fig. 14-16. The accuracy was
70%, 48% and 45%, respectively. Fig. 17 shows the test
results of 100 samples after the fault signal components
obtained by improved EEMD decomposition algorithm based
on SVD and RBFNN. The blue cross 1s the sample predicted
value, and the red circle is the sample label. As can be seen
from Fig. 17, there were 7 sets of data prediction errors, that
is to say, the classification accuracy was 93%. Fig. 18 and Fig.
19 show the test results of fault signal components obtained
from wavelet decomposition and EMD decomposition
respectively based on SVD and RBFNN. The test accuracy is
88% and 82% respectively, which is lower than that in Fig.
17, which indicates that improved EEMD has better
performance than wavelet decomposition and EMD
algorithm. In addition, the fault diagnosis accuracy shown in
Fig.17-19 is much higher than that of Fig. 14-16. Therefore,
the proposed EEMD-SVD-RBFNN fault diaghosis model by
eliminating pseudo extreme points can effectively improve
the diagnosis accuracy.
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Fig. 14 Fault diagnosis results of EEMD-RBFNN.
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Fig. 16 Fault diagnosis results of EMD-RBFNN.
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Fig. 17 Fault diagnosis results of improved EEMD-SVD-RBFNN.
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Fig. 19 Fault diagnosis results of EMD-SVD-RBFNN.

VI. CONCLUSION

In this paper, the advantages of EEMD algorithm are
verified by comparing the effect of several time-frequency
analysis algorithms on signal decomposition. However, the
EEMD algorithm is still subject to the influence of
uncontrollable factors such as noise and generates the
phenomenon of mode mixing. By analyzing the influence of
extreme points on the upper and lower envelope and the mean
curve, it is found that some pseudo extreme points and
redundant extreme points can cause the over-envelope
phenomenon, thus affecting the mean curve. Therefore, the
EEMD performance can be optimized by eliminating these
extreme points. Based on the improved EEMD algorithm, the
IMF component matrix was decomposed into the fault
signals and the SVD was performed to obtain several
eigenvalues representing the fault signals. Finally, the
eigenvalues obtained from the decomposition of each signal
are fed into the RBFNN for training. By comparing with the
original processing methods, the simulation results show that
the proposed rolling bearing fault diagnosis method is
effective and feasible.
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