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Abstract—The echo cancellation algorithm plays a vital role in
the acoustic systems, but it has the defects of long convergence
time and high complexity. In this study, a low-complexity
echo suppression scheme based on the coloration effect of the
feedback path is introduced to address these challenges. The
acoustic feedback path is modeled as a coloration filter, and
the spectrum of the echo signal can be estimated according
to the coefficients of the coloration filter and the spectrum of
the loudspeaker signal. This method has two main innovations.
Firstly, a parametric Wiener filter based on the prior signal-to-
echo ratio (SER) is employed to reduce the gain fluctuation and
the residual echo. Secondly, we apply a parameter adaptation
strategy based on posterior SER and a correlation factor to
improve the echo suppression capability and the speech quality.
Experimental results show that the ERLE in the proposed
algorithm is improved by 15dB compared with that in the
classical frequency-domain adaptive filtering (FDAF) algorithm.
The convergence time is shortened from 0.5 s to 0.1 s, and
the computational complexity decreases significantly. Also, this
scheme simulating the acoustic path with a coloration filter has
better robustness for acoustic path mutation.

Index Terms—acoustic echo cancellation, acoustic echo sup-
pression, acoustic coloration effect, the parametric Wiener filter

I. INTRODUCTION

ACOUSTIC echo cancellation is a built-in module for
many acoustic devices such as conference phones,

hearing aids, and smart speakers[1], [2]. The conventional
methods usually apply an adaptive filter to estimate the
acoustic path of a loudspeaker-enclosure-microphone system.
These acoustic echo cancellation algorithms using adaptive
filters mainly involve the normalized least mean square
(NLMS), the affinity propagation (AP), the recursive least
square (RLS), and their improved algorithms[3], [4], [5], [6].
The schemes based on adaptive filters take a long time and
large calculation amount to converge from zero to a stable
acoustic path. Thus, the residual echo seriously affects the
user experience during the initial convergence of the system.

In recent years, acoustic echo cancellation (AEC) algo-
rithms based on neural networks have become a research
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focus[7], [8], [9]. Mehdi Bekrani designed a linear single-
layer feedforward neural network to de-correlate the input
signal and reference signal and to achieve a fast convergence
rate and low misalignment[7]. Seo suggested a stacked deep
neural network (DNN) frame, which includes a set of DNNs
for noise suppression (NS) and AES[8]. The DNN is trained
to map noisy speech signals to clear speech signals in
the scheme. Then, the mapped speech is input into the
DNN, which is designed for AES to suppress the echo
signal. Hao Zhang proposed a bidirectional recurrent long
short-term memory network (BiLSTM) to separate target
speech from echoes[9]. The algorithms mentioned above can
obtain better performance than traditional algorithms due to
a large amount of training. However, the high computational
complexity of neural networks makes it difficult to imple-
ment them on low-power acoustic devices. Therefore, the
acoustic echo suppression (AES) algorithm based on spectral
correction has been widely explored by researchers, with the
advantages of ultra-low computational complexity and fast
convergence characteristics[10], [11], [12].

Similar to noise suppression based on spectral subtraction
[13], [14] and traditional post-nonlinear filter[15], [16], the
AES system corrects the signal spectrum using a series of
parameters in order to achieve echo suppression in the fre-
quency domain[17]. The echo component is caused by feed-
back from a loudspeaker signal to a microphone along the
acoustic path. When the echo signal reaches the microphone,
the loudspeaker signal is time-shifted and the amplitude spec-
trum is modulated. This phenomenon is called the coloration
effect, which is caused by early sound reflection in the room.
Late reflection is generally ignored in this model[18]. A
perceptual acoustic echo suppression (PAES)[19] was pro-
posed by Wallin to estimate the spectral envelope of the echo
signal according to the frequency selection characteristics of
the human auditory system. The Wiener filter was used to
suppress the echo spectrum[10], [20]. Ying proposed a new
AES scheme based on the beta mixture model (BMM)[11],
which estimated the probability of near-end speech existence
under Bayesian rule and introduced the probability of speech
existence on the basis of Wiener filtering in the scheme. In
comparison with the echo suppression schemes based on the
AEC or deep neural network, the main advantage of the AES
algorithm with a spectrum correction technique is that the
acoustic feedback can be suppressed at low computational
complexity. At the same time, the algorithm also has the
characteristics of fast convergence and anti-path mutation,
and therefore, it can be widely applied in low-power acoustic
systems. However, the AES may cause speech distortion and
sound-quality degradation. Achieving the optimal tradeoff
between echo suppression and speech distortion is still a
difficult problem.

To compromise the echo attenuation and speech distor-
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tion of the AES system, we proposed an improved low-
complexity real-time echo suppression algorithm based on
the acoustic coloration effects in this paper. A parametric
Wiener filter based on prior SER estimation was employed to
conduct the real-time echo suppression, and the acoustic echo
spectrum was obtained by a coloration filter. Furthermore, a
parameter adaptation strategy based on posterior SER and
double-talk decision factors was integrated to update the
parameters of the gain control function of the parametric
Wiener filter. The simulation results indicated that the pro-
posed parameter adaptive method effectively improved the
echo suppression performance. The main contributions of
this work are three-fold, as follows:

• We applied the parametric Wiener filter to suppress
feedback from the acoustic system, and the coloration
effect was considered when estimating the echo spec-
trum.

• We introduced a novel parameter adaptation strategy
to adjust the echo attenuation. The parameters were
updated according to posterior SER and a frequency-
domain double-talk decision factor. The factor was
designed to determine the speech interaction state.

• The experimental results illustrated that a 16 dB ERLE
improvement was achieved in comparison with the clas-
sical FDAF algorithm, and a 4 dB ERLE improvement
was achieved in comparison with the Wiener filtering
algorithm based on prior SER while maintaining fast
initial convergence characteristics and robustness of
anti-path mutation.

II. WIENER FILTERING ECHO SUPPRESSION ALGORITHM
BASED ON COLORATION EFFECT

A. Echo suppression algorithm based on Wiener filtering

The echo spectrum is estimated by the echo suppression
algorithm based on spectral correction to eliminate the acous-
tic feedback in combination with the suppression function,
which differs from the algorithm based on an adaptive filter
and no longer requires a high-order filter. The microphone
pick-up signal Y (k) is given by

Y (k) = S(k) +D(k) (1)

where S(k) and D(k) are frequency-domain expressions of
subscriber-side speech and echo, respectively, and k is the
frequency bin index. In addition, the estimation of the near-
end speech is expressed as

Ŝ(k) = GWN (k)Y (k) (2)

where GWN (k) is the gain function of the Wiener filter and
is defined as:

GWN (k) =
|Y (k)|2 − |D̂(k)|2

|Y (k)|2
=

λs(k)

λs(k) + λd(k)
(3)

where |D̂(k)| is the estimated echo amplitude spectrum;
|Y (k)| is the amplitude spectrum of the microphone pick-
up signal; and λs(k) and λd(k) are the power spectra of
the near-end speech and echo, respectively. Prior SER is
introduced to the Wiener filter algorithm to avoid residual

echo such as music noise. The prior SER ζ(k) and posterior
SER γ(k) are defined as

ζ(k) =
E[|S(k)|2]
λd(k)

(4)

γ(k) =
|Y (k)|2

λd(k)
(5)

‘Prior’ and ‘posterior’ refer to the information that depends
on the previous and current frame, respectively. The paramet-
ric Wiener filter in the frequency domain can be defined to
replace GWN (k)[21].

H(k) = (
λs(k)

λs(k) + αλd(k)
)β (6)

where α and β are the filter parameters. If α = β = 1,
Equation (6) degenerates to the traditional Wiener filter; if
α = 1 and β = 1/2, it turns into the square root Wiener filter.
Hence, parameters α and β directly affect the attenuation
characteristics of the Wiener filter. Bringing Equation (4) into
(6), the Wiener filter based on prior SER is given by

H(k) =

(
ζ(k)

ζ(k) + α

)β

(7)

Then, the smoothing factor η1 is introduced to estimate the
prior SER. The estimation of the prior SER ζi(k) is generally
described as

ζ̂i(k) = η1ζi−1(k) + (1− η1)φ(γi(k)− 1) (8)

where i represents the frame number. In addition, φ(u) = u,
if u > 0; otherwise, φ(u) = 0. The prior SER ζi(k) of
i frame in Equation (7) can be estimated by the weighted
combination of prior SER ζi−1(k) of the i−1 frame and
the posterior SER of the i frame. In addition, the selection
of the smoothing factor η1 has a great impact on the final
performance. When η1 is close to 1, the gain function is
smoother and the residual signal is lower. However, the
subscribe-side voice quality is seriously degraded during
double-talk. Empirically, η1 can be set to 0.6[22]. Therefore,
the subscribe-side speech spectrum based on the prior SER
can be obtained as

|Ŝi(k)| = Ĥi(k)|Y (k)| = ζ̂i(k)

ζ̂i(k) + 1
|Y (k)| (9)

B. Echo spectrum estimation based on coloration effect

In audio processing, ‘white’ refers to equal energy of each
frequency bin, and ‘coloration’ generally means that some
frequencies are attenuated, whereas other frequencies are
amplified or not attenuated. Therefore, the acoustic echo path
can be regarded as a coloration filter in the AES system and
the echo signal can be estimated when the response and delay
parameters of the coloration filter are given[23]. An improved
spectrum estimation method based on the coloration effect is
introduced in this paper. The echo is obtained by estimating
the coefficients of the coloration filter, which enhances the
robustness in comparison with the conventional AEC scheme
of estimating the acoustic echo path.

In the AES system, the acoustic echo path is divided
into three parts: 1) direct path (direct transmission from
loudspeaker to microphone), 2) early reflection path, and 3)
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high-density late reflection. The coloration effect of the audio
signal is introduced by direct sound and early reflection. Late
reflection does not or hardly colors the signal. Therefore,
it is reasonable to include only the direct sound and early
reflection parts to estimate the echo signal effectively in
the algorithm. A coloration filter is defined to simulate the
acoustic echo path as follows.

|D̂i(k)| = Ĝi(k)|Xi(k)| (10)

where Ĝi(k) are the coefficients of the coloration filter,
which represent the spectral coloration effect of an acoustic
echo path on a loudspeaker signal spectrum.

The expression of least square estimation of the coloration
filter is

Gi(k)=

∣∣∣∣ E{X∗
i (k)Yi(k)}

E{X∗
i (k)Xi(k)}

∣∣∣∣ (11)

where X∗
i (k) is the complex conjugate of Xi(k). As the

acoustic echo is a time-varying signal, it can be calculated
iteratively as

Ĝi(k)=
Ci(k)

Ri(k)
(12)

where

Ci(k) = αcCi−1(k) + (1− αc) |X∗
i (k)Yi(k)| (13)

Ri(k) = αRRi−1(k) + (1− αR) |X∗
i (k)Xi(k)| (14)

where αc and αR are adjustable smoothing factors.

III. IMPROVED PARAMETRIC WIENER FILTER ECHO
SUPPRESSION ALGORITHM

To improve the performance of the feedback suppression
algorithm, we proposed a parametric Wiener filter, which
is detailed in this section. In the traditional Wiener filter
and the Wiener filter based on prior SER, the parameters α
and β of Equation (7) are fixed. However, there are usually
double-talk and single far-end statuses in the actual AES
system. In a single far-end state, the microphone picks only
echoes from the loudspeaker by a far-end source, and the
SER is generally less than 0 dB. It is necessary to eliminate
the echoes as far as possible. In a double-talk state, the
microphone simultaneously receives a near-end signal and
an echo signal. Sometimes, the energy of the echo signal is
stronger than that of the near-end signal. In this situation, the
attenuation of the AES system should not be very large, even
if SER is less than 0 dB. Otherwise, the near-end speech is
seriously distorted or truncated. Therefore, the parameter of
the Wiener filter should be adjusted adaptively according to
the interaction state of the speech.

A parameter adaptation strategy based on posterior SER
is introduced to meet the requirement mentioned above, and
a double-talk decision factor is fused into the adaptation
process to improve the performance. The block diagram of
the proposed algorithm is shown in Fig. 1.

A. Parameter adaptation based on posterior SER

Compared with β, the parameter α is more flexible and
effective in the gain adjustment of a parametric Wiener filter.
Thus, the α is designed to be an adaptive factor αi, which
is adjusted by the SER of the acoustic environment.

αi = fα(γi(k)) (15)
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Fig. 1. The block diagram of the improved parametric Wiener filtering
echo suppression algorithm

where γi(k) is the posterior SER of the i frame, and i is
the frame number. A smoothing factor αγ is set to prevent
excessive fluctuations in the gain in the parametric Wiener
filter.

γ̃i(k) = αγ · γ̃i−1(k) + (1− αγ) · 10 log γi(k) (16)

In general, αγ uptakes the value from 0.992 to 0.998. γ̃i(k)
is the posterior SER of the i frame after smoothing, and
the SER is converted to the decibel domain. The function
fα(·) represents a non-linear function that is used to calculate
the parameter αi on the basis of the posterior SER. αi is
designed as a piecewise function to reduce the calculation
complexity, as follows.

ai =


5, γ̃i(k) < −5dB

4− 1

5
γ̃i(k),−5dB ≤ γ̃i(k) ≤ 15dB

1, γ̃i(k) > 15dB

(17)

The reasons why this function fα(·) was chosen are as
follows: 1) when posterior SER is relatively small, such as
in the far-end state, or when the energy of the echo signal
is far stronger than that of the near-end signal, the algorithm
requires a large parametric α to suppress echoes; 2) when
the posterior SER is large, such as in a double-talk state
or a single near-end state, the algorithm requires a smaller
parameter α to avoid damage to the near-end signal and to
ensure the quality of speech.

B. A frequency-domain double-talk decision factor

In a double-talk state, the near-end speech has a masking
effect on the residual echo. In this case, the fluency of near-
end speech is important and the existence of residual echo is
allowed. Therefore, the suppression curve of the parametric
Wiener filter should be set to moderate attenuation in this
case. A frequency-domain double-talk detector is proposed
in this section, which designs a correlation decision factor
and applies it to the adaptation process of the parametric
Wiener filter.

The double-talk detection includes two cross-correlation
variables: 1) the correlation coefficient ρyd(k) between the
microphone signal and the estimated echo signal, 2) the
correlation coefficient ρys(k) between the microphone signal
and the output signal of the echo suppressor.

ρyd(k) =
λyd(k)√

λy(k) ·
√
λd(k)

(18)

ρys(k) =
λys(k)√

λy(k) ·
√
λs(k)

(19)
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where λy(k) is the power spectral density (PSD) of the
microphone input signal, λd(k) is the PSD of the estimated
echo signal, and λs(k) is the PSD of the echo suppressor
output signal. According to the orthogonality principle, the
estimated echo signal is close to the true echo when the filter
completely simulates the acoustic feedback path. For the
single-far end, the correlation coefficient of the microphone
input signal Y (k) and the estimated echo signal D̂(k) is close
to 1. Therefore, ρyd(k) tends to be 1. On the other hand, the
output signal Ŝ(k) tends to be 0, and the microphone input
signal is uncorrelated to Ŝ(k). Therefore, ρys(k) between
the echo suppressor output Ŝ(k) and the input signal of the
microphone tends to be 0. In contrast, ρyd(k) decreases and
ρys(k) increases in the double-talk state.

In order to make the changes in ρyd(k) and ρys(k) be in
the same direction, we define

ρ̃ys(k) = 1− ρys(k) (20)

Both ρyd(k) and ρ̃ys(k) decrease under double-talk. In
addition, when we combine correlation coefficients ρyd(k)
and ρ̃ys(k) by weighting factor αϖ, the correlation decision
factor ϖ(k) is given by

ϖ(k) = αϖρyd(k) + (1− αϖ)ρ̃ys(k) (21)

Subsequently, the correlation decision factor ϖ(k) is in-
corporated into the parametric Wiener filter:

H(k) = (
λs(k)

λs(k) + αλd(k)
)max{a·ϖ(k),βmin} (22)

where a is a magnification factor that is generally set to 2.
βmin is the minimum value of β. For a single far-end state
without the near-end speech, ρyd(k) and ρ̃ys(k) both tend
towards 1, and a ·ϖ(k) tends towards 2. The attenuation of
the parametric Wiener filter becomes larger. For a double-
talk state, ρyd(k) and ρ̃ys(k) both tend towards 0. Thus,
a·ϖ(k) tends towards 0, and the attenuation of the parametric
Wiener filter becomes weak to protect the near-end speech
from excessive suppression. βmin is a constant that is set to
[0.5 1.0]. When βmin = 0.5, the parametric Wiener filter
changes to the square root filter. When operating on double-
talk, the suppression is low, and the quality of the near-end
speech is guaranteed. When βmin = 1, the parametric Wiener
filter degenerates to the basic Wiener filter.

C. Calculation complexity

Computational complexity is an important factor for low-
power acoustic processors. In general, fast Fourier trans-
form (FFT) is the most computationally expensive part for
frequency-domain algorithms. For the AEC scheme based
on frequency domain adaptive filter (FLMS or PBFDAF), an
iteration involves at least two FFTs and two IFFTs. Each
FFT or IFFT requires Lwlog2Lw real multiplications, and
the Lw is the filter length. In contrast, the scheme based on
spectral correction (AES) needs three Fourier forward/inverse
transforms and requires 3Nf1log2Nf1 real multiplications,
and the Nf1 is the frame length. The acoustic feedback path
from speaker to microphone in the system is, in general,
multiple times the length of the frame length. For example,
the length of the adaptive filter takes Lw = 512, and the
frame length Nf1 = 128. Then, Lwlog2Lw requires 4608
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Fig. 2. Real-time values of α and SER in single-far and double-talk state

real multiplications, and Nf1log2Nf1 only requires 896 real
multiplications. Therefore, the computational complexity of
the proposed algorithm is much smaller than the algorithms
based on the frequency domain adaptive filter.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental configuration

The tested acoustic echo path was generated by the room
pulse generation toolbox. The length, width, and height of
the room were set to 5, 4, and 3 m, respectively. The acoustic
echo path was truncated to 2048 orders. The test speeches
were selected from the listening materials of the Mandarin
Proficiency Test[24]. The sampling rate of the test signal was
16 kHz with 16-bit accuracy, and the duration of each file
was approximately 20 s.

The proposed algorithm in this paper was compared with
the traditional FDAF method, basic Wiener filtering method,
and Wiener filtering method based on prior SER. The pro-
cessed frame length of the algorithm was 128 samples, with a
frameshift of 50%. The length of the adaptive filter in FDAF
was 2048 orders. The echo return loss enhancement (ERLE)
was calculated to evaluate the performance.

ERLE = 10 lg
d2(n)

e2(n)
(23)

where e(n) is the error signal, and d(n) is the desired
signal. A larger ERLE indicates a better echo cancellation
performance.

B. Parameter α varies according to the SER

Here we randomly choose a speech signal as an example to
illustrate how parameter α changes according to SER. Fig.
2 shows the performances of SER and α in the single-far
state and the double-talk state. In the single-far state, SER
was low(around -40 dB), and α was close to the maximum;
therefore, the attenuation of the parameter Wiener filter was
the largest. In the double-talk state, SER increased and was
followed by near-end voice energy.

When near-end voice energy was large and echo signal was
weak, SER was high, generally larger than 0 dB. Inversely, α
decreased and the attenuation of the parameter Wiener filter
was weakened to avoid speech distortion.

C. Time-frequency comparison of the four algorithms

Similarly, a single test speech is selected here as an
example. Figs. 3 and 4 are the time-domain comparison
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Fig. 3. Time-domain waveforms of the output of four echo suppression
algorithms.

diagram and speech spectrum comparison diagram of the test
signal from four echo suppression algorithms, respectively.

From the time domain waveform of Fig. 3, we can see
that the four algorithms were able to suppress echo. On
the one hand, in comparison with traditional FDAF and the
basic Wiener filtering, the echo suppression algorithm based
on prior SER and the proposed AES algorithm can achieve
significantly smaller residual echo at the single-far end. On
the other hand, the convergence time of the three algorithms
based on spectral correction was significantly less than that
of the traditional FDAF in the first 3 s. The convergence
time is defined as the time from the appearance of echo to
the attenuation of echo being at -40 dB. The convergence
time of FDAF, basic Wiener filtering, Wiener filtering based
on SER, and the improved AES algorithm is 0.54, 0.2, 0.1,
and 0.1 s, respectively.

It can be observed from Fig. 4 that the traditional FDAF
algorithm still had obvious residual echo during the last 10
seconds that is in the double-talk state. The reason is that
the system was easy to diverge due to the presence of near-
end interference signals. Therefore, an double-talk detector
was required to freeze the adaptive filter coefficients. The
three algorithms based on spectral correction had no obvious
residual echo, and do not need an additional control module.

In addition, the residual echo was effectively suppressed
in the single-far end state, and the near-end speech was
still retained when double-talk occurred in the improved
algorithm.

D. ERLE indicators of the four algorithms

In order to evaluate the superiority of the proposed
method, the average ERLE indicators of four algorithms
were compared in this section. We conducted 300 repeated
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Fig. 4. Spectrograms of the output of four echo suppression algorithms.

TABLE I
THE COMPARISON OF THE AVERAGE ERLE OF FOUR ALGORITHMS

Method ERLE in double-talk ERLE in single-talk
FDAF 6.5213 dB 20.2031 dB

Algorithm based on Basic Wiener 11.2657 dB 26.2424 dB
Algorithm based on Prior SER 13.1959 dB 32.7254 dB

Improved AES algorithm 13.7076 dB 36.8510 dB

experiments and the duration of the input speech is 20
s in each experiment. The signal in the first 10 s was
only the far-end signal without the near-end voice, and the
interaction state in the next 10 s was the double-talk. The
experiment was repeated 300 times and Figs. 5 and 6 show
the ERLE indicators of 300 far-end signals in the different
communication states. The ERLE values of four algorithms
are shown on the vertical y-axis, and the serial numbers of
the test speeches are shown on the horizontal x-axis. It can
be observed that the performance of the algorithm proposed
in this paper is better than those of the other three algorithms.
The ranking for the ERLE indicator was as follows: the
proposed AES algorithm>the echo suppression algorithm
based on SER>traditional Wiener filtering algorithm>FDAF
method. The average ERLE indicators of 300 far-end signals
of four algorithms are compared in Table 1. Compared with
the echo suppression algorithm based on SER and the FDAF
method, the improved algorithm achieves 4 dB and 16 dB
ERLE improvement in the single-talk state, respectively.
Even in the double-talk state in the last 10 s, the ERLE in the
improved algorithm was higher than those in the other three
algorithms. Furthermore, we can see that the ERLE in the
single-talk state is higher than that in the double-talk state.
When the near-end speech exists, the suppression curve is set
to moderate attenuation to protect the quality of the near-end
speech.
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Fig. 5. The ERLE indicator of four algorithms in the single-talk state.
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Fig. 6. The ERLE indicator of four algorithms in the double-talk state.

To evaluate the robustness of the system to the sudden
change of the acoustic path, we assumed that the sudden
change of the acoustic path occurred at 10 s. In the sim-
ulation experiment, the original path was multiplied by a
coefficient τ from 10 s to simulate the sudden change in
the acoustic path, τ= −2 in this paper. We selected a test
speech to conduct the experiment, and the duration of the
test signal is 20s (320000 samples). Fig. 7 shows the ERLE
indicators of the four algorithms. As shown in Fig. 7, the
residual echo of FDAF algorithm increased rapidly and the
corresponding ERLE decreased significantly when the echo
path changes suddenly. The echo appeared at 11.5s. Then,
the re-convergence process was completed within about 1
second, and the ERLE increased. Fig. 7 indicates that only
the ERLE of the FDAF method immediately decreased and
the ERLE of the three spectral correction schemes did
not significantly deteriorate when the echo path suddenly
changed. Moreover, the improved algorithm in this paper has
better ERLE than the other three algorithms, showing that the
spectral correction scheme based on the acoustic coloration
effect had high robustness in the acoustic path mutation.

V. CONCLUSION

In this paper, we used the basic Wiener filtering echo
cancellation algorithm as the algorithm framework. Com-
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Fig. 7. The ERLE indicators of four algorithms in the path mutation at
the middle time period.

pared with the scheme based on the adaptive filter, these
algorithms have ultra-low computational complexity and fast
initial convergence characteristics. Firstly, a Wiener filter
echo suppression scheme based on prior SER estimation was
studied and it was extended to the parametric Wiener filter
scheme. Then, we proposed a parameter adaptation strategy
based on posterior SER and double-talk decision factors. The
effectiveness of the proposed algorithm was verified through
simulation experiments and the performance was compared
with the FDAF, the basic Wiener filter algorithm, and the
scheme based on prior SER. The simulation results show
that the introduction of a parameter adaptation strategy based
on posterior SER and double-talk decision factors in the
parametric Wiener filter can effectively suppress the echo.
Compared with the FDAF algorithm, the proposed algorithm
improved ERLE by 16 dB with only 1/10th computational
complexity. It also reduced the initial convergence time from
0.5 s to 0.1 s, and has high robustness to path mutation.
Furthermore, the ERLE in the proposed algorithm was in-
creased by 4 dB in comparison with that in the traditional
scheme based on prior SER. Future studies would be focused
on the multi-channel and low-complexity echo cancellation
algorithms.
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