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Abstract— The short-term hydrothermal scheduling (STHS) 

is a complex non-linear, non-convex and high-dimensional 

mathematical optimization problem. Due to the fact that the 

original chimp optimization algorithm (ChOA) is likely to fall 

into local optimum and has the disadvantage of low 

population diversity, an improved chimp optimization 

algorithm (IChOA) is proposed to solve the STHS problem. 

Firstly, Logistic-Tent chaotic mapping is employed to initialize 

the population and increase the population diversity. Then a 

new nonlinear convergence factor is introduced to make the 

optimization search process more applicable to STHS 

problems. Next, particle swarm algorithm (PSO) and 

gravitational search algorithm (GSA) are combined to 

enhance the shortcoming and balance the global search ability 

and local exploration ability of ChOA. Moreover, Cauchy 

mutation and opposition-based learning strategy are 

supplemented as perturbation interference when the optimal 

position is not updated to improve the ability to leap out of the 

local optimum. Finally, a graded optimization strategy is 

adopted for the constraint handing of dynamic reservoir 

balance and thermal power balance. Three standard 

hydrothermal power systems are utilized to verify the 

practicability and validity of the proposed method. Results of 

simulations reveal that IChOA has significant competitive 

advantages in addressing the STHS problem. 

Index Terms— short-term hydrothermal scheduling 

(STHS), Logistic-Tent map, Cuachy mutation, opposition-

based learning strategy, graded optimization strategy. 

I. INTRODUCTION 

n recent years, the rise of the national economic level and 

the expansion of the power system have attracted 

extensive attention, and the issue of energy consumption in 

social production and life cannot be ignored. The short-term 

hydrothermal scheduling (STHS) is one of the effective 

technical means to ensure the safe, stable and economic 
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operation of the power system, whose task is to obtain the 

optimal scheduling scheme with the lowest fuel cost while 

meeting the given constraints of the power system [1]. 

Hydropower is a pollution-free and sustainable energy 

source, so the cost of STHS is mainly generated by thermal 

plants. The STHS problem is essentially a multivariate, 

high-dimensional, real-time dynamic non-linear and non-

convex mathematical optimization problem with complex 

constraint limitations [2, 3]. Due to the intricate structure 

between cascade hydropower plants, the valve point effect 

of thermal plants and the transmission loss in the power 

system, the nonlinearity, non-smoothness and non-convex 

characteristics of the STHS problem are more prominent 

and more difficult to solve. 

At present, researchers have proposed numerous solutions 

to solve the STHS problem, which can be divided into two 

categories: traditional classical optimization algorithms and 

artificial intelligence optimization algorithms. Conventional 

algorithms include linear programming (LP) [4], nonlinear 

programming (NLP) [5], dynamic programming (DP) [6], 

mixed integer programming (MIP) [7], Lagrange relaxation 

(LR) [8], gradient search techniques (GS) [9] and Newton’s 

method [10]. The LP is only applicable to the study of 

extreme value problems with linear objective functions 

under linear constraints, and using approximate linearization 

to deal with nonlinear problems will reduce the solution 

accuracy. The NLP is long in computation time, slow in 

convergence, and it requires the objective function to be 

continuously differentiable. When dealing with large-scale 

optimization problems, the DP is highly prone to 

dimensional disaster, which may lead to dire consequences 

that are difficult to control. And the MIP will exhibit the 

drawback of low computational efficiency. The LR method 

is more effective in dealing with large-scale problems, but 

the pairwise gap oscillation may occur during convergence, 

making the problem diverge. The GS is applicable to 

segmented linear objective functions and impractical to be 

applied to the SHTS problem. The Newton’s method is one 

of the most promising ways to solve nonlinear optimization 

problems, but the repeated computation of Jacobi matrices 

increases the computational complexity and is no longer as 

applicable for large-scale problems. 

On the contrary, modern meta-heuristic intelligent 

optimization algorithms that has robust structure and strong 

robustness are less restrictive for solving the STHS problem 

and do not require continuous differentiability of the 

objective function, which are more adaptable and systematic, 

such as genetic algorithm (GA) [11], differential evolution 

(DE) [12], particle swarm optimization (PSO) [13], 

Hopfield neural network (HNN) [14], artificial bee colony 

algorithm (ABC) [15] and grasshopper optimization 

algorithm (GOA) [16], etc. Nonetheless, there still exist 

some shortcomings in the basic artificial optimization 

algorithms, such as slow convergence speed, poor global 
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search capability or weak local search capability, etc. 

Consequently, researchers have proposed a variety of 

improvement strategies for the defects of different 

algorithms and successfully applied them to the STHS 

problem. For instance, modified chaotic differential 

evolution (MCDE) [17], optimal gamma based genetic 

algorithm (OGB-GA) [18], modified cuckoo search 

algorithm (MCSA) [19], modified social group optimization 

(MSGO) [20], accelerated particle swarm optimization 

(APSO) [21] and a hybrid of real coded genetic algorithm 

and artificial fish swarm algorithm (RCGA-AFSA) [22], etc. 

And the effectiveness of these improved algorithms has 

been verified through specific simulation experiments. 

Meanwhile, the superiority of the performance of the new 

nature-inspired artificial intelligence algorithms in dealing 

with multi-dimensional and multi-module mathematical 

optimization problems is also demonstrated. 

Chimp optimization algorithm (ChOA) [23] is a novel 

metaheuristic optimization algorithm proposed by Khishe 

and Mosavi et al. based on chimp group hunting behavior in 

2020. Compared with other swarm intelligence algorithms, 

ChOA not only has fewer parameters to be regulated , but 

also is easy to understand and implement. Despite all this, 

there is still much room for improvement in its convergence 

speed and optimization accuracy. The improvement ideas 

can take example by some improvement strategies of similar 

algorithms as whale optimization algorithm (WOA) [24] 

and gray wolf optimizer (GWO) [25]. For example, an 

improved whale optimization algorithm based on nonlinear 

adaptive weight and golden sine operator (NGS-WOA) [26] 

has been proposed aiming at the shortcomings of WOA such 

as low precision and slow convergence speed. In addition, 

an improved grey wolf optimizer based on tracking mode 

(TGWO) and seeking mode (SGWO) [27] has been 

proposed to improve the diversity of the population and the 

ability of the algorithm to balance exploration and 

exploitation. This paper proposes an improved chimp 

optimization algorithm (IChOA) to solve the STHS problem: 

firstly, initialize chimp individuals using Logistic-Tent 

chaotic mapping to make the population individuals as 

uniformly distributed as possible; secondly, come up with a 

nonlinear convergence factor update strategy to balance the 

global search and local search capabilities of the algorithm; 

thirdly, combine the particle swarm optimization (PSO) [28] 

and gravitational search algorithm (GSA) [29, 30] speed 

update formulation to improve the global search ability of 

ChOA; last, integrate Cauchy mutation and opposition-

based learning strategy and carry out disturbance mutation 

when the optimal position remains unchanged. 

The remaining chapters of this article are arranged as 

follows. The mathematical formulation of STHS including 

constraints is presented in section II. Section III makes a 

detailed overview of the ChOA and its improvement 

strategies. Section IV introduces the constraints handling 

methods and the applications of IChOA for the STHS 

problem. Section V presents the simulation results and 

discussion. The last section summarizes the former parts and 

makes an outlook analysis. 

II. THE PROBLEM FORMULATION 

A. The Objective Function 

The main goal of STHS is to find the optimal scheduling 

solution and minimize the total operation cost of the power 

system on the premise of meeting the power system 

constraints. The objective function of the STHS problem is 

expressed as minimum fuel cost, and its formula is as 

follows: 

 
1 1

min ( )
sT N

tp
C Cit it

t i

F F P
 

   (1) 

where FC represents the total fuel cost in the whole 
scheduling cycle, T represents the total hours, Ns is the total 
number of thermal plants, P

tp 

it  shows the power output of ith 
thermal plant at t hour, FCit(P

tp 

it ) shows the fuel expense of 
ith thermal plant at t hour. The fuel cost ignoring the valve 
point effect is represented by the following quadratic 
function: 

 2( ) ( )tp tp tp
Cit it i it i it iF P a P b P c     (2) 

Ignoring the valve point effect can not fully reflect the 

real situation. The power system operation cost function 

considering valve point effect is composed of the 

superposition of smooth quadratic function and sinusoidal 

function, showing nonlinear characteristics, which is 

expressed as follows: 
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where ai, bi, ci, di, ei are cost the coefficients of the ith 

generator unit, an P
tp 

i,min corresponds to the minimum output 

power of thermal plant i. 

B. The Constraints 

The above objective functions are all subject to system 

constraints include equality constraints and inequality 

constraints, which are indispensable to ensure the normal 

operation of the STHS system. 

1) The equality constraints 

Considering the transmission loss of power system, the 

power system must maintain a dynamic balance among the 

total output power, transmission loss and real load demand. 

 
1
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where Nh is the total amount of hydropower plants, P
hp 

it  

represents the output power of ith hydropower plant at t 

hour, PDt represents the total actual load demand of the 

power system in period t and PLt represents the total 

transmission loss during time interval t. 

The power generation capacity of a hydropower plant is 

determined by both the discharge volume and the reservoir 

capacity value of the hydropower plant, which is calculated 

as follows: 
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where V
hp 

jt  is the reservoir capacity of hydropower plant j at 

t hour, Q
hp 

jt  is the discharge volume of hydropower plant j at 

t hour, and Cj1, Cj2, Cj3, Cj4, Cj5, Cj6 are the constant 

coefficients of hydropower plant j. 

The reservoir capacity value of the hydropower plant is 

constantly changing at each time, which is expressed by the 

following equation: 
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where I
hp 

jt  and S
hp 

jt  are the inflow and spillage of hydropower 

plant j at t hour respectively, τm indicates the drainage delay 

time between cascade hydropower stations. Rj stands for 

the number of connected reservoirs between the current 

reservoir and the upper reservoir. The water spillage is not 

considered and is made to zero in this paper. 

The transmission loss of power system PLt can be 

calculated by the Krons formula [31], where Bij, Bi0 and B00 

represent the transmission loss coefficients, N is the total 

number of thermal plants and hydropower plants. 

 
0 00
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There is a special restriction that needs to be strictly 

enforced, that is, the storage capacity values of all reservoirs 

at the start and end of the dispatch must strictly comply with 

the initial and final reservoir volume. 

 
0 ,initial ,final

,
hp hp hp hp

j j jT j
V V V V    (8) 

where V
hp 

j,initial  and V
hp 

j,final  are the initial and final reservoir 

volume of hydropower plant j respectively. 

2) The inequality constraints 

The output power of each thermal plant and hydropower 

plant cannot be less than the minimum output power and 

cannot exceed the maximum output power.  

 
,min ,max

     1, 2,..., , 1, 2,...,
tp tp tp
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where P
tp 

i,min and P
tp 

i,max are the minimum and maximum power 

output of thermal plant i respectively, P
hp 

j,min and P
tp 

j,max are the 

minimum and maximum power output of hydropower plant 

j respectively. 

The real-time reservoir capacity of each reservoir must be 

within the given range, and it is not allowed to be lower than 

V
hp 

j,min or higher than V
hp 

j,max. 
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   1, 2,..., , 1, 2,...,
hp hp hp

j jt j h
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Similarly, the discharge volume of hydropower plants 

should also be limited between the maximum discharge 

volume Q
hp 

j,max and minimum discharge volume Q
hp 

j,min. 
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III. THE OVERVIEW OF CHOA AND ITS IMPROVEMENT  

A. Chimp Optimization Algorithm 

ChOA is inspired by the group hunting behavior of 

chimps, which achieve the purpose of solving problems by 

simulating the cooperative hunting behavior of four types of 

chimps: the attacker, the barrier, the chaser and the driver. 

Different roles undertake different tasks in the procedure of 

hunting. According to reference[23], the mathematical 

model of ChOA is as follows. 

1) Driving and Chasing the Prey 

During hunting process, each individual chimp can 

change its position in the space around the prey randomly, 

which is mathematically described as follows. 

 . ( ) . ( )
prey chimp

D C X t m X t    (13) 

 ( 1) ( ) .
chimp chimp

X t X t A D     (14) 

where t denotes the current iteration, Xprey stands for the 

vector of prey position and Xchimp represents the position 

vector of a chimp, A, m and C are the coefficients vectors 

that are calculated by Eq.(15), (16) and (17), respectively. 

 
1

2 .A f r f    (15) 

 _m Chaotic value   (16) 
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2C r   (17) 

where r1 and r2 are random vectors in the range of [0, 1], f 

is the convergence factor, whose value decreases linearly 

from 2 to 0 as the number of iterations increases, m is the 

chaotic mapping vector, which represents the influence of 

the sexual motivation of  chimps in the hunting process. 

A is a random vector that determines the distance between 

chimpanzees and prey, whose value is a random number 

between [-f, f]. When |A| ≤ 1, it indicates that the chimp 

individual tends to the prey position; when |A| > 1, it 

indicates that the chimp individual deviates from the prey 

position and searches for prey in a broader range. 

C is the control coefficient for the chimp to drive and 

chase prey, who is a random number between [0, 2]. When 

C < 1, it means that the influence of the prey position prey 

on the chimp position is weakened, and vice versa. 

2) Attacking Mode  

Suppose that the initial population of chimps is NP, then 

the position of the ith chimp is Xi. After initializing the 

population, the optimal solution XAttacker, the second optimal 

solution XBarrier, the third optimal solution XChaser and the 

fourth optimal solution XDriver are determined. The positions 

of other chimps are renewed according to the positions of 

the four chimps, which as described by Eq.(18)-(20) below. 
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where X refers to the position vector of the current chimp, 

X(t+1) refers to the updated position vector of  the current 

chimp. 

3) Attacking and Searching for the Prey  

In the final stage of hunting process, on the one hand, 

chimps revise their positions depending upon the positions 

of the attacker, the barrier, the chaser and the driver and 

attack the prey; on the other hand, chimps demonstrate the 

exploration process through dispersing in search of the prey. 

4) Social Incentive 

After acquiring food satisfaction, social motivation causes 

individual chimps to relinquish their hunting duties and 

attempt to obtain food forcibly and disorderly. The chaotic 

behavior in final stage contributes ChOA to surmount the 

drawbacks of falling into local optimization and slow 

convergence when solving high-dimensional problems. 
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where μ is a stochastic number between [0,1]. 
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B. Improved Chimp Optimization Algorithm 

Despite the fact that ChOA outperforms the similar 

algorithms WOA and GWO in terms of algorithm 

performance, there are still some drawbacks. Aiming at 

improving the fundamental defects of the basic ChOA, such 

as relying on the initial population, easily falling into local 

optimum and slow convergence speed, this paper introduces 

the following corresponding strategies. 

1) Logistic-Tent Chaotic initialization 

While ChOA is used to address STHS problem, the rand 

function is adopted to initialize the population randomly, 

which results in a low population traversal and uneven 

distribution in the solution space. Thus it will affect the 

search efficiency and solution accuracy of the algorithm. In 

this paper, Logistic-Tent chaotic mapping is introduced to 

initialize the population, so as to improve the population 

diversity, make the initial chimp individuals more uniformly 

distributed throughout the whole solution space and 

discover the position of the superior solution more quickly. 

Therefore, the convergence speed of the algorithm is 

accelerated and the accuracy of the algorithm in finding the 

superiority is enhanced. The mathematical formulation of 

Logistic-tent chaotic mapping is expressed as follows. 
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  (22) 

where r is introduced to control the proportion of Logistic 

mapping and Tent mapping. The initial value m0 is 

generated at random between [0, 1], and then update m 

according to Eq.(22). 

2) Nonlinear factor update strategy 

Global search capability and local exploitation capability 

are two basic attributes to measure the performance of 

heuristic intelligence algorithms, and how to balance these 

two attributes is the crucial to algorithm performance 

improvement. From the description of the ChOA in the 

previous chapter, it is evident that when |A| > 1, chimp 

individuals search for prey in a scattered manner, 

corresponding to the global search; when |A| ≤ 1, chimp 

individuals tend to prey, corresponding to the local search. 

According to Eq.(15), the value of A depends on the 

convergence factor f. The convergence factor f of the 

original ChOA decreases linearly from 2 to 0 as the iteration 

number increasing, and this linear change cannot be adapted 

to the optimization-seeking process of ChOA for the STHS 

problem, which will lead to slow convergence and fall into 

local optimum prematurely. 

In order to balance the global search and local search 

capabilities of ChOA and make it more practically 

applicable to the STHS problem, this paper proposes a 

nonlinear convergence factor update strategy with the 

mathematical expression shown below. 
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  (23) 

where finitial is the initial value of the convergence factor, t is 

the current iteration number, tmax is the maximum iteration 

number, and λ is the nonlinear adjustment factor. 

3) Position update adjustment strategy 

The basic ChOA follows the leaders of four types of 

chimp individuals when performing position updating, 

namely the attacker, the barrier, the chaser and the driver. 

Howerver, this update mechanism does not take each 

individual chimp's own search experience into account, 

resulting in the algorithm easily falling into local optimality 

and low search accuracy. The search mechanism of PSO 

and GSA are combined in a certain way, which can 

compensate for the principle deficiencies of ChOA and 

enhance the exploration and exploitation capabilities of the 

algorithm. 

a) Particle Swarm Optimization (PSO) 

PSO [28] is an artificial intelligence algorithm that 

simulates birds predation proposed by Kennedy and 

Eberhart in 1995, whose basic concept is to search for the 

optimal solution through collaboration and information 

sharing among individuals in the population. Anyone of 

particles can adjust its own direction of movement 

according to its own experience and memory, learn and 

remenber the information from other particles in the group. 

In short, all the particles in the swarm continuously adjust 

their velocity and position according to their historical 

optimal position and the global optimal position shared by 

the whole swarm. The velocity update equation of the 

particles is as follows. 
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t t P X
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where ω is the inertia factor; P
d 

i,best is the historical optimal 

position of the ith particle; G
d 

i,best  is the current global 

optimal position of the particle swarm; c1 and c2 represent 

the learning factor constants; r1 and r2 are random numbers 

transformed in the range [0,1]. 

b) Gravitational Search Algorithm (GSA) 

GSA [29] is a meta-heuristic intelligent optimization 

algorithm based on Newton's law of universal gravitation 

proposed by Rashdei et al. in 2009, which mainly uses the 

law of gravity between two objects to guide the motion 

optimization of each particle and search for the optimal 

solution, with outstanding global optimization capability. 

The gravitational force between two particles is 

proportional to the mass of the two particles and inversely 

proportional to the distance between the two particles. The 

gravitational force between the particles and the related 

parameters are calculated as follows. 

    
   
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ij j i

ij

M t M t
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N
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F r F tt
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where F
d 

ij(t) is the gravitational force between particle i and 

j; Mi(t) and Mj(t) are the masses of particle i and j 

respectively; Rij is the Euclidean distance;  is a constant 

close to 0; F
d 

i (t) is the weighted sum of the gravitational 

effect of i by other particles; r3 is a random number 

between [0, 1]. 

The gravitational constant G(t) and the mass of the 

particle Mi(t) are calculated by the following equation. 

  
0
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t
a

t
G t G e
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where a is a constant, Fiti(t) is the fitness function value of 

particle i in the t generation, Fbest(t) and Fworst(t) represent 

the best value and the worst value of the fitness in the t 

generation respectively. a
d 

i (t) denotes the acceleration. 

The speed update formula of GSA is shown below. r4 is a 

random number between [0, 1]. 

      
4

1
d d d

Gi Gi i
v t r v t a t     (31) 

c) Position update mechanism 

This paper proposes a new position update mechanism. 

The individual memory function of PSO is introduced into 

the position update formulation of ChOA. At the same time, 

using the characteristic that GSA is not affected by 

historical and global optimal particle, the global search 

ability and local development ability of the algorithm are 

effectively balanced. The new position update method is 

shown below. 

 

 

1 2 3 4

1 2

( 1)
4

( 1) 1           d d

Pi Gi

X X X X
X t

b v t b v t

  
 

  

  (32) 

where b1 and b2 are random numbers between [0,1], and 

satisfy b1+b2=1. 

4) Cauchy mutation and Opposition-based learning 

When ChOA falls into the local optimum and the optimal 

solution is not updated. Cauchy mutation and Opposition-

based learning strategies are introduced on the basis of the 

above improvement methods. When the specified number of 

iterations has been reached and the optimal solution has not 

been updated, the target position is perturbed and updated 

according to the probability to make the algorithm jump out 

of the local optimum and further enhance the global search 

capability of the algorithm. 

Opposition-based learning [32] is a new computational 

intelligence technique proposed by Tizhoosh in 2005, which 

aims to find the corresponding reverse solution based on the 

current optimal solution, and select and preserve the better 

solution by evaluation. The mathematical representation of 

incorporating Opposition-based learning into ChOA is as 

follows. 

 
    

        
best best

best best 1 best best

*

**
1

X t ub r lb X t

X t X t b X t X t

   

    
  (33) 

where X 
* 

best(t) is the inverse of the optimal solution, ub and 

lb are the upper and lower bounds respectively, r is the 

random number matrix and b1 is the information exchange 

coefficient [33], which is expressed as follows. 

 
1

max

1

t
t

b
t

 
 
 
 

  (34) 

The Cauchy operator is inserted into the position update 

formula of ChOA to exploit the perturbation ability of the 

Cauchy operator and strengthen the ability of the algorithm 

to jump out of the local optimum. 

        
best best best

0,11X t X t Cauchy X t      (35) 

where Cauchy(0,1) is the standard Cauchy distribution. 

Then whether to use Opposition-based learning strategy 

or Cauchy mutation method is determined by the selection 

probability PS [33], which is expressed as follows. 

 

20

max

exp 1
S

t
P

t
   

 
 
 

  (36) 

where θ is the adjustment factor whose value is taken as 

0.05. 

If PS > rand, choose Opposition-based learning strategy to 

update position, otherwise choose Cauchy mutation to 

update position. 

Although the above two perturbation strategies enhance 

the ability of the algorithm to leap out of the local space, it 

cannot guarantee that the new position after the 

perturbation variation is better than the original position, so 

a greedy mechanism is added after the perturbation update 

to retain the optimal target position. 

 
   

   
new new best

best

best new best

,

,

X F X F X
X

X F X F X










  (37) 

The flow chart of the IChOA combined with the above 

improvement measures is shown in Fig. 1. 

Begin

t=0，k=0，tmax=500，kmax=10

Logistic-Tent Chaotic initialization

t =t+1

Determine the attacker, barrier, 

chaser and driver individuals 

Update position with Eq.(32)

Ps > rand

k < kmax

Update position by Eq.(32)

Update position 

by Eq.(33)
Xbest(t) = Xbest(t-1)

k = k+1
Xbest(t) = Xbest(t-1)

k=0

Update position 

by Eq.(35)

k = k+1 k=0

t tmax

Output

End

Y N

Y N

NY

Y N

Y

N

 
Fig. 1.The flow chart of IChOA 

C. Test for IChOA 

In this paper, 13 benchmark test functions with different 

characteristics in TABEL I are selected for simulation 

experiment analysis to verify the effectiveness and 

robustness of the proposed algorithm. TABEL I presents the 

basic information of the 13 benchmark test functions in 

detail, including mathematical expressions, definition 

domains and optimal values, among which F1-F7 are 

continuous unimodal functions to test the convergence 
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accuracy of the algorithm, and F8-F13 are continuous 

multimodal functions with multiple local extremes to test 

the global search capability of the algorithm. 

In order to test the optimization performance of IChOA 

objectively and fairly, the basic parameters of the algorithm 

are set the same: population size N=50, number of 

iterations Kmax=500, and spatial dimension D=30. On the 

other hand, each group of simulations are operated 50 times 

independently so as to eliminate the influence of fortuitous 

element on experimental results. And the experimental data 

obtained are arranged in TABEL I. 

The optimal value reflects the searching ability of the 

algorithm, the average value indicates the convergence 

accuracy of the algorithm, and the the standard deviation 

reveals the stability and robustness of the algorithm. It can 

be seen from TABEL I that IChOA has higher optimization 

accuracy, better stability and robustness, and stronger 

feasibility and effectiveness compared with ChOA. In 

addition, the 2-D views of some benchmark functions and 

the convergence curves obtained by IChOA are shown in 

Fig. 2-Fig. 9. 

 

TABEL I  
THE BENCHMARK FUNCTIONS 

Name Function Dim Domain fmin 

F1 2

1 1
=

N

ii
f x  30 [-100,100] 0 

F2 2 1 1
=

N N

i ii i
f x x  30 [-10,10] 0 

F3 
2

3 1 1
= ( )

N i

ji j
f x  30 [-100,100] 0 

F4 4=max { ,1 }i if x i N  30 [-100,100] 0 

F5 
-1 2 2 2

5 11
= [100( ) ( 1) ]

N

i i ii
f x x x  30 [-30,30] 0 

F6 
2

6 1
= ( 0.5)

N

ii
f x  30 [-100,100] 0 

F7 4

7 1
= [0,1)

N

ii
f ix random  30 [-1.28,1.28] 0 

F8 8 1
= ( )

N

i ii
f x sin x  30 [-500,500] -418.9829×Dim 

F9 2

9 1
= [ 10cos(2 ) 10]

N

i ii
f x x  30 [-5.12,5.12] 0 

F10 
2

10 1 1

1 1
= 20 ( 0.2 ) ( (2 )) 20

N N

i ii i
f exp x exp cos x e

N N
  30 [-32,32] 0 

F11 
2

11 1 1

1
( ) 1

4000

N N
i

ii i

x
f x cos

i
 30 [-600,600] 0 

F12 

1 2 2 2

12 1 11 1
{10sin( ) ( 1) [1 10 ( )] ( 1) } ( ,10,100, 4)

1
1

4

( )      

( , , , ) 0          

( )

N N

i i N ii i

i
i

m

i i

i i
m

i i

f y y sin y y u x
N

x
y

k x a x a

u x a k m a x a

k x a x a


 

 
30 [-50,50] 0 

F13 

2 2 2

13 1 1

2 2

1

0.1{ (3 ) ( 1) [1 (3 1)]

( 1) [1 (2 )]} ( ,5,100,4)

N

i ii

N

N N ii

f sin x x sin x

x sin x u x

 


 30 [-50,50] 0 

 
Fig. 2.The 2-D view and convergence curve of F1 

 

 
Fig. 3.The 2-D view and convergence curve of F2 

 
Fig. 4.The 2-D view and convergence curve of F3 

 

 
Fig. 5.The 2-D view and convergence curve of F5 
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Fig. 6.The 2-D view and convergence curve of F9 

 

 
Fig. 7.The 2-D view and convergence curve of F10 

 
Fig. 8.The 2-D view and convergence curve of F12 

 

 
Fig. 9.The 2-D view and convergence curve of F13 

TABEL II  
THE RESULTS OF 13 BENCHMARK FUNCTIONS 

Function 
IChOA ChOA 

Min. Max. Avg. Std. Min. Max. Avg. Std. 

F1 0.00E+00 5.71E-57 1.67E-58 8.47E-58 4.71E-26 8.28E-21 4.54E-22 1.46E-21 

F2 7.62E-302 2.47E-30 1.94E-31 5.23E-31 7.65E-18 3.98E-15 5.46E-16 8.33E-16 

F3 7.42E-69 1.39E-17 4.99E-19 2.46E-18 1.29E-07 4.00E-01 1.11E-02 5.63E-02 

F4 9.01E-34 6.51E-10 2.49E-11 9.97E-11 9.64E-08 8.08E-05 8.60E-06 1.62E-05 

F5 2.55E+01 2.83E+01 2.69E+01 7.06E-01 2.58E+01 2.88E+01 2.78E+01 7.76E-01 

F6 2.68E+01 1.22E-01 7.82E-01 3.14E-01 2.93E-01 1.26E+00 8.97E-01 3.56E-01 

F7 3.34E-05 9.60E-04 5.07E-04 2.21E-04 5.49E-05 2.17E-03 5.94E-04 4.63E-04 

F8 -6.94E+03 -5.65E+03 -6.13E+03 3.11E+02 -6.89E+03 -4.82E+03 -5.71E+03 3.22E+02 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.43E-11 1.39E-12 6.65E-12 

F10 8.88E-16 4.44E-15 2.52E-15 1.77E-15 4.35E-14 6.18E-10 2.68E-11 9.75E-11 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 3.04E-05 8.91E-03 2.17E-03 2.07E-03 3.11E-02 8.38E-02 4.46E-02 1.26E-02 

F13 1.49E-01 9.71E-01 3.19E-01 1.54E-01 7.79E-01 1.37E+00 1.07E+00 1.70E-01 

IV. THE APPLICATION OF ICHOA FOR STHS PROBLEM 

A. Structure of initialization 

The initialization population of the STHS problem 

corresponds to the chimp individuals of IChOA, each of 

which contains information on several variables. The 

structure of the initial population consists of the discharge of 

each hydropower plant and the output power of each 

thermal plant at each time period. A single chimp individual 

Xd (d =1, 2, … , NP) is initialized in the following form. 

 

11 21 1 11 21 1

12 22 1 12 22 2

1 2 1 2

h S

h S

h S

hp hp hp tp tp tp

N N

hp hp hp tp tp tp

N N

hp hp hp tp tp tp

T T N T T T N T

dX

Q Q Q P P P

Q Q Q P P P

Q Q Q P P P



 
 
 
 
  

  (38) 

The generation of the initial population is strictly limited 

to the feasible region, thus avoiding emergence of default 

solutions. 

 
 

 
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hp hp hp hp
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tp tp tp tp
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Q Q m Q Q
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  

  





  (39) 

where mm and mn are the two of the chaotic sequence  

generated by Logistic-Tent chaos. 

B. Constraints handing 

When IChOA is applied to solve the STHS problem, it is  

extremely easy to violate the constraints due to the 

complexity of the STHS structure. The occurrence of such a 

phenomenon will lead to an incalculable disaster, so 

constraint handing is required to make it strictly satisfy the 

constraints and ensure the feasibility of the scheduling 

scheme. 

1) Discharge volume limitation 

 

 

 

 

,min ,min

,min ,max

,max ,max

  

     

  

hp hp hp
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
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
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  (40) 

2) Reservoir volume limitation 
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 
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hp hp hp
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
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  (41) 
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3) Output power limitation 

 

 

 

 

,min ,min

,min ,max

,max ,max

  

    

  

tp tp tp

i it i

tp tp tp tp tp

it it i it i

tp tp tp

i it i

P

P P

P

P P

P P P

P P



  







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  (42) 

The output power constraint treatment strategy for 

hydropower plants also emulates Eq.(42). 

4) Dynamic reservoir balance 

In the scheduling optimization process, the initial and 

final values of the reservoir volume capacity must meet the 

conditions given by the system while maintaining water 

dynamic balance, which will be a complex process to handle. 

Therefore, a graded optimization strategy is employed to 

deal with dynamic reservoir balance, and the pseudo code is 

shown in Fig. 10. The process is divided into two phases: 

firstly, when the violation of the reservoir volume is less 

than the defined parameter value, named verror, the period 

with the largest margin value undertakes the violation; 

secondly, if the violation of the reservoir volume is greater 

than the set parameter value, the average method is used to 

divide the violation volume into each interval equally. 

5) Dynamic power balance 

The constraint processing on the power balance of the 

power system is handled after the above adjustment, which 

will not affect previous operation. The processing method of 

power balance still adopts the graded optimization strategy 

based on economy, which is divided into two steps: firstly, 

when the violation of the power balance is less than the 

defined parameter value, named perror, the thermal plant 

with the smallest economic index undertakes the violation; 

secondly, if the violation of the power balance is greater 

than the set parameter value, the average method is used to 

divide the violation volume into each thermal plant equally. 

In addition, the pseudo code of constraints handing for 

thermal power balance is presented in Fig. 11. 

 

Begin 
For j = 1 : Nh 

Iter = 0 

 
,initial ,final ( )

11 1 1,

m

jRT T T

hp hp hp hp hp hp

jb j j jt m t jt

mt t t t b

Q V V I Q Q


   

       

Check Q
hp 

jb  

 
error ,initial ,final ( )

11 1 1

m

jRT T T

hp hp hp hp hp

j j jt m t jt

mt t t

V V V I Q Q


  

        

While |Verror| < verror and Iter < Itermax 

Calculate Q
hp 

jt  from t = 1: T  

Choose l with the largest adjustable margin 

hp hp

jl jl error
Q Q V   ; Check Q

hp 

jl ; 

Iter = Iter + 1 

End while 

While |Verror| ≥ verror and Iter < Itermax 

error error
avg V V T     

For t = 1: T 

hp hp

jt jt error
avg QQ Q   ; Check Q

hp 

jt ; 

End for 

Iter = Iter + 1 

End while 

End for 

End 

Fig. 10.Pseudo code of constraints handing for reservoir capacity 

Begin 
For t = 1 : T 

Iter = 0 

1

N N

tp hp

Dt Lt it jt

i j

h

t

s

P P P P p



        

While |Pt| < perror and Iter < Itermax 

Calculate
   1

1

k k

C it C it

it k k

it it

F P F P

P P












from i = 1 : Ns 

List  αit in ascending order  and choose z with the smallest 
index 

tp tp

zt zt t
P P P   ;Check P

tp 

zt  

Iter = Iter + 1 

End while 

While |Pt| ≥ perror and Iter < Itermax 

t t savg P P N     

For i = 1: Ns 

tp tp

it it t
avgP P P  ; Check P

tp 

it ; 

End for 

Iter = Iter + 1 

End while 

End for 

End 

Fig. 11.Pseudo code of constraints handing for thermal power balance 

V. SIMULATION RESULTS AND DISCUSSION 

Three standard test systems including four cases have 

been selected for simulation experiments to validate the 

effectiveness of the proposed IChOA for addressing the 

STHS problem. The entire scheduling period is one day 

with one-hour interval. All simulation experiments are 

implemented on a PC (3GHz and 16GB) with MATLAB-

2016a installed. 

A. Test system Ⅰ 

The test system Ⅰ comprises of four hydropower plants 

and one thermal plant, with no consideration of the valve 

point effect and the transmission loss. The system data of 

this test refers to [34]. In this case, the results of the 

experiments conducted 50 times have been summarized as 

follows. The convergence curve is shown in Fig. 12, the 

result obtained by IChOA algorithm is superior to the 

original ChOA and PSO. Moreover, the reservoir capacity 

volume is denoted in Fig. 13, we can see clearly that all 

hydropower plants satisfy the given constraints. The optimal 

output scheme obtained in system Ⅰ is shown in TABEL VII 

and drawn in Fig. 14, which precisely shows the power 

output of each plant. Fig. 15 clearly reflects the relationship 

between output power and load demand, satisfying load 

balance constraints. 

In the meanwhile , TABEL III  and Fig. 16 illustrate the 

fuel costs comparison between IChOA and other literature 

algorithms, including ChOA, NLP [5], DE [12], LWPSO 

[13], RCGA [22], RQEA [35], QEA [35] and RE-GA [36]. 

It can been seen obviously from TABEL III that the 

minimum, maximum and average fuel costs obtained by the 

proposed IChOA are 922916.97($), 923786.08($) and 

923413.20($) respectively, and all are lower than the costs 

obtained by other methods. For instance, compared to 

RQEA, IChOA reduces by 718.53($), 3171.31($) and 

1579.26($) in terms of the minimum, maximum and average 

fuel costs respectively, saving the cost of power generation. 

Hence, it is demonstrated that the proposed IChOA has a 
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significant advantage over other methods in solving the 

STHS problem. 
 

TABEL III 
THE COST COMPARISON WITH OTHER METHODS 

Method 
Fuel cost ($) 

Min. Max. Avg. 

IChOA 922916.97 923786.08 923413.20 

RQEA 923634.53 926957.39 924992.46 

RCGA 923966.29 924232.07 924108.73 
DE 923991.08 928395.84 925157.28 

RE-GA 924159.60 925613.60 924880.40 

NLP 924249.48 NA NA 
ChOA 924456.17 926575.68 924987.13 

LWPSO 925383.80 927240.10 926352.80 
QEA 926538.29 930484.13 928426.95 

 

 
Fig. 12.The convergence curve of system Ⅰ 

 

 
Fig. 13.The reservoir capacity volume of system Ⅰ 

 

 
Fig. 14.The power generation of each plant of system Ⅰ 

 
Fig. 15.The power generation and load demand of system Ⅰ 

 

 

Fig. 16.The cost comparison with other methods 
 

B. Test system Ⅱ 

The test system Ⅱ is composed of four hydropower plants 

and three thermal power plants, which is subdivided into 

two cases according to whether transmission loss is 

considered or not. The detailed data of test system Ⅱ is 

retrieved from the reference [37].  

1) Case 1 of system Ⅱ 

Only the valve point effect of the power system is 

considered in case 1, and the experiments have been 

repeated 50 times. As shown clearly in Fig. 17, IChOA has 

the best convergence characteristic and the lowest fuel cost, 

and all satisfy the reservoir constraints during the scheduling 

period according to Fig. 18. In addition, the specific output 

power of each power plant is displayed clearly in Fig. 19, 

and the power constraint is strictly satisfied during the 

optimization search. TABEL VIII shows the optimal 

scheduling scheme of hydropower plants and thermal plants 

with the best convergence result after 50 repeated 

experiments. It can be seen intuitively from Fig. 20 that the 

total output power corresponding to each time period is 

equal to the load demand, indicating that the two are always 

in a state of dynamic balance. 

Furthermore, TABEL IV and Fig. 21 present the fuel 

costs comparison between IChOA and other algorithms, 

including ChOA, MCDE [17]. RCGA-AFSA [22], ALO 

[38], DNLP [39], RCCRO [40], DGSA [41] and QTLBO 

[42]. It can been seen intuitively from TABEL IV that the 

minimum, maximum and average fuel costs obtained by the 

proposed IChOA are 40389.01($), 40803.91($) and 

40567.60($) respectively, and they are all lower than the 
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costs obtained by other methods in varying degrees, which 

indicates that the proposed IChOA is more competitive in 

dealing with the STHS problem and can achieve higher 

economic benefits. 

TABEL IV 
THE COST COMPARISON WITH OTHER METHODS 

Method 
Fuel cost ($) 

Min. Max. Avg. 

IChOA 40389.01 40803.91 40567.60 

ChOA 40641.29 41211.72 40805.52 

ALO 40780.05 41094.34 40905.83 
RCGA-AFSA 40913.83 41235.73 41362.58 

MCDE 40945.75 41977.04 41380.54 
DNLP 41101.74 NA NA 

RCCRO 41497.85 41498.21 41502.37 

DGSA 41751.15 41989.02 41821.49 
QTLBO 42187.49 42202.75 42193.46 

 

 
Fig. 17.The convergence curve of case 1 in system Ⅱ 

 

 
Fig. 18.The reservoir capacity volume of case 1 in system Ⅱ 

 

 
Fig. 19.The power generation of each plant of case 1 in system Ⅱ 

 
Fig. 20.The power generation and load demand of case 1 in system Ⅱ 

 

 

Fig. 21.The cost comparison with other methods 
 

2) Case 2 of system Ⅱ 

The case 2 of system Ⅱ takes both valve point effect and 

tranmission loss into account, which makes the nonlinearity 

of the STHS problem more prominent and difficult to solve. 

Fig. 22 presents the convergence property curves of the 

optimal results obtaiened by IChOA, ChOA, and PSO by 

conducting 50 repetitions of experiments. It can be seen that 

IChOA has better accuracy of global optimization search 

holistically. The reservoir volume distribution of the 

hydropower plants during the whole dispatch period is 

plotted in Fig. 23, and no constraint violation occurs in each 

reservoir during this process. In addition, Fig. 24 and 

TABEL IX illustrate the output power distribution of each 

power plant in detail. It can be seen from Fig. 25 that the 

total output power of the power system is greater than the 

load demand, and the extra output power makes up for the 

transmission loss, which is a normal and reasonable 

phenomenon. 

What's more, the optimal fuel cost calculated by IChOA 

has been compared with the results of ChOA, MCDE [17], 

RCGA-AFSA [22], ALO [38], DNLP [39], GSA [41], 

MDNLPSO [43], QOGSO [44] and GSO [44], including the 

minimum, maximum and average fuel cost, which as shown 

in TABEL V and Fig. 26. The minimum, maximum and 

average fuel costs obtained by the proposed method are 

41094.39($), 41936.36($) and 41560.20($) respectively. 

The above results demonstrate that the complexity of the 

system increases when loss is considered, but the proposed 

IChOA is still significant for the optimization of the STHS 

problem. 
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TABEL V 

THE COST COMPARISON WITH OTHER METHODS 

Method 
Fuel cost ($) 

Min. Max. Avg. 

IChOA 41094.39 41936.36 41560.20 

MDNLPSO 41183.00 41994.00 41595.00 
DNLP 41350.56 NA NA 

ChOA 41448.04 42440.49 41702.02 

MCDE 41586.18 42365.84 42022.67 
RCGA-AFSA 41707.96 41894.63 41894.63 

GSA 42032.35 42561.53 42292.12 

QOGSO 42120.02 42145.37 42130.15 
GSO 42316.39 42379.18 42339.35 

ALO 42833.91 42900.19 42867.31 

 

 
Fig. 22.The convergence curve of case 2 in system Ⅱ 

 

 
Fig. 23.The reservoir capacity volume of case 2 in system Ⅱ 
 

 
Fig. 24.The power generation of each plant of case 2 in system Ⅱ 

 
Fig. 25.The power generation and load demand of case 2 in system Ⅱ 

 

 

Fig. 26.The cost comparison with other methods 

 

C. Test system Ⅲ 

The test system Ⅲ consists of four hydropower plants and 

ten thermal power plants without considering the system 

transmission loss, whose scale is larger and more 

sophisticated than the previous test systems. The higher 

dimensional test system makes the STHS problem more 

intractable. The detailed data of test system Ⅲ is retrieved 

from the reference [2]. 

Likewise, the experiment has also been performed 50 

times. As shown clearly in Fig. 27, the convergence speed 

of IChOA is faster, converging when the number of iteration 

is close to 150, and the quality of the global optimal solution 

obtained is much higher compared with ChOA and PSO. 

Fig. 28 reflects the real-time changing trend of storage 

capacity of various reservoirs within 24 hours without any 

default. The power generation of each plant is revealed 

clearly in Fig. 29. Besides, the optimal scheduling scheme 

of hydropower plants and thermal plants are represented in 

TABEL X and TABEL XI respectively. Likewise, the 

output power and load demand at each time period shown in 

Fig. 30 satisfy the equality relationship within the 

scheduling period, indicating that no power constraint 

violation occurs and IChOA can effectively solve the STHS 

problem. 

Additionally, the optimal fuel cost calculated by IChOA 

has been compared with the results of ChOA, MCDE [17], 

ALO [38], ORCCRO [40], QOGSO [44] and GSO [44], 

IPCSO [2], SOS [45] and SPPSO [46], including the 

minimum, maximum and average fuel cost, which as shown 
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in TABEL VI and Fig. 31. The minimum, maximum and 

average fuel costs obtained by the proposed method are 

161409.60($), 163630.23($) and 162141.40($) respectively. 

Experiments have shown that the fuel cost obtained by 

ICHOA is lower than that of most methods, with higher 

economy and stronger search capability. It robustly proves 

that the proposed IChOA has a great competitiveness and 

provides a new solution idea for solving the STHS problem. 
 

TABEL VI 
THE COST COMPARISON WITH OTHER METHODS 

Method 
Fuel cost ($) 

Min. Max. Avg. 

IChOA 161409.60 162630.23 162141.40 

ALO 161353.97 161363.06 161356.17 
ChOA 162658.00 163264.47 163024.70 

IPCSO 162714.00 162953.00 162813.00 

SOS 162834.38 163147.87 162846.92 
ORCCRO 163066.03 163134.54 163068.77 

MCDE 165330.70 167060.60 166116.40 

SPPSO 167710.56 170879.30 168688.92 
QOGSO 170293.21 170349.34 170321.57 

GSO 170511.26 170586.91 170547.56 

 

 
Fig. 27.The convergence curve of system Ⅲ 

 

 
Fig. 28.The reservoir capacity volume of system Ⅲ 

 

Abbreviations Comment 

STHS short-term hydrothermal scheduling 

ChOA chimp optimization algorithm 

IChOA improved chimp optimization algorithm 

PSO particle swarm algorithm 

GSA gravitational search algorithm 

LP linear programming 

NLP nonlinear programming 

DP dynamic programming 

MIP mixed integer programming 

LR Lagrange relaxation 

GS gradient search techniques 

GA genetic algorithm 

DE differential evolution 

HNN Hopfield neural network 

ABC artificial bee colony algorithm 

GOA grasshopper optimization algorithm 

MCDE modified chaotic differential evolution 

OGB-GA optimal gamma based genetic algorithm 

MCSA modified cuckoo search algorithm 

MSGO modified social group optimization 

APSO accelerated particle swarm optimization 

RCGA-AFSA hybrid of real coded genetic algorithm and 

artificial fish swarm algorithm 

WOA whale optimization algorithm 

GWO gray wolf optimizer 

NGS-WOA improved whale optimization algorithm 

based on nonlinear adaptive weight and 

golden sine operator 

TGWO improved grey wolf optimizer based on 

tracking mode 

SGWO improved grey wolf optimizer based on 

seeking mode 

LWPSO local vision of PSO with inertia weight 

RCGA real coded genetic algorithm 

RQEA real-coded quantum-inspired evolutionary 

algorithm 

QEA quantum-inspired  evolutionary algorithm 

ALO ant lion optimizatio 

DNLP dynamic non-linear programming 

RCCRO real coded chemical reaction based 

optimization 

DGSA disruption based gravitational search 

algorithm 

QTLBO quasi-oppositional teaching learning based 

optimization 

MDNLPSO modified dynamic neighborhood learning 

based particle swarm optimization 

QOGSO quasi-oppositional group search 

optimization 

GSO Quasi-oppositional group search 

optimization 

ORCCRO oppositional real coded chemical reaction 

based optimization 

IPCSO novel two-swarm based PSO search 

strategy 

SOS symbiotic organisms search algorithm 

SPPSO small population-based particle swarm 

optimization 

VI. CONCLUSION 

In this paper, an improved chimp optimization algorithm 

(IChOA) incorporating various improvements is proposed 

and successfully applied to the non-linear, non-convex and 

high-dimensional STHS problem. The effectiveness of the 

improved method is verified by three standard complex 

systems including four test cases. Additionally, the 

minimum, maximum and average fuel costs obtained by the 

proposed IChOA have noticeable advantages compared with 

a great number of methods from other literature. For 

instance, in case 2 of system Ⅱ, the minimum, maximum 
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and average fuel costs obtained by IChOA are 41094.39($), 

41936.36($) and 41560.20($) respectively, and they save 

491.79($), 429.48($), 462.47($) respectively compared with 

the ones of MCDE. Meanwhile, the convergence result of 

IChOA has the advantages of superior performance, high 

precision and high robustness. Furthermore, numerous 

charts illustrate that the whole process does not violate the 

constraints, thereby certifying the effectiveness of the 

constraint handling strategy. In a nutshell, it is evident that 

the proposed IChOA is reasonable and effective, which 

provides a new idea for the solution of the increasingly 

challenging STHS problem and the large-scale constrained 

optimization problem. 

 

 
Fig. 29.The power generation of each plant of system Ⅲ 

 

 
Fig. 30.The power generation and load demand of system Ⅲ 

 

 

Fig. 31.The cost comparison with other methods 

TABEL VII 

THE OPTIMAL SCHEDULING SOLUTION OF SYSTEM Ⅰ 

Time 
(hour) 

Hydro discharge (104 m3) Hydro generation (MW) Thermal 
generation (MW) 

Ptotal 

(MW) 
Pload 

(MW) Qh1 Qh2 Qh3 Qh4 Ph1 Ph2 Ph3 Ph4 

1 10.66 7.87 30.00 13.00 88.59 61.31 0.00 200.09 1020.01 1370.00 1370.00 

2 9.45 6.09 30.00 13.00 82.96 50.84 0.00 187.76 1068.44 1390.00 1390.00 

3 10.16 6.64 30.00 13.00 85.50 55.99 0.00 173.74 1044.77 1360.00 1360.00 

4 8.85 6.37 30.00 13.00 78.40 55.60 0.00 156.79 999.21 1290.00 1290.00 

5 8.58 6.47 19.39 13.00 75.91 57.09 20.06 178.74 958.20 1290.00 1290.00 

6 8.48 7.56 18.14 13.00 74.77 64.00 26.16 198.96 1046.11 1410.00 1410.00 

7 6.70 6.58 16.57 13.00 63.93 57.26 32.29 217.44 1279.08 1650.00 1650.00 

8 8.80 6.40 15.56 13.00 77.15 56.29 35.62 234.21 1596.73 2000.00 2000.00 

9 8.73 6.64 15.65 13.00 77.27 58.66 35.22 240.04 1828.81 2240.00 2240.00 

10 8.55 8.17 14.86 13.00 77.15 68.95 37.60 244.57 1891.73 2320.00 2320.00 

11 8.27 6.79 14.24 13.01 76.73 61.30 39.47 247.74 1804.76 2230.00 2230.00 

12 7.28 9.56 15.18 14.20 71.02 76.98 38.60 260.58 1862.82 2310.00 2310.00 

13 7.12 7.06 15.30 14.91 70.81 62.75 40.42 267.78 1788.24 2230.00 2230.00 

14 8.34 9.90 14.75 15.04 79.92 78.72 42.38 268.80 1730.18 2200.00 2200.00 

15 9.16 8.72 16.44 14.05 85.24 72.64 39.92 259.81 1672.39 2130.00 2130.00 

16 8.78 8.18 16.32 15.30 83.24 69.40 40.67 271.20 1605.49 2070.00 2070.00 

17 8.50 8.16 16.32 15.23 81.67 68.68 42.48 270.66 1666.51 2130.00 2130.00 

18 7.80 8.49 15.05 14.74 77.11 69.20 46.78 266.25 1680.67 2140.00 2140.00 

19 7.28 8.47 15.25 16.42 73.39 68.24 47.26 280.80 1770.31 2240.00 2240.00 

20 8.39 11.03 12.75 16.92 80.43 78.98 51.11 284.24 1785.24 2280.00 2280.00 

21 7.22 10.81 10.00 18.05 72.48 76.89 51.34 290.98 1748.31 2240.00 2240.00 

22 6.49 10.89 10.00 17.99 67.22 75.97 53.23 287.69 1635.89 2120.00 2120.00 

23 5.99 11.72 10.02 20.57 63.48 76.60 54.96 297.96 1357.00 1850.00 1850.00 

24 5.41 13.42 10.09 22.13 58.80 77.74 56.22 294.46 1102.77 1590.00 1590.00 
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TABEL VIII 

THE OPTIMAL SCHEDULING SOLUTION OF CASE 1 IN SYSTEM Ⅱ 

Time 

(hour) 

Hydro discharge (104 m3) Hydro generation (MW) Thermal generation (MW) Ptotal 

(MW) 

Pload 

(MW) Qh1 Qh2 Qh3 Qh4 Ph1 Ph2 Ph3 Ph4 Pt1 Pt2 Pt3 

1 6.21 6.05 18.30 6.56 63.40 50.51 48.17 135.99 102.35 209.82 139.76 750.00 750.00 

2 5.00 6.45 29.84 6.41 53.89 54.18 0.00 130.25 102.33 209.82 229.52 780.00 780.00 

3 11.07 7.62 17.14 7.07 92.20 62.58 42.26 133.41 20.00 209.82 139.73 700.00 700.00 

4 9.63 7.45 29.96 7.92 84.95 62.45 0 135.58 102.35 124.91 139.76 650.00 650.00 

5 8.79 8.58 20.19 6.60 79.58 68.86 23.20 131.11 102.58 124.91 139.76 670.00 670.00 

6 6.27 7.24 15.68 9.19 62.99 60.62 41.86 182.29 102.66 209.82 139.76 800.00 800.00 

7 7.08 6.45 15.90 14.75 69.24 55.12 42.63 241.07 102.60 209.82 229.52 950.00 950.00 

8 6.86 6.84 16.62 10.49 68.16 57.86 40.91 216.17 102.66 294.72 229.52 1010.00 1010.00 

9 10.50 6.30 10.24 15.53 89.13 55.11 47.65 271.23 102.64 294.72 229.52 1090.00 1090.00 

10 7.69 6.32 11.78 15.64 74.72 56.65 49.47 272.26 102.66 294.72 229.52 1080.00 1080.00 

11 10.95 11.38 29.94 19.60 92.48 83.21 0 297.47 102.60 294.72 229.52 1100.00 1100.00 

12 8.57 8.07 17.23 13.14 80.93 66.68 37.00 248.73 102.66 294.72 319.28 1150.00 1150.00 

13 6.90 9.20 13.48 19.97 70.40 72.34 47.42 292.93 102.67 294.72 229.52 1110.00 1110.00 

14 6.35 6.86 15.15 12.05 66.80 59.58 47.92 228.80 102.67 294.72 229.52 1030.00 1030.00 

15 6.55 6.73 18.31 19.32 68.81 59.87 39.36 299.95 102.67 209.82 229.52 1010.00 1010.00 

16 6.57 7.93 28.74 19.02 69.14 67.68 0 296.27 102.67 294.72 229.52 1060.00 1060.00 

17 12.79 7.25 13.79 19.93 103.35 63.20 46.42 295.03 102.67 209.82 229.52 1050.00 1050.00 

18 8.49 10.75 13.53 18.63 82.93 79.48 47.27 283.41 102.67 294.72 229.52 1120.00 1120.00 

19 6.37 6.13 12.41 16.71 67.27 53.52 50.69 271.61 102.67 294.72 229.52 1070.00 1070.00 

20 9.20 11.54 11.95 17.42 86.93 81.02 51.97 288.07 102.67 209.82 229.52 1050.00 1050.00 

21 5.04 10.15 10.01 16.12 55.40 74.40 52.34 275.61 102.67 209.82 139.76 910.00 910.00 

22 9.78 12.37 10.38 15.32 90.25 80.89 54.33 267.19 102.67 124.91 139.76 860.00 860.00 

23 5.05 13.82 10.08 19.62 55.59 80.65 55.21 291.21 102.67 124.91 139.76 850.00 850.00 

24 13.30 10.51 13.60 19.99 104.11 67.96 58.94 284.32 20.00 124.91 139.76 800.00 800.00 

TABEL IX 
THE OPTIMAL SCHEDULING SOLUTION OF CASE 2 IN SYSTEM Ⅱ 

Time 

(hour) 

Hydro discharge (104 m3) Hydro generation (MW) Thermal generation (MW) Ploss 

(MW) 

Ptotal  

(MW) 

Pload  

(MW) Qh1 Qh2 Qh3 Qh4 Ph1 Ph2 Ph3 Ph4 Pt1 Pt2 Pt3 

1 11.19 7.34 30.00 7.85 90.39 58.39 0 151.10 103.17 124.91 229.52 7.74 757.74 750.00 

2 11.80 6.84 16.20 6.96 91.21 55.83 47.79 135.64 103.42 124.91 229.52 7.31 787.31 780.00 

3 5.26 6.22 21.36 6.21 54.52 53.19 25.64 121.41 102.65 209.82 139.76 6.99 706.99 700.00 

4 5.71 6.52 17.67 7.55 58.57 56.63 42.86 130.54 102.58 124.91 139.76 5.84 655.84 650.00 

5 5.60 6.06 13.56 6.25 57.70 54.43 51.33 136.99 20.00 124.86 229.52 4.83 674.83 670.00 

6 7.92 6.34 20.23 10.31 74.49 56.78 31.67 192.10 102.60 209.82 139.76 7.20 807.20 800.00 

7 5.13 6.22 14.22 7.61 54.09 55.83 49.68 171.42 102.64 209.82 319.28 12.75 962.75 950.00 

8 5.46 6.04 17.32 13.71 57.65 55.00 42.79 243.58 102.59 294.72 229.52 15.85 1025.85 1010.00 

9 5.95 6.79 15.96 11.46 62.46 60.91 45.12 222.66 102.63 294.72 319.28 17.77 1107.77 1090.00 

10 8.55 8.60 19.94 8.68 81.72 72.40 28.35 198.76 102.66 294.72 319.28 17.89 1097.89 1080.00 

11 10.70 7.08 16.37 17.31 93.44 64.01 40.12 284.13 102.56 209.82 319.28 13.35 1113.35 1100.00 

12 9.80 6.65 15.28 13.79 89.19 61.70 43.43 256.98 102.66 294.72 319.28 17.96 1167.96 1150.00 

13 9.25 9.51 16.36 16.90 86.55 78.33 43.57 283.50 102.29 209.82 319.28 13.34 1123.34 1110.00 

14 9.06 8.61 18.08 18.92 86.01 73.58 39.06 299.00 102.64 209.82 229.52 9.63 1039.63 1030.00 

15 6.71 6.36 13.98 19.03 70.08 60.38 50.02 297.05 102.63 209.82 229.52 9.49 1019.49 1010.00 

16 10.16 10.35 23.02 13.46 92.87 82.87 15.45 253.06 104.71 294.72 229.52 13.20 1073.20 1060.00 

17 12.07 9.95 14.75 17.78 100.39 79.31 49.12 288.93 102.55 209.82 229.52 9.63 1059.63 1050.00 

18 7.90 10.04 16.30 19.43 78.74 77.43 46.90 298.59 102.64 209.82 319.28 13.40 1133.40 1120.00 

19 9.33 7.19 10.02 13.64 87.38 61.27 52.85 252.77 104.48 294.72 229.52 12.99 1082.99 1070.00 

20 7.30 11.65 13.63 20.00 73.95 81.93 56.04 305.51 102.87 209.82 229.52 9.64 1059.64 1050.00 

21 5.07 9.48 12.13 16.56 55.54 72.06 57.97 279.85 102.67 209.82 139.76 7.66 917.66 910.00 

22 5.30 12.55 12.28 18.79 57.85 82.37 58.82 293.60 20.00 124.91 229.52 7.07 867.07 860.00 

23 8.39 11.84 19.80 12.87 82.22 77.30 45.12 284.85 102.67 124.91 139.76 6.82 856.82 850.00 

24 11.40 12.76 12.87 19.99 97.97 78.57 58.98 284.35 20.00 124.63 139.76 4.27 804.27 800.00 
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TABEL X 

THE OPTIMAL SCHEDULING SOLUTION OF HYDRO PLANTS IN SYSTEM Ⅲ 

Time 

(hour) 

Hydro discharge (104 m3) Hydro generation (MW) Total hydro generation 

(MW) Qh1 Qh2 Qh3 Qh4 Ph1 Ph2 Ph3 Ph4 

1 7.34 7.14 17.53 5.14 71.50 57.22 50.69 118.05 297.46 

2 9.27 5.30 28.44 7.02 83.19 45.89 0.00 138.86 267.94 

3 8.14 6.00 17.15 7.05 76.64 52.70 43.42 133.98 306.74 

4 11.71 4.43 22.58 4.70 91.60 42.94 16.93 98.38 249.85 

5 5.96 8.54 14.33 -8.69 59.93 71.32 48.55 0.00 179.81 

6 9.80 6.10 14.47 17.13 83.10 55.94 50.67 266.84 456.55 

7 7.98 7.58 21.67 10.56 73.33 65.18 22.83 212.01 373.35 

8 9.09 11.74 14.66 12.15 79.60 83.27 49.61 238.39 450.87 

9 5.80 6.61 21.03 16.89 58.98 57.00 26.17 279.77 421.93 

10 8.91 8.67 13.02 17.81 80.81 69.97 50.68 283.20 484.67 

11 5.93 7.88 25.26 20.50 61.78 65.95 0.00 301.19 428.93 

12 7.30 8.09 14.92 15.63 72.87 67.21 47.46 266.56 454.10 

13 12.30 9.81 19.60 19.29 97.69 75.51 32.95 295.02 501.17 

14 6.74 10.04 15.24 15.78 69.34 75.96 47.57 266.85 459.72 

15 9.22 10.30 10.88 17.11 86.35 76.39 52.79 285.27 500.79 

16 7.44 8.46 19.88 16.51 75.25 66.68 37.17 279.07 458.17 

17 9.49 6.84 9.65 18.06 88.30 56.78 53.15 292.21 490.43 

18 7.57 12.19 9.84 17.33 76.14 79.55 55.19 284.91 495.79 

19 6.59 9.88 20.67 20.10 68.79 68.25 40.31 293.39 470.74 

20 8.66 5.39 9.84 16.39 83.08 42.79 55.77 272.10 453.74 

21 6.80 8.41 15.47 15.89 70.14 62.82 58.54 261.89 453.38 

22 5.90 10.13 15.46 13.33 62.96 70.83 59.55 235.95 429.30 

23 8.69 10.86 18.40 16.83 83.72 72.02 52.03 269.57 477.34 

24 8.39 11.61 19.63 14.97 82.05 72.26 46.36 249.49 450.16 

 

TABEL XI 

THE OPTIMAL SCHEDULING SOLUTION OF THERMAL PLANTS IN SYSTEM Ⅲ 

Time 
(hour) 

Thermal generation (MW) Pthermal 
(MW) 

Ptotal 

(MW) 
Pload 

(MW) Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 

1 319.28 199.60 94.80 119.73 224.47 139.73 45.00 35.00 98.06 176.87 1452.54 1750.00 1750.00 

2 319.28 199.60 94.80 119.73 224.47 139.73 104.28 35.00 98.06 177.12 1512.06 1780.00 1780.00 

3 319.28 199.60 20.31 119.73 174.60 139.73 45.00 35.00 160.00 180.00 1393.26 1700.00 1700.00 

4 229.52 274.40 94.80 119.73 124.73 139.73 104.28 35.00 98.06 179.90 1400.15 1650.00 1650.00 

5 319.28 274.40 94.80 119.73 124.73 139.73 104.28 35.00 98.24 180.00 1490.19 1670.00 1670.00 

6 319.28 199.60 20.38 119.73 124.73 139.73 45.00 35.00 160.00 180.00 1343.45 1800.00 1800.00 

7 409.04 274.40 94.80 119.73 124.73 139.73 104.28 35.00 98.06 176.87 1576.65 1950.00 1950.00 

8 229.52 274.40 94.80 119.73 224.47 139.73 104.28 35.00 160.00 177.20 1559.13 2010.00 2010.00 

9 229.52 274.40 94.80 119.73 224.47 189.60 163.55 35.00 160.00 177.01 1668.07 2090.00 2090.00 

10 319.28 274.40 94.80 119.73 224.47 139.73 163.55 35.00 98.06 126.31 1595.33 2080.00 2080.00 

11 319.28 349.20 94.80 119.73 174.60 139.73 163.55 35.00 98.06 177.12 1671.07 2100.00 2100.00 

12 319.28 274.40 94.80 119.73 224.47 189.60 163.55 35.00 98.06 177.01 1695.90 2150.00 2150.00 

13 229.52 274.40 94.80 119.73 224.47 189.60 104.28 35.00 160.00 177.04 1608.83 2110.00 2110.00 

14 409.04 274.40 94.80 119.73 174.60 139.73 45.00 35.00 98.06 179.91 1570.28 2030.00 2030.00 

15 229.52 274.40 94.80 119.73 174.60 139.73 104.28 35.00 160.00 177.15 1509.21 2010.00 2010.00 

16 319.28 274.40 94.81 119.73 174.60 139.73 104.28 35.00 160.00 180.00 1601.83 2060.00 2060.00 

17 229.52 274.40 94.80 119.73 224.47 139.73 163.55 35.00 98.36 180.00 1559.57 2050.00 2050.00 

18 229.52 349.20 94.80 119.73 224.47 189.60 45.00 35.00 160.00 176.89 1624.21 2120.00 2120.00 

19 319.28 274.40 94.80 119.73 174.60 139.73 163.55 35.00 98.16 180.00 1599.26 2070.00 2070.00 

20 319.28 274.40 94.80 119.73 174.60 139.73 163.55 35.00 98.06 177.11 1596.26 2050.00 2050.00 

21 229.52 274.40 94.80 119.73 124.73 139.73 163.55 35.00 98.06 177.09 1456.62 1910.00 1910.00 

22 319.28 274.40 94.80 119.73 124.73 139.73 45.00 35.00 98.06 179.96 1430.70 1860.00 1860.00 

23 229.52 199.60 94.80 119.73 174.60 139.73 104.28 35.00 98.06 177.34 1372.66 1850.00 1850.00 

24 229.52 274.40 94.80 119.73 124.73 139.73 45.00 35.00 160.00 126.92 1349.84 1800.00 1800.00 

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_06

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 



REFERENCES 

[1] G. Chen, M. Gao, Z. Zhang and S. Li, "Hybridization of Chaotic 
Grey Wolf Optimizer and Dragonfly Algorithm for Short-term 

Hydrothermal Scheduling," IEEE Access, vol. 8, pp142996-

143020, 2020. 
[2] G. Cavazzini, G. Pavesi and G. Ardizzon, "A Novel Two-swarm 

Based PSO Search Strategy for Optimal Short-term Hydro-thermal 

Generation Scheduling," Energy Conversion and Management, vol. 
164, pp460-481, 2018. 

[3] G. Chen, Y Xiao, F Long, X Hu and H. Long, "An Improved 

Marine Predators Algorithm for Short-term Hydrothermal 
Scheduling," IAENG International Journal of Applied 

Mathematics, vol. 51, no. 1, pp936-949, 2021. 
[4] J. Jian, S. Pan and L. Yang, "Solution for Short-term 

Hydrothermal Scheduling with A Logarithmic Size Mixed-integer 

LinearProgramming Formulation," Energy, vol. 177, pp770-784, 
2019. 

[5] X. Guan, P. B. Luh and L. Zhang, "Nonlinear Approximation 

Method in Lagrangian Relaxation-based Algorithms for 
Hydrothermal Scheduling," IEEE Transactions on Power Systems, 

vol. 10, pp772-778, 1995. 

[6] S. Chang, C. Chen, I. Fong and P. B. Luh, "Hydroelectric 
Generation Scheduling with An Effective Differential Dynamic 

Programming Algorithm," IEEE Transactions on Power Systems, 

vol. 5, pp737-743, 1990. 
[7] G. W. Chang, M. Aganagic, J. G. Waight and J. Medina, et al., 

"Experiences with Mixed Integer Llinear Programming Based 

Approaches on Short-term Hydro Scheduling," IEEE Transactions 
on Power Systems, vol. 16, pp743-749, 2001. 

[8] M. S. Salam, K. M. Nor and A. R. Hamdan, "Hydrothermal 

Scheduling Based Lagrangian Relaxation Approach to 
Hydrothermal Coordination," IEEE Transactions on Power 

Systems, vol. 13, pp226-235, 1998. 

[9] H. Zhang, D. Yue and X. Xie, "Gradient Decent Based Multi-

objective Cultural Differential Evolution for Short-term 

Hydrothermal Optimal Scheduling of Economic Emission with 

Integrating Wind Power and Photovoltaic Power," Energy, vol. 
122, pp748-776, 2017. 

[10] M. F. Zaghlool and F. C. Trutt, "Efficient Methods for Optimal 

Scheduling of Fixed Head Hydrothermal Power Systems," IEEE 
Transactions on Power Systems, vol. 3, pp24-30, 1988. 

[11] V. S. Kumar and M. R. Mohan, "A Genetic Algorithm Solution to 

the Optimal Short-term Hydrothermal Scheduling," International 
Journal of Electrical Power & Energy Systems, vol. 33, pp827-

835, 2011. 

[12] K. K. Mandal and N. Chakraborty, "Short-term Combined 
Economic Emission Scheduling of Hydrothermal Power Systems 

with Cascaded Reservoirs Using Differential Dvolution," Energy 

Conversion and Management, vol. 50, pp97-104, 2009. 
[13] B. Yu, X. Yuan and J. Wang, "Short-term Hydro-thermal 

Scheduling Using Particle Swarm Optimization Method," Energy 

Conversion and Management, vol. 48, pp1902-1908, 2007. 
[14] M. Basu, "Hopfield Neural Networks for Optimal Scheduling of 

Fixed Head Hydrothermal Power Systems," Electric Power 

Systems Research, vol. 64, pp11-15, 2003. 
[15] Tehzeeb-ul-Hassan, T. Alquthami, S. E. Butt, M. F. Tahir and K. 

Mehmood, "Short-term Optimal Scheduling of Hydro-thermal 

Power Plants Using Artificial Bee Colony Algorithm," Energy 
Reports, vol. 6, pp984-992, 2020. 

[16] X. Zeng, A. T. Hammid, N. M. Kumar, U. Subramaniam and D. J. 

Almakhles, "A Grasshopper Optimization Algorithm for Optimal 
Short-term Hydrothermal Scheduling," Energy Reports, vol. 7, 

pp314-323, 2021. 

[17] J. Zhang, S. Lin and W. Qiu, "A Modified Chaotic Differential 
Evolution Algorithm for Short-term Optimal Hydrothermal 

Scheduling," International Journal of Electrical Power & Energy 
Systems, vol. 65, pp159-168, 2015. 

[18] J. Sasikala and M. Ramaswamy, "Optimal Gamma Based Fixed 

Head Hydrothermal Scheduling Using Genetic Algorithm," Expert 
Systems with Applications, vol. 37, pp3352-3357, 2010. 

[19] T. T. Nguyen and D. N. Vo, "Modified Cuckoo Search Algorithm 

for Short-term Hydrothermal Scheduling," International Journal 
of Electrical Power & Energy Systems, vol. 65, pp271-281, 2015. 

[20] A. Naik, S. C. Satapathy and A. Abraham, "Modified Social 

Group Optimization—A Meta-heuristic Algorithm to Solve Short-

term Hydrothermal Scheduling," Applied Soft Computing, vol. 95, 

pp106524, 2020. 

[21] M. S. Fakhar, S. A. R. Kashif, S. Liaquat and A. Rasool, et al., 

"Implementation of APSO and Amproved APSO on Non-cascaded 

and Cascaded Short Term Hydrothermal Hcheduling," IEEE 

Access, vol. 9, pp77784-77797, 2021. 

[22] N. Fang, J. Zhou, R. Zhang, Y. Liu and Y. Zhang, "A Hybrid of 

Real Coded Genetic Algorithm and Artificial Fish Swarm 

Algorithm for Short-term Optimal Hydrothermal Scheduling," 
International Journal of Electrical Power & Energy Systems, vol. 

62, pp617-629, 2014. 

[23] M. Khishe and M. R. Mosavi, "Chimp Optimization Algorithm," 
Expert Systems with Applications, vol. 149, pp113338, 2020. 

[24] S. Mirjalili and A. Lewis, "The Whale Optimization Olgorithm," 

Advances in Engineering Software, vol. 95, pp51-67, 2016. 
[25] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," 

Advances in Engineering Software, vol. 69, pp46-61, 2014. 

[26] J. Zhang and J. S. Wang, "Improved Whale Optimization 
Algorithm Based on Nonlinear Adaptive Weight and Golden Sine 

Operator," IEEE Access, vol. 8, pp77013-77048, 2020. 

[27] M. W. Guo, J. S. Wang, L. F. Zhu, S. S. Guo and W. Xie, "An 
Improved Grey Wolf Optimizer Based on Tracking and Seeking 

Modes to Solve Function Optimization Problems," IEEE Access, 

vol. 8, pp69861-69893, 2020. 
[28] K. K. Mandal, M. Basu and N. Chakraborty, "Particle Swarm 

Optimization Technique Based Short-term Hydrothermal 

Scheduling," Applied Soft Computing, vol. 8, pp1392-1399, 2008. 
[29] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, "GSA: A 

Gravitational Search Algorithm," Information Sciences, vol. 179, 

pp2232-2248, 2009. 
[30] X. Yuan, B. Ji, Z. Chen and Z. Chen, "A Novel Approach for 

Economic Dispatch of Hydrothermal System Via Gravitational 

Search Algorithm," Applied Mathematics and Computation, vol. 
247, pp535-546, 2014. 

[31] O. Hoseynpour, B. Mohammadi-ivatloo, M. Nazari-Heris and S. 

Asadi, "Application of Dynamic Non-Linear Programming 
Technique to Non-convex Short-term Hydrothermal Scheduling 

Problem," Energies, vol. 10, pp1440, 2017. 

[32] P. K. Roy, C. Paul and S. Sultana, "Oppositional Teaching 

Learning Based Optimization Approach for Combined Heat and 

Power Dispatch," International Journal of Electrical Power & 

Energy Systems, vol. 57, pp392-403, 2014. 
[33] H. E. Qing, L. Jie and X. U. Hang, "Hybrid Cauchy Mutation and 

Uniform Distribution of Grasshopper Optimization Algorithm," 
Control and Decision, vol. 36, pp1558-1568, 2021. 

[34] S. O. Orero and M. R. Irving, "A Genetic Algorithm Modelling 

Framework and Solution Technique for Short Term Optimal 
Hydrothermal Scheduling," IEEE Transactions on Power Systems, 

vol. 13, pp501-518, 1998. 

[35] Y. Wang, J. Zhou, L. Mo, R. Zhang and Y. Zhang, "Short-term 
Hydrothermal Generation Scheduling Using Differential Real-

coded Quantum-inspired Evolutionary Algorithm," Energy, vol. 44, 

pp657-671, 2012. 
[36] J. Zhang, S. Lin, H. Liu and Y. Chen, et al., "A Small-population 

Based Parallel Differential Evolution Algorithm for Short-term 

Hydrothermal Scheduling Problem Considering Power Flow 

Constraints," Energy, vol. 123, pp538-554, 2017. 

[37] L. Lakshminarasimman and S. Subramanian, "Short-term 

Scheduling of Hydrothermal Power System with Cascaded 
Reservoirs by Using Modified Differential Evolution," IEE 

Proceedings - Generation, Transmission and Distribution, vol. 

153, pp693-700, 2006. 
[38] H. M. Dubey, M. Pandit and B. K. Panigrahi, "Ant Lion 

Optimization for Short-term Wind Integrated Hydrothermal Power 

Generation Scheduling," International Journal of Electrical Power 
& Energy Systems, vol. 83, pp158-174, 2016. 

[39] H. Omid, M. Behnam, N. Morteza and A. Somayeh, "Application 

of Dynamic Non-Linear Programming Technique to Non-convex 
Short-term Hydrothermal Scheduling problem," Energies, vol. 10, 

pp1440-1457, 2017. 

[40] K. Bhattacharjee, A. Bhattacharya and S. Halder Nee Dey, 
"Oppositional Real Coded Chemical Reaction Based Optimization 

to Solve Short-term Hydrothermal Scheduling Problems," 

International Journal of Electrical Power & Energy Systems, vol. 
63, pp145-157, 2014. 

[41] N. Gouthamkumar, V. Sharma and R. Naresh, "Disruption Based 

Gravitational Search Algorithm for Short Term Hydrothermal 
Scheduling," Expert Systems with Applications, vol. 42, pp7000-

7011, 2015. 

[42] P. K. Roy, A. Sur and D. K. Pradhan, "Optimal Short-term Hydro-
thermal Scheduling Using Quasi-oppositional Teaching Learning 

Based Optimization," Engineering Applications of Artificial 

Intelligence, vol. 26, pp2516-2524, 2013. 

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_06

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 



[43] A. Rasoulzadeh-Akhijahani and B. Mohammadi-Ivatloo, "Short-

term Hydrothermal Generation Scheduling by A Modified 

Dynamic Neighborhood Learning Based Particle Swarm 

Optimization," International Journal of Electrical Power & 

Energy Systems, vol. 67, pp350-367, 2015. 

[44] M. Basu, "Quasi-oppositional Group Search Optimization for 
Hydrothermal Power System," International Journal of Electrical 

Power & Energy Systems, vol. 81, pp324-335, 2016. 

[45] S. Das and A. Bhattacharya, "Symbiotic Organisms Search 
Algorithm for Short-term Hydrothermal Scheduling," Ain Shams 

Engineering Journal, vol. 9, pp499-516, 2016. 

[46] J. Zhang, J. Wang and C. Yue, "Small Population-based Particle 
Swarm Optimization for Short-term Hydrothermal Scheduling," 

IEEE Transactions on Power Systems, vol. 27, pp142-152, 2012. 

 

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_06

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 




