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Abstract—In this paper an abstract discrete pre-bundle
hierarchy is introduced and discussed. Numerous pre-bundles
are identified for classes of CNF base hypergraphs over positive
integer sets. Thereby the question whether such instances admit
a given number of orbits of fibre-transversals provided by
the CNF complementation group is attacked. Extending a
preliminary version several more pre-bundles and properties
of the orbit spaces are established.

Index Terms—satisfiability, orbit, bundle, hypergraph, Mer-
senne-number

I. INTRODUCTION

THE genuine and one of the most important NP-complete
problems is the propositional satisfiability problem

(SAT) for conjunctive normal form (CNF) formulas [5]. SAT
offers various applications due to the fact that instances
of numerous computational problems can be encoded as
equivalent instances of CNF-SAT via reduction [7]. From a
theoretical perspective, on the one hand one is interested in
classes for which SAT can be solved efficiently. Meanwhile
there are known several such classes, namely quadratic for-
mulas, (extended and q-)Horn formulas, matching formulas,
nested, co-nested formulas, and exact linear formulas etc.
[1], [3], [4], [8], [9], [10], [11], [17], [20]. On the other
hand, a general study of the CNF structure might yield
new approaches to the SAT problem itself. Here we dis-
cuss a discrete (pre-)bundle concept and identify numerous
discrete pre-bundles for subclasses of base hypergraphs of
the CNF theory. First an abstract pre-bundle hierarchy is
established and some of its properties are proven. Moreover
the enlargement towards discrete fibre bundles is described
briefly. In [15] another hierarchy, namely of diagonal base
hypergraphs has been constructed. It remained open there
whether instances on every level of this hierarchy exist at
all. E.g. Ĥi contains all base hypergraphs such that there are
exactly i orbits of unsatisfiable fibre-transversals determined
by the action of the CNF complementation group. The ques-
tion of determining the number of orbits of satisfiable fibre-
transversals also is addressed here; however both problems
are not resolved completely so far. Defining orbit maps
assigning the number of orbits of its fibre-transversals to
a base hypergraph enables one to interprete the mentioned
existence questions within the pre-bundle structure: Every Ĥi

then yields a fibre of the bundle. In this manner, extending the
results of a previous, more preliminary paper [16], here we
provide further discrete pre-bundles. So specifically for the
class of exact linear base hypergraphs. Moreover, effective
constructions are presented showing the existence of a base
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hypergraph even as a connected instance such that the num-
ber of orbits of its satisfiable fibre-transversals matches any
given finite product of arbitrary Mersenne powers. Moreover,
additional properties of the orbit maps are proven. Finally,
we consider pre-bundles and sections of total clause sets
admitting a fibre-stable action of the complementation group.

II. NOTATION AND PRELIMINARIES

A Boolean or propositional variable, for short variable, x
taking values from {0, 1} can appear as a positive literal
which is x or as a negative literal which is the negated
variable x also called the flipped or complemented variable.
Setting a literal to 1 means to set the corresponding variable
accordingly. A clause c is a finite non-empty disjunction
of different literals and it is represented as a set c =
{l1, . . . , lk}. A conjunctive normal form formula, for short
formula, C is a finite conjunction of different clauses and
is considered as a set of these clauses C = {c1, . . . , cm}.
Let CNF be the collection of all formulas. For a formula
C (clause c), by V (C) (V (c)) denote the set of variables
occurring in C (c). Let CNF+ denote that part of CNF
containing only clauses with no negated variables. Given
C ∈ CNF, SAT asks whether there is a truth assignment
t : V (C) → {0, 1} such that there is no c ∈ C all literals of
which are set to 0. If such an assignment exists it is called
a model of C, and let M(C) be the space of all models of
C. Let SAT ⊆ CNF denote the collection of all clause sets
for which there is a model, and UNSAT := CNF \ SAT.
For a (not necessarily finite) set M , let 2M be its power
set. The set of all positive integers is denoted by N, and
N0 := N ∪ {0}. For n ∈ N, let [n] := {1, . . . , n}, and
[0] := ∅. Let P denote the set of all prime numbers, and
let M be the collection of all Mersenne numbers. For a
given (partial) mapping f , let dom(f) denote its domain,
and im(f) its image. Further denote the (proper) restriction
of f to a subset A ⊂ dom(f) by f |A. As usual a total
map is defined on the whole pre-image set. For a group
G acting on a space M , meaning the existence of a map
G ×M → M : (g,m) 7→ mg , let O(m) := {mg : g ∈ G}
denote the orbit of m ∈ M (under G) (cf. e.g. [18]).
Membership to orbits clearly yields an equivalence relation
on M . Its classes, i.e., the orbits are collected in the orbit
space M/G which in case of a finite group and a finite
space has the finite cardinality |M |/|G|. Given a non-empty
set A ⊆ M and g ∈ G, we set Ag := {mg : m ∈ A},
and by convention ∅g := ∅, for all g ∈ G. For m ∈ M ,
respectively A ⊆ M , let G(m) := {g ∈ G : mg = m},
G(A) := {g ∈ G : Ag = A} denote the isotropy group of
m, respectively A. If G(m) = G, respectively G(A) = G,
m respectively A, is a fixed point [18] of the corresponding
action. Finally, ‘iff’ is used as an abbreviation for ‘if and
only if’.
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III. A HIERARCHY OF DISCRETE PRE-BUNDLES

In this section we provide the basics of a discrete pre-
bundle concept. (Continuous) fibre bundles are an important
concept of topology and geometry (e.g. [6], [19]) and the
concept restricted to discrete structures might be fruitful as
well. Let I be any non-empty discrete (index) set. If I is
infinite it is bijective to N. In case I is finite it is bijective
to [n] where n := |I|. Note that I may have a discrete
structure so that in general (even in the finite case) I needs
not to be isomorphic to N (respectively [n]). Consider a
disjoint union K :=

⋃
k∈I Kk, called the total space, of

certain non-empty, mutually disjoint and (not necessarily
finite) discrete spaces Kk, for every k ∈ I , called the
fibres. Let π : K → I be a total map such that for every
κ ∈ K one requires π(κ) := k iff κ ∈ Kk ensuring the
identity Kk = π−1(k). Hence π is surjective and is called
the (discrete bundle) projection onto the discrete base I .
The triple (K, I, π) is called a discrete pre-bundle over I .
A (partial) section of the discrete pre-bundle is a (partial)
mapping s : I → K such that π|im(s) ◦ s = iddom(s). A total
section s, we shall also call a (discrete) fibre-transversal,
because im(s) contains exactly one member from every fibre.
Let S(I,K) denote the set of all total sections of (K, I, π).
Let K := {κ̂ ∈ 2K : ∃k ∈ I∀κ ∈ κ̂, π(κ) = k} and define
the total map π̂ : K → I induced by π such that for every
κ̂ ∈ K one has π̂(κ̂) := k iff κ̂ ⊆ Kk and κ̂ 6= ∅. Set
(K)k := π̂−1(k). A (partial) (multi-)section is a (partial)
mapping ŝ : I → K such that π̂|im(ŝ) ◦ ŝ = iddom(ŝ). Hence
for every k ∈ dom(ŝ) one has ŝ(k) ⊆ Kk. As is explained
next, a multi-section is no distinct concept. We set K0 := K,
π0 := π, and K1 := K, π̂ := π1. Furthermore, for any integer
ν ≥ 2, defining

Kν :=
{
κ̂ ∈ 2Kν−1 : ∃k ∈ I∀κ ∈ κ̂, πν−1(κ) = k

}
and πν : Kν → I such that for every κ̂ ∈ Kν one sets
πν(κ̂) := k iff ∅ 6= κ̂ ⊆ (Kν−1)k, where (Kν−1)k :=
π−1

ν−1(k), we obtain a hierarchy of discrete pre-bundles as
follows:

Lemma 1: If (K0, I, π0) is a discrete pre-bundle over I
then also (Kν , I, πν) is a discrete pre-bundle over I , for every
ν ∈ N.
PROOF. The proof proceeds by induction on ν, where the
base is clear. For fixed ν > 0 assume that (Kν−1, I, πν−1) is
a discrete pre-bundle over I . By definition of πν−1, Kν does
not contain the emptyset. Now suppose there are k1, k2 ∈ I
such that (∅ 6=)κ̂ ∈ π−1

ν (k1) ∩ π−1
ν (k2) then κ̂ ⊆ (Kν−1)k1 ,

κ̂ ⊆ (Kν−1)k2 , by definition meaning that for all κ ∈ κ̂ we
have πν−1(κ) = k1 and also πν−1(κ) = k2. As κ̂ contains at
least one member one has k1 = k2 ensuring that πν is a well-
defined (partial) map which of course is total by construction.
Finally, let k ∈ I then there is κ ∈ Kν−1 with k = πν−1(κ)
by its surjectivity therefore {κ} ∈ Kν by its definition and
so πν also is surjective. 2

In view of the preceding discussion a (partial) multi-
section of (Kν−1, I, πν−1) appears as a (partial) section of
(Kν , I, πν), for every fixed ν ∈ N. Let G be a group acting
on the total space K of the pre-bundle (K, I, π) such that
each fibre remains invariant, hence one requires κg ∈ Kk iff
κ ∈ Kk for every k ∈ I and g ∈ G. Let us call this action
fibre-stable. Using the notation as above one obtains:

Proposition 1: If G acts fibre-stable on (K0, I, π0) then a
fibre-stable G-action on (Kν , I, πν), ν ∈ N, is induced.
PROOF. Proceeding by induction on ν, fix ν > 0 and
assume that G acts fibre-stable on the discrete pre-bundle
(Kν−1, I, πν−1). For any κ̂ ∈ Kν and g ∈ G we set by
induction κ̂g := {κg : κ ∈ κ̂}. As Kν does not contain the
empty set, on basis of Lemma 1 one then has κ̂g ∈ (Kν)k

iff k = πν(κ̂g) iff k = πν−1(κg), for all κg ∈ κ̂g iff, by
the induction hypothesis, k = πν−1(κ), for all κ ∈ κ̂ iff
k = πν(κ̂) iff κ̂ ∈ (Kν)k, from which the claim follows. 2

Given a fibre-stable action of G, let ϕν := {κ ∈ Kν : ∀g ∈
G, κg = κ} denote the set of fixed points in Kν , ν ∈ N0.

Proposition 2: Let G act fibre-stable on (K0, I, π0), and
let κ ∈ Kν−1, for fixed ν ∈ N, then there is a unique k ∈ I
such that the G-orbit of κ satisfies O(κ) ∈ (Kν)k. Moreover
2ϕν−1 ⊆ ϕν .
PROOF. Clearly by the pre-bundle property due to Lemma
1 there is a unique k ∈ I : πν−1(κ) = k, for all ν > 0.
Thus κ ∈ (Kν−1)k, and by the fibre-stable action of G one
has {κg : g ∈ G} = O(κ) ⊆ (Kν−1)k, from which the
first claim follows. Moreover if ϕν−1 = ∅ then the second
claim obviously holds true, as by convention ∅g = ∅, g ∈ G.
Otherwise let ∅ 6= κ̂ ∈ 2ϕν−1 then κ̂g = {κg : κ ∈ κ̂} = κ̂,
for all g ∈ G. Thus κ̂ ∈ ϕν . 2

Regarding the isotropy group of sections one has:
Theorem 1: Let ν ∈ N0 and s ∈ S(I,Kν) arbitrary.

Then the isotropy group of im(s) is given by: G(im(s)) =⋂
k∈I G(s(k)).

PROOF. Let g ∈ G(im(s)), then im(s) = im(s)g = {s(k)g :
k ∈ I}. Now s(k) ∈ (Kν)k is equivalent with s(k)g ∈
(Kν)k, k ∈ I , because G acts fibre-stable. Since the spaces
(Kν)k, k ∈ I , are mutually disjoint one obtains s(k) = s(k)g

for all k ∈ I . Therefore g ∈
⋂

k∈I G(s(k)) which clearly is
a subgroup of G. The reverse inclusion is obvious and the
assertion is proven. 2

Next we briefly describe how the pre-bundle notion can
be extended to a discrete fibre-bundle structure. Let (K, I, π)
be a discrete pre-bundle and let U 6= ∅ be such that there
are bijections φk : U → Kk, for every k ∈ I . Clearly, if
every Kk is equipped with a specific structure one would
require that U carries the same structure and that these
bijections are isomorphisms in the categorical sense. Now
the tuple (K, I, π, U,Aut(U)) is called a discrete (fibre)
bundle, where Aut(U) is the group of all automorphisms
of U . Let {Iµ} be an arbitrary family of discrete local
neighborhoods where ∅ 6= Iµ ⊂ I, |Iµ| < ∞, and the µ
are taken from any suitable index set J . For every µ ∈ J
there is a unique positive integer nµ with |Iµ| = nµ.
Further assume

⋃
µ∈J Iµ = I and that there are bijections

φµ : Iµ × U → π−1(Iµ) such that φµ(k, u) ∈ Kk, for every
(k, u) ∈ Iµ×U . Every pair (Iµ, φµ), µ ∈ J , is called a local
trivialisation of the discrete bundle. For fixed k ∈ Iµ let

φµ,k := φµ(k, ·) : U → Kk

we then have for any k ∈ Iµ1 ∩ Iµ2 6= ∅,

φ−1
µ2,k ◦ φµ1,k : U → U

which obviously is a member of Aut(U). The collection of
all pairs {(Iµ, φµ)µ∈J} plays the role of a discrete bundle
atlas. If specifically U is finite with N := |U |, then also
|Kk| = N , for all k ∈ I , and Aut(U) = SN becomes
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the finite symmetric group of degree N and of order N !.
Conversely, i.e., no pre-bundle is given, suppose that there is
a (structure-preserving) bijection φk : U → Kk mapping a
space U to every member of a collection of mutually disjoint
spaces Kk, k ∈ I , where I is a discrete (possibly infinite)
index set. Then the following mapping is induced for every
finite In = {k1, . . . , kn} ⊂ I:

φn : In × U 3 (kj , u) 7→ φkj
(u) ∈

n⋃
j=1

Kkj

Now we have J = N for the index set. The latter mappings
are (structure-preserving) bijections, because each φkj

, for
fixed kj ∈ In is such a bijection on the whole of Kkj

. Further
one has

π−1(In) :=
n⋃

j=1

Kkj

as a disjoint union, and for fixed κ ∈ π−1(In), there is a
unique j ∈ [n] such that κ ∈ Kj . Now φn,k = φk,∀k ∈ In,
and every positive integer n. It follows that the map

π :
⋃
k∈I

Kk → I

thereby defined via π(κ) = k iff κ ∈ Kk is total and
surjective. Note that the fibre-bundle constructed in this
manor is trivial in the sense that K is bijective to I × U .
Here one typically would have I ∈ {N, Z}, but also other
possibly structured discrete index sets might be useful.

IV. PROPERTIES OF THE ORBIT MAPS

Recall that the hyperedge set B(C) of the base hypergraph
H(C) = (V (C), B(C)) of a formula ∅ 6= C ∈ CNF is
B(C) := {V (c) : c ∈ C} ∈ CNF+. Also a given hypergraph
H = (V,B) serves as a base hypergraph if its vertex set V
is a finite non-empty set of Boolean variables such that for
every x ∈ V there is a b ∈ B containing x. Thus ensuring
B 6= ∅, which is assumed throughout. Recall that a loop is a
hyperedge containing exactly one vertex [2]. Let H denote the
space of all (finite) base hypergraphs of non-empty formulas,
and Hc the fraction of connected instances. A hypergraph
H = (V,B) is called connected if its intersection graph is
connected in the usual sense. Here the intersection graph
of H = (V,B) gets a vertex for each b ∈ B and there
is exactly one edge joining a pair of vertices b 6= b′ iff
b∩b′ 6= ∅. A hypergraph H = (V,B) is linear if |b∩b′| ≤ 1,
for all distinct b, b′ ∈ B. Further H is exact linear if ≤
above is replaced with =. Let Hlin denote the subclass of all
loopless, linear base hypergraphs, and let Hc

lin be its subclass
of connected instances. Analogously, we define Hxlin ⊆ Hc

lin

as the proper subclass of exact linear instances. Observe that
the base hypergraph H(C) is (exact) linear if the formula
C is (exact) linear. Moreover H(C) is loopless if C is free
of unit clauses. Recall that a hypergraph is called Sperner
if none of its hyperedges contains another hyperedge [2].
Let Hsper be the collection of those instances. Obviously,
Hxlin ⊆ Hlin ⊆ Hsper. For simplicity let H ∪ {b} be the
hypergraph having the same vertex set as H = (V,B) and
the edge set B ∪ {b}. By Wb := {c : V (c) = b} denote
the collection of all clauses over a fixed b ∈ B. As usual
Cb = C ∩ Wb is the fibre over b of a formula C ∈ CNF

[12]. The set of all clauses over H = (V,B) is the total
clause set KH :=

⋃
b∈B Wb. A fibre-transversal F of KH

contains exactly one member of every Wb, b ∈ B, namely
F (b) and F(KH) is the set of all fibre-transversals [12].
Note that F can be viewed as a map or as a formula
which formally results as the image of the map F . It shall
become clear which view of F is meant in either context. A
compatible fibre-transversal satisfies

⋃
b∈B F (b) ∈ WV , let

them be collected in Fcomp(KH). Observe that the model
space M(C) ⊆ Fcomp(KH), if H(C) = H. To that end,
a truth assignment t : V → {0, 1} is identified with the
clauses t(b) := {x : x ∈ b ∧ t(x) = 1} ∪ {x̄ : x ∈
b∧ t(x) = 0}, for all b ∈ B. A diagonal fibre-transversal has
a non-empty intersection with every member of Fcomp(KH),
they are collected in Fdiag(KH). A base hypergraph H
is called diagonal [13] iff Fdiag(KH) 6= ∅. Further H is
minimal diagonal if it does not contain another diagonal
base hypergraph [14]. Set Hmdiag ⊆ Hc for the class of
all minimal diagonal instances. Clause cX results from c
via complementing all variables in X ∩ V (c), for X ⊆ V .
As considered in [14] let GV := (2V ,⊕) denote the finite
complementation group with neutral element ∅ inducing this
flipping action on CNF by observing that {c} ∈ CNF. By
O(C) := {CX : X ∈ GV } denote the (GV -)orbit of C in
CNF. Given H = (V,B) ∈ H, as defined in [14], ω(H)
denotes the number of all such orbits in F := F(KH),
i.e. ω(H) = |F/GV |, and δ(H) is the cardinality of the
orbit space Fdiag(KH)/GV . As also defined in [14], let
β : H → N0 where β(H) =

∑
b∈B |b| − |V |, for every

H ∈ H. One has ω(H) = 2β(H) which also directly follows
from the (so-called) Burnside orbit Lemma for finite groups:
The number of orbits of a group action is determined by the
sum of the cardinalities of all its fixed point sets. Here, every
fixed point set FX := {F ∈ F : FX = F} = ∅, for X ∈ GV

with X 6= ∅, and F∅ = F . Hence
∑

X∈GV
|FX | = |F|,

and therefore ω(H) = |F|/2[V |. In [15] a further map on
H is defined, namely ρ : H → N0, where for any H ∈ H,
ρ(H) denotes the number of orbits with respect to the GV -
action of all fibre-transversals in F(KH) which are neither
compatible nor diagonal. Set FSAT(KH) := F(KH)∩ SAT
= F(KH) \ Fdiag(KH). For short, the functions β, ω, δ, ρ
on H determined by the cardinalities of the corresponding
orbit spaces are refered to as the orbit maps (notice that
β = log2 ω). For convenience, a fixed fibre-transversal
F ∈ F(KH) may be refered to as the orbit base of its orbit
O(F ) ∈ F(KH)/GV .

Proposition 3: Let H = (V,B) ∈ H.

(1) It is ρ(H) = 0 iff F(KH) = Fcomp(KH) iff ω(H) = 1.
In this case also δ(H) = 0.

(2) Let δ(H) = 0, b ⊆ V be arbitrary such that b 6∈ B, and
H′ := H∪{b}. If there is F ∈ F(KH) with |M(F )| =
1 then δ(H′) > 0. Moreover, O(F ) ∈ F(KH)/GV

determines exactly one orbit in Fdiag(KH′)/GV .

PROOF. Let H ∈ H then ω(H) = 1 + ρ(H) + δ(H)
[15]. Therefore, ω(H) = 1 iff ρ(H) + δ(H) = 0 iff
ρ(H) = 0 = δ(H) as both are non-negative. The last
statement is equivalent with F(KH) = Fcomp(KH). Finally,
if ρ(H) = 0 then ω(H) = 1+ δ(H). Assume δ(H) ≥ 1 then
there is F ∈ Fdiag(KH) containing a minimal unsatisfiable
subformula F̂ ⊆ F . Since δ(H(F̂ )) ≥ 1, B(F̂ ) cannot
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consist of loops only. So, select any b ∈ B(F̂ ) with |b| ≥ 2.
According to [15], Lemma 6, F̂c := (F̂ \ {F̂ (b)}) ∪ {c} is
satisfiable, for any c ∈ Wb with c 6= F̂ (b). Hence choose c
such that F̂c is non-compatible. This is always possible: let
t be a model of F̂ \ {F̂ (b)} then every literal in F̂ (b) is set
by t to 0, and must occur outside F̂ (b) as a complemented
literal. As |b| ≥ 2, one can choose c as required. Now let tc
be a model of F̂c and extend F̂c over the remaining part
of B compatible with tc yielding F1 ∈ F(KH) ∩ SAT.
Thus we obtain ρ(H) > 0 yielding a contradiction implying
δ(H) = 0 thus ω(H) = 1 finishing (1). Assume that t is
the unique model of F ∈ F(KH). Then F ′ := F ∪ {t(b)b}
is a diagonal fibre-transversal of H′, for any fixed b ⊆ V ,
b 6∈ B, because V = V (H′). Let F0 ∈ O(F ) then there is
X ∈ GV : FX = F0 and clearly tX is the unique model of
F0 otherwise F had further models. The resulting diagonal
fibre-transversal F ′

0 := F0 ∪ {tX(b)}b = F0 ∪ {t(b)b}X ∈
O(F ′). Hence the orbit O(F ) ∈ F(KH)/GV determines at
least one orbit O(F ′) ∈ Fdiag(KH′)/GV . Assume there is
O(F ′

1) ∈ Fdiag(KH′)/GV such that O(F ′
1) 6= O(F ′) but

F1 := F ′
1 \ F ′

1(b) ∈ O(F ). Hence there is X1 ∈ GV :
FX1 = F1 and tX1 is the unique model of F1. Clearly,
(tX1(b))b ∈ Wb is the unique clause unsatisfied by tX1 , thus
(tX1(b))b = (t(b)b)X1 = F ′

1(b) otherwise F ′
1 ∈ SAT. In

summary, F ′X1 = F ′
1 providing a contradiction, therefore

O(F ) determines exactly one orbit in Fdiag(KH′)/GV . 2

So, if ω(H) = 1 then β(H) = 0 and also ρ(H) = 0 =
δ(H). Call such an instance H a trivial base hypergraph.
The next result states under which circumstances it might be
possible, by adding one hyperedge, to jump from δ = 0 to
a possibly arbitrary value:

Proposition 4: Let H = (V,B) with δ(H) = 0. Let b ⊆
V , b 6∈ B, and H′ = H∪ {b}. If there are exactly r distinct
orbits O(F ) ∈ F(KH)/GV such that for each orbit base F
there is c(F ) ∈ Wb with t(b) = c(F ), for all t ∈ M(F ),
then δ(H′) = r.
PROOF. For r = 0, assume that there is F ′ ∈ Fdiag(KH′)
implying F := F ′ \ {F ′(b)} ∈ SAT. So, let t ∈M(F ) 6= ∅
be such that F ′(b) 6= t(b)b ∈ Wb. Such a model must exist,
otherwise all models would obey t(b) = c(F ) := F ′(b)b.
Hence there is x ∈ b and w.l.o.g. x ∈ t(b)b, x̄ ∈ F ′(b).
Thus t ∈ M(F ′) because x̄ ∈ t(b) satisfies F ′(b), also.
Therefore Fdiag(KH′) = ∅ and δ(H′) = 0 as asserted. For
fixed integer r > 0, let F ∈ F(KH) with t(b) = c, for
all t ∈ M(F ). Assume that F ′ := F ∪ {cb} ∈ SAT with
model t′ specifically satisfying cb. Thus t′ ∩ cb 6= ∅ meaning
t′(b) 6= c yielding a contradiction because also t′ ∈ M(F ).
Therefore O(F ′) ∈ Fdiag(KH′)/GV as the satisfiability
status clearly is invariant on orbits. Suppose there is O(F̆ ) ∈
F(KH)/GV with t̆(b) = c̆, for all t̆ ∈M(F̆ ), and such that
O(F̆ ′) = O(F ′), where F̆ ′ := F̆∪{c̆b} ∈ UNSAT. So, there
is X ∈ GV such that F̆ ′X = F̆X ∪{c̆b}X = F ′ = F ∪{cb}.
Hence, as all members of this equation are fibre-transversals,
and only c̆b, cb ∈ Wb, it follows that F̆X = F meaning
O(F̆ ) = O(F ). Therefore δ(H′) ≥ r. Suppose there are
distinct orbits O(F ′), O(F̃ ′) ∈ Fdiag(KH′)/GV such that
O(F ) = O(F̃ ) ∈ F(KH)/GV , where F := F ′ \ F ′(b)
and F̃ := F̃ ′ \ F̃ ′(b) ∈ SAT. Then there is X ∈ GV

such that FX = F̃ . Moreover, t(b) = F ′(b)b ∈ Wb, for
all t ∈M(F ), otherwise F ′ could be satisfied. Analogously,
t̃(b) = F̃ ′(b)b ∈ Wb, for all t̃ ∈ M(F̃ ). Thus tX(b) =

(F ′X(b))b ∈ Wb, for all tX ∈ M(FX) = M(F̃ ) implying
F̃ ′(b)b = F ′X(b)b. Hence, F̃ ′ = F ′X yielding a contradic-
tion implying O(F ′) = O(F̃ ′). Therefore δ(H′) ≤ r, and in
summary δ(H′) = r. 2

The converse statement also holds true in the following
sense:

Proposition 5: Let H′ = (V,B) and b ∈ B with δ(H) =
0 for H = (V,B \ {b}). If δ(H′) = r then there are exactly
r distinct orbits O(F ) ∈ F(KH)/GV such that for each
orbit base F there is c(F ) ∈ Wb with t(b) = c(F ), for all
t ∈M(F ).
PROOF. First assume r = 0 and suppose there is b ∈ B with
δ(H) = 0 where H = (V,B \{b}) and let F ∈ F(KH)/GV

with t(b) = c(F ) ∈ Wb, for all t ∈ M(F ). Then
F ∪ {c(F )}b = F ′ ∈ Fdiag(KH′) providing a contradiction:
Any model t′ of F ′ also satisfies F , thus t′ ∈ M(F ) thus
t′(b) = c(F ) meaning t′(b) ∩ c(F )b = ∅. For r > 0, let
F ′ ∈ Fdiag(KH′) then F := F ′ \ F ′(b) ∈ F(KH) ∩ SAT
because δ(H) = 0. Suppose there is t ∈ M(F ) with
t(b) 6= F ′(b)b =: c(F ) then t satisfies F ′(b) and t ∈M(F ′),
a contradiction. So for all t ∈ M(F ) one has t(b) = c(F ).
For F̃ ′ ∈ O(F ′) there is X ∈ GV : F ′X = F̃ ′, so
F̃ := F̃ ′ \ F̃ ′(b) = F ′X \ F ′X(b) = (F ′ \ F ′(b))X = FX .
yielding F̃ ∈ O(F ). So every orbit in Fdiag(KH′)/GV

determines at least one orbit in F(KH)/GV with the as-
serted property. Finally suppose there is O(F̆ ) 6= O(F )
with the asserted property but there is c ∈ Wb such that
F̆ ′ := F̆ ∪ {c} ∈ O(F ′). Again there is Y ∈ GV with
F ′Y = FY ∪ {F ′(b)}Y = F̆ ′ = F̆ ∪ {c} = F̆ ∪ {F̆ ′(b)}.
Here the last equality is valid as t(b) = F̆ ′(b)b for every
t ∈ M(F̆ ), thus c = F̆ ′(b), otherwise F̆ ′ ∈ SAT. Thus
FY = F̆ , a contradiction. So every orbit in Fdiag(KH′)/GV

determines at most one orbit in F(KH)/GV with the as-
serted property finishing the proof. 2

The combination of both the previous Propositions yield:
Theorem 2: Let H = (V,B) with δ(H) = 0 and b ⊆ V ,

b 6∈ B, with H′ = H ∪ {b}. Then δ(H′) = r iff there are
exactly r distinct orbits O(F ) ∈ F(KH)/GV such that for
each orbit base F there is c(F ) ∈ Wb with t(b) = c(F ), for
all t ∈M(F ).
For any H0 = (V0, B0), H = (V,B) ∈ H, as usual one sets
H0 ⊆ H iff V0 ⊆ V and B0 ⊆ B. Furthermore, let H0 � H
be defined by V0 ⊆ V and for every b0 ∈ B0 there is b ∈ B
such that b0 ⊆ b.

Lemma 2: For the binary relations ⊆,� on H one has:
(1) ⊆ ⊂ � as a proper inclusion,
(2) � is reflexive, transitive, but not antisymmetric,
(3) � is a partial order restricted to Hsper.
PROOF. Obviously ⊆ ⊆ �. Let V0 = V = {xi : i ∈ [4]},
B0 = {b1, b2, b3} with b1 = {x1}, b2 = {x2}, b3 =
{x3, x4}, and B = {b2, b3, b}, where b = {x1, x3, x4}. Then
H0 6⊆ H, but H0 � H, so (1) is true. Clearly, � is reflexive.
Let H0 � H′ = (V ′, B′) and H′ � H then clearly V0 ⊆ V .
For b ∈ B0 there is b′ ∈ B′ containing it, and there is
b ∈ B such that b0 ⊆ b′ ⊆ b, hence the transitivity of �
follows. Let V = V0 = {x1, x2}, b = {x1, x2}, B = {b}
and B0 = B ∪ {{xi} : i ∈ [2]}, then H0 � H and H � H0

but H0 6= H implying (2). For verifying (3) it therefore
suffices to establish antisymmetry of � restricted to arbitrary
instances H0,H ∈ Hsper: Assume H0 � H and H � H0

implying V0 = V . Let b0 ∈ B0 then there is b ∈ B with
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b0 ⊆ b, in turn there is b′0 ∈ B0 containing b meaning
b0 ⊆ b′0 hence b0 = b′0 as H0 is Sperner. Thus b ⊆ b0

implying b0 = b ∈ B yielding B0 ⊆ B. Exchanging the
roles of B,B0, analogously implies the reverse inclusion,
hence B0 = B finishing the proof. 2

Regarding the monotony of the orbit maps on these
partially ordered spaces one has:

Proposition 6: Let H⊆ = (H,⊆), H�
sper = (Hsper,�).

(1) α : H⊆ → N0 is monotone, for α ∈ {β, ω, δ}.
(2) γ : H�

sper → N0 is non-monotone, for γ ∈ {β, ω, δ, ρ}.
PROOF. Suppose H0 ⊆ H. If V = V0 then clearly
β(H) ≥ β(H0). In the remaining case, every x ∈ V \ V0

occurs in at least one b ∈ B by the definition of base
hypergraphs. Hence it is β(H) ≥ β(H0) also in this case,
directly implying ω(H) ≥ ω(H0) yielding that β, ω are
monotone on H⊆. Assume there is F0 ∈ Fdiag(KH0),
otherwise δ(H) ≥ δ(H0) = 0. As B0 ⊆ B, possibly
extending F0 to F over B cannot yield a satisfiable transver-
sal. Therefore |Fdiag(KH0)| ≤ |Fdiag(KH)|. Moreover, let
O(F0),O(F ′

0) be distinct orbits in Fdiag(KH0)/GV0 , and
assume there are extensions of F0, F ′

0 to F , F ′ over B,
respectively, such that O(F ) = O(F ′) in Fdiag(KH)/GV .
Thus there is X ∈ GV such that FX = F ′ equivalent to
FX

0 ∪ (F \ F0)X = F ′
0 ∪ F \ F ′

0 as disjoint unions on both
sides of the equation. No clause c ∈ F\F0 can be mapped via
X to a clause in F ′

0 as b(c) ∈ B \B0, and for the analogous
reason no clause from F0 can be transformed to a clause in
F ′ \ F ′

0. Thus FX∩V0
0 = F ′

0 yielding a contradiction. One
concludes that for every orbit in Fdiag(KH0)/GV0 there is
an orbit in Fdiag(KH)/GV so δ is monotone on H⊆. For
verifying (2), let V0 = {x, x1, x2} = V B0 = {b1, b2},
B = {b} where b1 = {x, x1}, b2 = {x, x2}, b = {x, x1, x2}.
Then clearly H0 � H and H0,H ∈ Hsper ∩ Hxlin, hence
δ(H0) = δ(H) = 0. Further one has β(H0) = 1, β(H) = 0
and ρ(H0) = 2 − 1 = 1, ρ(H) = 1 − 1 = 0 proving that
neither of β, ω, ρ in general is monotone on H�

sper. Next
recall that every unsatisfiable loopless linear formula C is a
diagonal fibre transversal. Hence H0 := H(C) ∈ Hlin and is
therefore Sperner, moreover δ(H0) > 0, where the existence
of C is ensured according to [17] (a concrete small example
is provided e.g. in the proof of Thm. 8, [15]). Let H = (V,B)
be obtained from H0 by introducing a new variable x(b0), for
every b0 ∈ B0. Then setting V := V0∪{x(b0) : b0 ∈ B0} and
B := {b0 ∪ {x(b0)} : b0 ∈ B0} yields a linear thus Sperner
instance with H0 � H. Let F ∈ F(KH) be arbitrary. As the
clause F (b) contains a unique literal from {x(b0), x̄(b0)}, for
all b ∈ B, one has F ∈ SAT. Therefore δ(H) = 0 < δ(H0),
so δ is non-monotone on H�

sper. 2

Let H̄ denote the class of all base hypergraphs free of
trivial components.

Theorem 3: For H ∈ H̄ one has:
(1) If δ(H) = 1 then H ∈ Hc.
(2) There is H 6∈ Hc with ρ(H)<δ(H), δ(H)≡1 mod 2.
PROOF. For H (Hi) set α(H) := α (α(Hi) := αi),
α ∈ {β, δ, ρ, ω}. Assume that H is composed of two disjoint
components Hi, i = 1, 2 such that at least H1 has δ1 ≥ 1,
then δ ≥ 1 as H ⊇ H1 due to its monotony. In general
due to [15], Lemma 1, one has for such a disjoint union
δ(H) = δ1ω2 + δ2ω1− δ1δ2 and ρ(H) = ρ1 +ρ2 +ρ1ρ2. So,
if δ2 = 0 one has δ > δ1 as β2 > 0. Otherwise, as ω1 > δ1,
δ > δ1ω2 ≥ δ1. It also follows that if δi = 0, i = 1, 2

then δ = 0. Hence for a disconnected H ∈ H̄ either δ = 0
or δ > 1 thus (1). Regarding (2) consider H′ = (V ′, B′)
with V ′ = {x1, x2}, B′ = {b1, b2, b3} and b1 = {x1},
b2 = {x2}, b3 = {x1, x2}, for which ω′ = 4, δ′ = 1 (as
is easy to see) and ρ′ = 2. Let H1 be two disjoint copies
of H′. Again using the combination formulas as above one
obtains ω1 = ω′2 = 16, δ1 = 7 and ρ1 = 8. Adding another
disjoint copy of H′ to H1 yields a disconnected H ∈ H̄ with
ω = 64, and odd δ = 37 > ρ = 26. 2

Definition 1: Let H0 = (V0, B0), non-empty b 6∈ B0 with
H := (V,B), where V := V0 ∪ b, B := B0 ∪ {b}. Then the
fluctuation fb is the number of all orbits in FSAT(KH0)/GV0

which become orbits in Fdiag(KH)/GV . Set fb := 0 iff
V0 ∩ b = ∅.
If b ∩ V0 = ∅ then H specifically is no bifurcation augmen-
tation of H0 (cf. Def. 1, [15]). Hence, adapting Corollary
1 in [15], it is δ = δ0 thus fb = 0 which is in accordance
with the setting above. For α(H) =: α, α ∈ {ρ, δ} then one
obtains:

Theorem 4: Let b and H0,H ∈ H as in Definition 1.
(1) δ = 2|b∩V0|δ0 + fb.
(2) If b \ V0 6= ∅ then fb = 0.
(3) If for every x ∈ b there is {x} ∈ B0 then fb = ρ0 + 1.
(4) The condition in (3), and Fcomp(KH0) contributes

exactly 1 to fb, are equivalent.
PROOF. (1) Let j := |b ∩ V0| ∈ N0. If j = 0 then fb = 0,
δ = δ0 by the remark above. If δ0 = 0 then clearly δ = fb

by definition. Assume that j, δ0 > 0. Fixing an orbit base
Fk ∈ Fdiag(KH0) of every orbit in Fdiag(KH0)/GV0 , k ∈
[δ0], yields mutually distinct fibre-transversals because their
orbits are mutually disjoint. Let b =: b′ ∪ b̃ as disjoint union
where b′ := V0∩b. Defining Fk[c] := Fk∪{c} ∈ Fdiag(KH)
where c := d∪ b̃, for every d ∈ Wb′ , yields the collection of
2j mutually disjoint GV -orbit bases in Fdiag(KH) because
all variables of b′ occur as constant fixed literals in Fk.
The negation of any member of b̃, if non-empty, results
in an orbit member, hence yields no additional orbit base.
Suppose there are i, j ∈ [δ0], i 6= j, c, c′ ∈ Wb such that
O(Fi[c]) = O(Fj [c′]), then there is X ⊆ V , X0 := X ∩ V0

with Fi[c]X = FX0
i ∪ {c}X = Fj ∪ {c′} = Fj [c′]. Hence

FX0
i = Fj providing a contradiction. So, running through

all members of {Fk : k ∈ [δ0]} as above yields exactly
2jδ0 further distinct orbits in Fdiag(KH)/GV . In summary
we obtain δ = 2jδ0 + fb. (2) If |b \ V0| > 0 then any
F ∈ FSAT(KH0) yields F ∪ {c} ∈ FSAT(KH), as every
c ∈ Wb can be satisfied independently of all clauses in
F . Thus fb = 0. (3) Since by definition no member of
Fdiag(KH0) contributes to fb, w.l.o.g. assume δ0 = 0 and
let F ∈ FSAT(KH0) be arbitrary. Then for every t ∈M(F )
all loop variables are fixed. By assumption the new edge b
satisfies b ⊆ V0 and consists of loop variables only. Thus
t(b) = {F ({x}) : x ∈ b} ∈ Wb, for all t ∈ M(F ). Accord-
ing to Thm. 2 therefore it is r = fb = |FSAT(KH0)/GV0 | =
ρ0+1. (4) Since (3) means that any orbit in FSAT(KH0)/GV0

increases fb of exactly 1 it specifically is sufficient for the
unique orbit in Fcomp(KH0)/GV0 . Regarding the necessity,
let F ∈ Fcomp(KH0) be a fixed orbit base, and c ∈ Wb be
arbitrary. Let t0 be the model of F setting every literal in F to
1. Assume there is x ∈ b but {x} 6∈ B0 then every edge in B0

contains a variable distinct to x. So, modifying t0 such that
the literal over x in c is set to 1 yields F ∪{c} ∈ FSAT(KH)
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and the proof is finished by contraposition. 2

So, it always is 0 ≤ fb ≤ ρ0 + 1, and there are
instances for which the boundary values are valid. Further,
one immediately concludes in combination with Thm. 2:

Corollary 1: Let b and H0,H ∈ H as in Definition 1.
Then δ(H) = 2|b∩V0|δ0 + fb iff there are exactly fb orbits
O(F ) ∈ FSAT(KH0)/GV0 such that for each orbit base F
there is c(F ) ∈ Wb with t(b) = c(F ), for all t ∈M(F ).
Consider the disconnected base hypergraph H = (V,B)
with ω = 64, δ = 37, and ρ = 26 as constructed in the
proof of Theorem 3, (2). Recall that H is the union of
three disjoint copies of H′ = (V ′, B′) with V ′ = {x1, x2},
B′ = {{x1}, {x2}, {x1, x2}}. So one may assume that
V = {xi : i ∈ [6]}, and B = {{xi} : i ∈ [6]} ∪
{{x1, x2}, {x3, x4}, {x5, x6}}. Setting B̃ := B ∪ {b} with
b := V yields a connected base hypergraph H̃ = (V, B̃),
for which the condition (3) of Theorem 4 is valid. Thus
fb = ρ + 1 = 27, ω̃ = 212, and δ̃ = 26 · 37 + 27 = 2395 >
ρ̃ = 212 − 2395− 1 = 1700; yielding:

Theorem 5: There is H ∈ Hc such that δ(H) > ρ(H).2

V. DISCRETE PRE-BUNDLES OF BASE HYPERGRAPHS

Next we consider the question of the existence of base
hypergraphs for specific values of the orbit maps. Hence sub-
classes of base hypergraphs are identified admitting discrete
pre-bundles over N0 where those functions appear as the
projections.

A. Pre-Bundles With Projections β Or ρ

Let βlin := β|Hlin , and βc
lin := β|Hc

lin
.

Proposition 7: (H, N0, β) is a discrete pre-bundle. Also
(Hlin, N0, βlin), (Hc

lin, N0, β
c
lin) are discrete pre-bundles.

PROOF. It suffices to verify the last claim which implies the
remaining. So let i = 0, then H0 := ({x1, x2}, {{x1, x2}})
satisfies β(H0) = 0 and H0 ∈ Hc

lin. For i ∈ N take Vi =
{xj : j ∈ [i+2]}, and Bi = {bl : l ∈ [i+1]} such that |b| =
2, for every b ∈ Bi. Setting bl = {xl, xl+1}, for l ∈ [i + 1],
obviously yields V (Bi) = Vi and

∑
l∈[i+1] |bl| = 2i + 2

hence β(Hi) = i where Hi := (Vi, Bi) and Hi ∈ Hc
lin. Thus

βc
lin is a projection onto N0. 2

We identify H =: H0, respectively Hlin =: Hlin0 and
Hlin =: Hlin0 with K0, and also β =: β0 respectively
βlin =: βlin0, and βc

lin =: βc
lin0 with π0. Further let

Hν , respectively Hlinν , Hc
linν be identified by Kν , and βν

respectively βlinν , βc
linν by πν , for every ν > 0. On the

basis of Lemma 1 and the previous result one concludes:
Corollary 2: (Hν , N0, βν), (Hlinν , N0, βlinν), as well as

(Hc
linν , N0, β

c
linν), ν ∈ N0, are discrete pre-bundles.

Specifically notice that β−1(0) = β−1
lin (0), and that Hxlin ⊆

δ−1(0) [17] meaning that there exist non-trivial non-diagonal
instances. Defining βxlin := β|Hxlin , in this context one even
has:

Proposition 8: (Hxlin, N0, βxlin), (Hxlinν , N0, βxlinν), for
ν ∈ N0, are discrete pre-bundles.
PROOF. Let i ∈ N0 be arbitrarily fixed. Specifically using
[0] := ∅, set Vi = {x} ∪ {xl,j : l ∈ [i + 1], j ∈ [i]}, and
Bi = {bl : l ∈ [i + 1]} such that |b| = i + 1, for every
b ∈ Bi. Namely, setting bl = {x} ∪ {xl,j : j ∈ [i]}, for
every l ∈ [i + 1], yields |V (Bi)| = |Vi| = 1 + i(i + 1)
and

∑
l∈[i+1] |bl| = (i + 1)2 hence β(Hi) = i where

Hi := (Vi, Bi). Observe that the intersection graph of Bi

forms a clique Ki+1. Moreover, by construction, x is the
only variable occurring in the pairwise intersections of the
members of Bi hence Hi ∈ Hxlin yielding the first claim.
Together with Lemma 1 and the usual correspondences, the
second claim is verified. 2

Recall that M contains all Mersenne numbers, and set
ρxlin := ρ|Hxlin . Due to the previous result one obtains:

Corollary 3: (1) It is δ(H) = ρ(H) iff H ∈ β−1(0).
(2) (Hxlin, M, ρxlin) is a discrete pre-bundle.
PROOF. Let H ∈ H. If δ(H) = ρ(H) =: c then ω(H)− 1 =
2c. As ω(H) − 1 =: M ∈ M it is 2|M only if M = 0
meaning ω(H) = 1, hence β(H) = 0. Reversely, if β(H) =
0 then ω(H) = 1 then δ(H) = ρ(H) = 0, hence (1). As
mentioned above δ|Hxlin = 0, hence ρ(H) = ω(H) − 1 =
2β(H) − 1 ∈ M, for every H ∈ Hxlin. The surjectivity of
ρxlin is established by Prop. 8, thus (2). 2

Lemma 3: Let i ∈ N0.
(1) There is H ∈ Hlin with ω(H) = 2i.
(2) If H0 exists with ρ0 = i then there is H1: ρ1 = 2i +

1. Further H1 can be chosen both as diagonal or non-
diagonal.

PROOF. (1) directly follows from Proposition 7 due to
ω(H) = 2β(H), H ∈ H. For (2) consider H1 = (V1, B1)
with V1 = {x1, x2} and B1 = {b1, b2} with b1 = {x1},
b2 = {x1, x2} yielding ω1 = 2, δ1 = 0 and ρ1 = 1. Next
let H2 = (V2, B2) ∈ H be arbitrary but disjoint to H1. Then
for H := H2 ∪ H1 one obtains ρ(H) = 1 + 2ρ2. Moreover
iff H2 is diagonal also H ⊃ H2 is diagonal because of the
monotony of δ. 2

According to [14] a diagonal base hypergraph H is called
simple if δ(H) = 1. Set Hsimp for the class of all simple base
hypergraphs. Recall that due to Theorem 3, (1) all members
of H̄simp are connected. Further there is no upper bound on
ρ in Hsimp. To state it more precisely, let M̂−1 := {M − 1 :
M ∈ M̂} where M̂ denotes the set of all Mersenne numbers
excluding 0, 1, and set ρsimp := ρ|Hsimp , ρc

simp := ρ|Hc
simp

.
Theorem 6: For the classes Hsimp,Hc

simp one has:

(1) (Hsimp, M̂−1, ρsimp) and (Hc
simp, M̂−1, ρ

c
simp) are dis-

crete pre-bundles.
(2) For H ∈ H \Hsimp with ρ(H) ∈ M̂−1 one has δ(H) >

ρ(H).
PROOF. Regarding (1) we first show that ρsimp cannot take
values outside M̂−1 = {2(2k−1 − 1) : k ∈ N \ {1}}. Clearly
ω(H) = 1 + 1 + ρ(H) for any simple base hypergraph. In
general we have ρ(H) = δ(H) = 0 according to Prop. 3
(1) only in case ω(H) = 1. Thus ω(H) = 2 is excluded for
simple base hypergraphs. Hence ρ(H) = 2k − 2, for k ≥ 2
is the only possible range of values, meaning that also ρc

simp

cannot take values outside M̂−1. It remains to prove that
ρc
simp is a surjection. Take H′ ∈ Hc

simp as defined in the
proof of Theorem 3 (2) with ρ(H′) = 2 being the smallest
member in M̂−1, for k = 2. For k ≥ 3 take Hk = (Vk, Bk)
such that Vk := {xi : i ∈ [k]} and Bk := {{xi} : i ∈ [k]}.
Then βk = 0 therefore ωk = 1 and due to Prop. 3 (1) it
follows that ρk = δk = 0. Now for H′

k := (Vk, B′
k) with

B′
k := Bk ∪ {b} and b := Vk 6∈ Bk, one has β(H′

k) =
2k−k = k thus ω(H′

k) = 2k. Moreover for H′
k the condition

in (3) of Theorem 4 is valid. Therefore fb = ρk +1 = 1 and
due to (1) of Theorem 4, δ(H′

k) = 2kδk + 1 = 1, hence
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ρ(H′
k) = 2k − 2 ∈ M̂−1. Finally, it is H′

k ∈ Hc
simp by

construction. Concerning assertion (2) let H ∈ H\Hsimp with
δ(H) = c 6= 1, ω(H) = 2j , and ρ(H) ∈ M̂−1. For c = 0
one has ρ(H) = 2j − 1 6∈ M̂−1 thus c ≥ 2. Therefore there
is a unique k ∈ N, k ≥ 2, with ρ(H) = 2k− 2 = 2j − 1− c.
As c ≥ 2 it follows j > k, hence

c = 2j − 2k + 1 ≥ 2k + 1 > 2k − 2

implying δ(H) > ρ(H). 2

The previous proof directly yields:
Corollary 4: For βsimp := β|Hsimp , and βc

simp := β|Hc
simp

one has that (Hsimp, N\{1}, βsimp), (Hc
simp, N\{1}, βc

simp),
respectively are discrete pre-bundles.
Defining βmdiag := β|Hmdiag , one has for the class of minimal
diagonal base hypergraphs:

Corollary 5: (Hmdiag, N \ {1}, βmdiag) is a discrete pre-
bundle. Moreover, (Hmdiagν , N \ {1}, βmdiagν) are discrete
pre-bundles, for every integer ν ≥ 0.
PROOF. Cor. 3, [15] provides the inclusion Hc

simp ⊆ Hmdiag.
2

Theorem 7: Let µr be a product of r Mersenne-powers,
for fixed integer r ≥ 0. Then there explicitly is H ∈ H such
that ρ(H) = 2tµr − 1, for every fixed integer t ≥ 0.
PROOF. If r = 0 = t any trivial H ∈ H obviously matches
the assertion. For arbitrary r ∈ N, εi ∈ N, pairwise distinct
integers ji ≥ 2, i ∈ [r], let Mji

∈ M. Set µr =
∏

i∈[r] M
εi
ji

.
Due to Lemma 1, (iii) in [15], a base hypergraph H
consisting of s disjoint components Hi, i ∈ [s], satisfies
ρ(H) + 1 =

∏
i∈[s](1 + ρ(Hi)). For factor Mji

in µr, there
is Hi ∈ Hsimp with ρi = Mji

− 1 according to Theorem
6. Take εi disjoint copies Hi(k) of Hi and set H(ji) :=⋃

k∈[εi]
Hi(k). Thus ρ(H(ji)) + 1 = (ρi + 1)εi = Mεi

ji
.

Hence for H :=
⋃

i∈[r]H(ji) ∈ H it is

ρ(H) + 1 =
∏
i∈[r]

(1 + ρ(H(ji))) =
∏
i∈[r]

Mεi
ji

= 20µr

For any fixed t > 0 take H0 ∈ Hxlin such that ρ0 = Mt

existing according to Corollary 3. Hence specifically ρ0+1 =
2t which is the assertion for r = 0. Further, taking a copy
of H as before and disjoint to H0 yields

ρ(H0 ∪H) + 1 = (ρ(H0) + 1)(ρ(H) + 1) = 2tµr

and H0 ∪H ∈ H. 2

More indirect and to some extent complementary to the
previous explicit result one has the following characteriza-
tion:

Theorem 8: (H, N0, ρ) is a discrete pre-bundle iff for
every p ≥ 5 with p ∈ P \ M there is H ∈ H with
ρ(H) = p− 1.
PROOF. The only-if part is clear. To reversely verify the
surjectivity of ρ by induction on i ∈ N0, it is ρ0 = 0, for
H0 ∈ β−1(0). For i = 1 we refer to H1 in the proof of
Lemma 3 with ρ1 = 1. For i = 2, consider H′ as defined in
the proof of Theorem 3 (2) having ρ′ = 2. For the induction
step, let i + 1 ≥ 3 be fixed and assume that the claim is
verified for all integers ≤ i. If i + 1 is odd then there is a
unique integer i > k ≥ 1 with (i + 1) = 2k + 1. By the
induction hypothesis there is a Hk such that ρk = k. On
behalf of Lemma 3, (2) then there also is a H ∈ H with
ρ(H) = 2k + 1 = i + 1. If i + 1 is even then i + 2 ≥ 5

is odd. If i + 2 ∈ P ∩ M there is a (simple) H with
ρ(H) = i + 1 according to Theorem 6. If i + 2 ∈ P is a
non-Mersenne prime we are done by the assumption. Else
let qj ≤ (i + 2)/3, j ∈ [r], for appropriate r ∈ N, be all the
(not necessarily distinct) prime factors of i + 2. Note that
qj ≤ i, j ∈ [r] as i ≥ 2. Hence by the induction hypothesis
there are instances Hj such that ρ(Hj) = qj−1, j ∈ [r]. And
we can assume that all these instances are chosen mutually
disjoint. According to [15], Lemma 1 (iii) for their union H
one has

ρ(H) = −1 + Πr
j=1(1 + ρ(Hj))

= −1 + Πr
j=1qj

= −1 + (i + 2)

and the assertion follows.2

B. Further Results Concerning δ, ρ

As introduced in [15], let H1 = {H ∈ H : δ(H) ∈ {0, 1}}.
Again set αi := α(Hi), α ∈ {ω, β, δ}, whenever i varies in
an index set.

Proposition 9: Let k ∈ N, Hi ∈ H1, i ∈ [k], be pairwise
disjoint, and H :=

⋃
i∈[k]Hi. Let I(H) =: I ⊆ [k] such that

δi = 1 iff i ∈ I . Then

δ(H) = 2
P

i∈[k]\I βi

 ∑
J∈2I\{I}

(−1)|I|+|J|−1
∏
j∈J

ωj


ρ(H) = 2

P
i∈[k]\I βi

∑
J∈2I

(−1)|I|+|J|
∏
j∈J

ωj

− 1

PROOF. The first equation is verfied by induction. For k = 1,
either |I| = 0 meaning δ(H) = 0 which is also provided
by the assertion as the second factor becomes 0 (empty
sum). Or it is |I| = 1 = k meaning δ(H) = 1 which is
in accordance with the assertion as both factors become 1
(empty product). Next, for fixed k assume the truth of the
claim, and consider H′ = H ∪ Hk+1 as disjoint union. It
is (∗): δ(H′) = δ(H)ωk+1 + δk+1ω(H) − δ(H)δk+1. First
case δk+1 = 0: Then δ(H′) = δ(H)ωk+1 = δ(H)2βk+1 ,
and I(H′) = I(H) = I , as k + 1 6∈ I . Thus the assertion
follows directly as the first factor is adapted correctly.
Second case δk+1 = 1: According to (∗) then δ(H′) =
ω(H) + δ(H)(ωk+1 − 1) and I(H′) = {k + 1} ∪ I =: I ′. It
is

ω(H) = ω−1
k+1ω(H′) = ω−1

k+1

∏
i∈[k+1]

ωi

= 2
P

i∈[k+1]\I′ βi
∏
i∈I

ωi =: r
∏
i∈I

ωi

Since [k + 1] \ I ′ = [k] \ I one has

(ωk+1 − 1)δ(H) = r

 ∑
J∈2I\{I}

(−1)|I|+|J|−1
∏
j∈J

ωjωk+1

+
∑

J∈2I\{I}

(−1)|I
′|+|J|−1

∏
j∈J

ωj


The first summand within the brackets equals∑

J′∈{J∪{k+1}:J∈2I\{I}}

(−1)|I
′|+|J ′|−1

∏
j∈J′

ωj
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Rewriting ω(H) = r(−1)|I
′|+|I|−1

∏
j∈I ωj , i.e., J = I one

concudes that

δ(H′) = r

 ∑
J∈2I′\{I′}

(−1)|I
′|+|J|−1

∏
j∈J

ωj


which, by induction, is the first equation of the assertion,
where the identity

2I′ \ {I ′} = 2I ∪
{
J ∪ {k + 1} : J ∈ 2I \ {I}

}
has been used. For the second claim it is ρ(H) = ω(H) −
δ(H)− 1. Using the first equation and

ω(H) = r
∏
j∈I

ωj = −r(−1)|I|+|I|−1
∏
j∈I

ωj

that yields

ρ(H) = −1− r

∑
J∈2I

(−1)|I|+|J|−1
∏
j∈J

ωj


finishing the proof. 2

Clearly in Prop. 9 w.l.o.g. one can assume that I = [k1],
for |I| = k1 ≤ k, and reorganize the second factor by
summing over all subsets of equal cardinality, yielding:

(∗) : δ(H) = r

k1−1∑
i=0

(−1)k1−1
∑

J⊂[k1]:|J|=i

(−1)i2
P

j∈J βj


and

ρ(H) = r

 k1∑
i=0

(−1)k1
∑

J⊂[k1]:|J|=i

(−1)i2
P

j∈J βj

− 1

with r = 2
P

i∈[k]\[k1] βi . For the cases k ≤ 4 one therefore
can derive the following list of existence results:

Corollary 6: Let i, j, l,m, n be integers. There is H ∈ H
such that δ(H) equals:

(1) 0, respectively 2m, for every m ≥ 0,
(2) 2j + Mn, for every j, n ≥ 2,
(3) Ml, for every l ≥ 3,
(4) (2j + Mn)2m, for every m ≥ 0,j, n ≥ 2,
(5) Ml2m, for every m ≥ 0,l ≥ 3,
(6) Mn2j + Mi2n + Mj2i + 1, for every i, j, n ≥ 2,
(7) 22i + MnMi+1, for every i, n ≥ 2,
(8) 22i+m + MnMi+12m, for every m ≥ 0, i, n ≥ 2,
(9) Mi+j+n + (Mn2j + Mi2n + Mj2i + 1)Ml + 1, for

every i, j, l, n ≥ 2,
(10) 22i(2j + Mn) + MjMnMi+1, for every i, j, n ≥ 2.
Moreover, for each of the cases above, there are also param-
eter values such that H contains exactly q loops, for every
q ≥ 2.
PROOF. LetH consist of q loops only, then δ(H) = 0. Setting
k = 2, k1 = 1 in (∗) directly yields (1), if H2 ∈ Hxlin,
because then by Prop. 8 it is β2 = 2m,m ∈ N0. For H1,
take a (disjoint) copy of H′

q as constructed in the proof of
Thm. 6 (there replacing k − 1 with q ≥ 2). Then H =
H1 ∪H2 contains exactly q loops if required. For k = k1 =
2 one obtains δ(H) = 2β1 + Mβ2 , with arbitrary integers
β1, β2 ≥ 2 due to Cor. 4, thus (2). Choosing H1 e.g. as H′

q

as before yields the demanded amount of loops, however
fixing β1 = q ≥ 2. (3) is implied by (2) for j = n. In

the case k1 = 2, k = 3, it follows (4) from (1) and (2),
respectively, (5) from (1), (3); in either case the existence
of q loops can be ensured as above thereby not restricting
the ranges of m, j, n, l. Setting k1 = 3 = k in (∗) yields
δ(H) = 1 + 2β1Mβ2 + 2β2Mβ3 + 2β3Mβ1 , βi ≥ 2, i ∈ [3],
so (6). Fixing β1 = q and H1 = H′

q as above guarantees q
loops in H. It follows (7), from (6) specifically for i = j.
For k1 = 3, k = 4, (8) follows from (7) and (1). Finally for
k1 = k = 4 in (∗) a straightforward calculation provides (9).
Here setting i = j yields (10). As before the existence of q
loops can be ensured in (7) - (10) by fixing the component
H1 accordingly as above. 2

Fixing βj = β in the formulas of Prop. 9 directly yields:
Corollary 7: For β ≥ 2, let ωi = 2β , i ∈ [k], then

δ(H) = 2kβ − 2(k−k1)βMk1
β , ρ(H) = 2(k−k1)βMk1

β − 1

The next result uses a base hypergraph containing an ap-
propriate number of loops. As above let α(Hi) =: αi,
α ∈ {β, ω, δ, ρ}, i ∈ N0.

Theorem 9: For fixed integer q > 0, let H0 = (V0, B0) ∈
H contain exactly q loops collected in B[q] ⊆ B0. For i ≥ 1,
define Hi := (V0, Bi) = Hi−1 ∪ {bi}, if there is bi 6∈ Bi−1

such that bi ⊂ V (B[q]), and ji := |bi| > 1. Then for i ≥ 1,
with ji > 1 one has:

δ(Hi) = Si

(
δ0 + ω0

i−1∑
l=0

2
Pl

k=1 jk

l+1∏
m=1

M−1
jm

)

ρ(Hi) = −1− Siδ0 − ω0

(
i−1∑
l=0

(−1)∆i,l2
Pl

k=1 jk

i−l−1∏
m=1

Mjm

)
where Si :=

∏i
l=1 Mjl

, and ∆i,l is the Kronecker-Delta.
PROOF. Observe that the additional edges bi, i ≥ 1, if
existing, only contain variables of V (B[q]) ⊆ V0, none of
them is a loop because ji > 1. Further they are chosen
as pairwise distinct. Thus specifically one has that B[q] is
the constant set of loops for every Hi. Hence when Hi

is constructed either there is no further bi meaning Hi =
Hi−1 ∪ ∅ = Hi−1 and therefore δi = δi−1, ρi = ρi−1. Or
the condition of Thm. 4, (3) is valid for bi, and Hi−1. In this
case, for i = 1 it is δ1 = 2j1δ0+ρ0+1 = Mj1δ0+ω0 because
ρ0 = ω0 − δ0 − 1. That is in accordance with the claim as
δ1 = S1δ0 + ω0

∑0
l=0 20S1

∏1
m=1 M−1

jm
. Now fix i ≥ 1 and

assume the truth of the first assertion for all smaller integers.
Assume that there is a next appropiate bi that can be added
to Hi−1, otherwise we are done. According to Thm. 4, (3)
then δi = Mji

δi−1+ωi−1. As bi ⊆ V0 it is βi = βi−1+ji =
β0 +

∑i
l=1 jl. Thus ωi−1 = ω0

∏i−1
k=1 2jk =Siω02

Pi−1
k=1 jkSi.

So, by the induction hypothesis one has

δi = Mji
Si−1

(
δ0 + ω0

i−2∑
l=0

2
Pl

k=1 jk

l+1∏
m=1

M−1
jm

)

+Siω02
Pi−1

k=1 jk

i∏
m=1

M−1
jm

integrating the last summand into the l-sum within the brack-
ets yields the first equation of the theorem for i. Inserting
ωi = 2

Pi
l=1 2jl ω0 and ρi = ωi−δi−1 into the first equation

yields

ρi = −1− Siδ0 + ω0

(
2

Pi
l=1 jl −

i−1∑
l=0

2
Pl

k=1 jk

i−l−1∏
m=1

Mjm

)
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from which the second equation immediately follows, finish-
ing the proof. 2

Observe that according to Cor. 7, as long as k1 < k,
the possible values for δ are always even. Those for ρ then
always remain odd. By the next statement derived from the
previous result further values are provided.

Corollary 8: Let j > 1 such that for every b ∈ B0 with
b ⊆ V (B[q]) it is |b| 6= j. Fixing |bi| = j in Thm. 9, for
every i ≤

(
q
j

)
, one obtains:

δ(Hi) = M i
jδ0 + (2ji −M i

j)ω0, ρ(Hi) = M i
j(ρ0 + 1)− 1

Moreover ρ(Hi) is even iff ρ0 is even. For ω0 > 1 it is δ(Hi)
even iff δ0 is even. For ω0 = 1, δ(Hi) is odd.
PROOF. By assumption there is no edge of length j in B0

with loop variables. Thus bi with |bi| = j, for every i ≤
(
q
j

)
,

bi ⊂ V (B[q]) can be chosen as mutually distinct edges. With
Thm. 9 one therefore has:

δi = M i
jδ0 +

(
i−1∑
l=0

2jlM i−1−l
j

)
ω0

= M i
jδ0 + (2ji −M i

j)ω0

because of
∑i−1

l=0 albi−1−l = bi−1
∑i−1

l=0(a/b)l = (ai −
bi)/(a − b), for a = 2j , b = Mj , and a − b = 1. Thus
the first equation of the claim is justified. The second one
directly follows from the first equation with ωi = 2ijω0 and
ρi = ωi − δi − 1. The statements regarding the parity are
obvious, as δ0 = 0 if ω0 = 1 by Prop. 3 (1). 2

Only in the case that δ0 = 0, ω0 = 1, in Cor. 8 and
simultaneously k1 = k in Cor. 7, the values for both δ and ρ
coincide, respectively. Clearly δ0 can be assigned any of the
values in Prop. 9 or Cor. 6 as the corresponding instances
can be equipped with q loops. In combination with Thm. 9
or Cor. 8 correspondingly new values for δ are provided.
Regarding ρ, iteratively applying the previous result, the
following, however slightly weaker version of Theorem 7
can be concluded for the connected case.

Theorem 10: Let µr be a product of r Mersenne-powers,
for fixed integer r ≥ 1. Then H ∈ Hc can be constructed
such that ρ(H) = µr − 1.
PROOF. For arbitrary r ∈ N, εi ∈ N, pairwise distinct
integers ji ≥ 2, i ∈ [r], let Mji

∈ M, and µr =
∏

i∈[r] M
εi
ji

ordered by decreasing ji. Let H0 = (V0, B0) be a trivial
base hypergraph consisting of q loops only, hence ρ0 = 0.
Choosing ε1 times a new j1-subset out of V0 yields distinct
edges bl, with |bl| = j1, l ∈ [ε1]. Applying Cor. 8 to
H(j1) := H0∪

⋃
l∈[ε1]

{bl} means ρj1 +1 = Mε1
j1

(ρ0 +1) =
Mε1

j1
. Assuming q is chosen appropriately, one is enabled

to add further, pairwise distinct edges bl, with |bl| = j2,
l ∈ [ε2] yielding H(j2) := H(j1)∪

⋃
l∈[ε2]

{bl} and with Cor.
8: ρj2 + 1 = Mε2

j2
(ρj1 + 1) = Mε1

j1
Mε2

j2
. Iterating further in

this manner, finally for H := H(jr−1) ∪
⋃

l∈[εr]{bl} it is:
ρ(H) + 1 = Mεr

jr
(ρjr−1 + 1) = Mεr

jr

∏
i∈[r−1] M

εi
ji

= µr. It
remains to verify that q can be chosen accordingly and that
the construction ensures that H ∈ Hc. If εi ≤ ji + 1, for all
i ∈ [r], set q := 1 + j1 where j1 = max{ji : i ∈ [r]}. Then(

q
ji

)
=
(
j1+1

ji

)
=
(
ji+n+1

ji

)
for an appropriate integer n ≥ 0.

Thus(
q

ji

)
=

∏
l∈[n+1]

ji + l

l
≥ (ji+1)

(
1 +

ji

1 + n

)n

≥ ji+1 ≥ εi

i ∈ [r]. MoreoverH surely is connected in this case as
(

q
j1

)
=

j1 +1, so the edges added first obviously have pairwise non-
empty intersections. Clearly all sets of edges added in each
of the further iterations are members of the power set of V0,
and join the same connected component. If there is i ∈ [r]
with εi > ji + 1 clearly there is a unique ki > 1 such that(
ji+ki−1

ji

)
< εi ≤

(
ji+ki

ji

)
. Then set q := j1 + k where

k := max{ki : i ∈ [r]}. Hence, for every i : εi > ji + 1 it is(
q

ji

)
=
(

j1 + k

ji

)
=
(

ji + ki + n

ji

)
≥
(

ji + ki

ji

)
≥ εi

for appropriate n ≥ 0. And for every i : εi ≤ ji + 1 one has(
q
ji

)
=
(
j1+k

ji

)
>
(
j1+1

ji

)
≥ εi as above. All edges as subsets

of V0 then can be added during the next iterations such that
the same connected component is enlarged. If there remained
still unused, i.e., isolated loops of the original H0, then they
are to be removed in a last step. 2

VI. CLAUSE BUNDLES AND SECTIONS

Let H = (V,B) be a base hypergraph and identify V with
the mapping V : KH → B which assigns to a clause its set
of variables, then one obtains:

Proposition 10: (KH, B, V ) is a (finite) discrete pre-
bundle on which the flipping group GV acts fibre-stable.
PROOF. The first assertion is clear and for any b ∈ B,
V −1(b) = Wb = (KH)b. Let c ∈ Wb and g ∈ GV then
cg = cg∩V (c) ∈ Wb hence GV acts fibre-stable. 2

Observe here that the base B has a discrete structure. Note
that any fibre-transversal F ∈ F(KH) is a total section of
(KH, B, V ), hence F(KH) = S(B,KH). Similarly, for C ∈
CNF with H(C) = H, it is (C,B, V ) a discrete pre-bundle,
the formula bundle. Here one has a characterization of the
space of models M(C) as the subset of S(B,C) defined
through all total sections s of the formula bundle obeying
the conditions

(i) :
⋃
b∈B

s(b) ∈ WV (ii) : ∀b ∈ B : s(b)b ∈ Wb \ Cb

where, as usual, s(b) ∈ C is a set of literals. Again setting
KH =: KH0 with K0, V =: V0 with π0, we define KHν , Vν

corresponding to Kν , πν for every integer ν > 0. On basis
of Lemma 1, Propositions 1 and 10 one obtains:

Corollary 9: (KHν , B, Vν) is a discrete pre-bundle, on
which GV acts fibre-stable, for every ν ∈ N0.
Given KH = (V,B), any total section s of (KH1, B, V1)
yields a collection im(s) = {Cb : b ∈ B} of fibre-formulas
over B. For this setting by adapting Theorem 1 here we
directly have GV (im(s)) =

⋂
b∈B GV (s(b)), s(b) = Cb,

b ∈ B. Using the fibre-decomposition [12] one has C =⋃
b∈B(C) Cb. As these Cb are mutually disjoint objects in

the total space KH1, one can identify C with the section
s ∈ S(B,KH1) such that s(b) = Cb, b ∈ B.

VII. CONCLUSION AND OPEN PROBLEMS

From Theorem 8, and Theorem 6 (1), respectively Corol-
lary 3, Corollary 4, one directly concludes via accordingly
adapting the settings prior to Lemma 1:

Corollary 10: For every integer ν ≥ 0 one has:
(1) If for every p ≥ 5 with p ∈ P \ M there can be

constructed a base hypergraph H with ρ(H) = p − 1
then (Hν , N0, ρν) is a discrete pre-bundle.
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(2) (Hxlinν , M, ρxlinν), as well as (Hsimpν , M̂−1, ρsimpν),
and (Hc

simpν
, M̂−1, ρ

c
simpν

) are discrete pre-bundles.
(3) (Hsimpν , N\{1}, βsimpν) and (Hc

simpν
, N\{1}, βc

simpν
)

are discrete pre-bundles.

There remain several directions for future work. So, Theorem
8, respectively Corollary 10 (1), make use of a strong
assumption which should be established. With Thms. 7,
10 there are explicit effective versions, however the lack
of Thm. 8 cannot be overcome so far. Further it remains
open whether also δ induces a pre-bundle with integer base.
Here Cor. 6 provides several preliminary results. Specifically,
notice that according to (5), δ covers every (clearly even)
perfect number greater than 6. Also the properties of the
fluctuation parameter in connection with Cor. 1 should be
investigated in more detail. Specifically one should provide
instances for which fb neither is 0 nor ρ0 +1. Several results
rest on the existence of loops in the base hypergraphs. It
remains to investigate whether those results can be transfered
to the loop-free case also. Similarly, some constructions so
far were only possible for non-Sperner base hypergraphs
such as in the proofs of Thms. 7 or 10. However, providing
corresponding versions for the Sperner class also, might be
helpful specifically to fill in the gaps in the range of ρ left
therein, because ρ behaves non-monotone on those instances
equipped with the partial order � (cf. Prop. 6, (2)). Finally,
one might examinate whether it could be fruitful to exploit
the enumeration method provided by Polyas theorem resting
on the cycle indices of all members of the underlying per-
mutation group. Via the regular representation that appears
to be a subgroup of S|GV | which unfortuntely tends to be
quite large, even for moderate |V |.
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