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Abstract—Power load forecasting is becoming increasingly 

important as power system management on offshore platforms 
flourishes in modernization. When forecasting the power load, 
increasing the forecasting step causes the forecasting error to 
increase. This paper proposes the VMD-Prophet-Seq2seq 
model, which performs multistep prediction on single-feature 
original data. First, the model uses the variational modal 
decomposition (VMD) method, which decomposes the original 
power load sequence into multiple integral mode functions 
(IMFs). Correspondingly, the Prophet method decomposes the 
original power load series into subsequences such as 'trend' and 
'daily'. We process each IMF and subsequence separately into 
independent supervised-type data. Then, we encode each 
supervisor-type data with Seq2seq's encoder and output a 
corresponding number of subcoding vectors. Finally, the 
decoder sums these subcoding vectors and decodes the summed 
coding vectors to obtain the forecasting sequence. The 
experimental results show that the mean absolute percentage 
error (MAPE) value is at most 1.78% lower than that of the 
suboptimal model for a prediction length of 30. 
 

Index Terms—Power Load, Forecasting, Variational Modal 
Decomposition, Prophet, Seq2seq  
 

I. INTRODUCTION 

ORECASTING the power load helps adjust the power 
planning of offshore oil and gas field platforms. Power 

load data are collected and recorded at time intervals. 
Studying time-series forecasting is also helpful for power 
load forecasting. L. Suganthi et al. proposed statistical 
models for time-series forecasting [1]. On this basis, Kumar S. 
Vasantha and Siti Normah Hassan et al. studied a time-series 
forecasting method that combines the autoregressive 
integrated moving average (ARIMA) model with seasonal 
factors [2],[3]. They found that combining seasonal factors 
can reduce forecast error. Statistical models such as ARIMA 
methods require that the data be stationary. The prediction 
error is large when time series appear as a nonstationary 
stochastic process. Without combining seasonal factors, 
statistical models have limited ability to forecast 
nonstationary stochastic time series. Yildiz Baran and Elena 
Maria studied various machine learning (ML) models to 
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forecast nonstationary stochastic time-series data [4],[5]. 
They showed the ML models are more suitable than 
statistical and analytical models for forecasting nonstationary 
stochastic time-series data. Meanwhile, Mosavi, Amir et al. 
proposed that hybridization, data decomposition, algorithm 
ensembles, and model optimization effectively improve the 
forecast accuracy of ML models [6]. Jiang Ping, Nguyen 
Linh and Sadaei Hossein Javedani et al. provided some 
combined models of ML combined with multiobjective 
optimization methods, ML combined with seasonal factors, 
and ML combined with statistical models [7],[9]. The 
research analysis of the above ML model shows that 
combined models of ML have better predictive outcomes 
than individual ML models. ML models require feature 
engineering and model tuning to reduce forecast errors. 
However, feature engineering is time-consuming and relies 
on expert experience. A review by Sezer, OB et al. suggested 
that DL models learn significantly better than ML models 
[10]. In contrast, deep learning (DL) models rely less on 
feature engineering and expert experience and emphasize 
network design and training strategies. Jihoon Moon et al. 
demonstrated that an artificial neural network (ANN) is more 
predictively accurate than supply vector regression (SVR) in 
time-series forecasting [11]. Xiang Zhongrun et al. used 
sequences to make time-series forecasts for sequence models 
and long short-term memory (LSTM) with accuracy [12]. 
The results prove that adjusting the external structure of the 
model can improve the accuracy of time-series forecasting. 
Bukhari Ayaz Hussain, Brian S. Freeman, and Li Taoying et 
al. proposed combining the LSTM and autoregressive 
fractionally integrated moving average (ARFIMA), decision 
tree, and convolutional neural network (CNN) forecast 
models, respectively. These combinatorial models showed 
better predictive effects than LSTM [13],[15]. The above 
study shows that deep learning models tend to exhibit better 
forecasting accuracy than statistical and machine learning 
models in time-series forecasting. At the same time, the 
single model is combined with other feature engineering or 
other models to improve the accuracy of forecasts. 

In this paper, power load data are affected by daily load 
changes, temperature changes, or holidays, and the power 
load data have a certain periodicity. We start by separating 
the periodicity of the data and combining the separation 
method and the DL model. The primary aim of this research 
is to establish a suitable and accurate data separation model. 

 

II. RELATED WORK 

A. Time Series Decomposition Method 

The Fourier transform (FT) method is the most applied 
classical signal processing method, but an FT can only deal 
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with unstable time-series. Later, J. Morlet proposed using a 
wavelet transform (WT). He replaced the infinite-length 
trigonometric basis function with a decaying wavelet basis 
function. This makes the WT more suitable for nonstationary 
processing data than the FT, but the wavelet basis function 
needs to be artificially selected. NE Huang, Z Shen, and SR 
Long et al. believed that the empirical mode decomposition 
(EMD) method can better handle nonstationary data and does 
not require manual parameter settings [16]. X. Qiu, X. Kong, 
and Y. Wei, et al. decomposed time-series data using the 
EMD and ensemble empirical mode decomposition(EEMD) 
methods [17],[19]. However, EMD cannot control the 
number of decomposition sequences. Dragomiretskiy K et al. 
proposed replacing the EMD method with the variational 
modal decomposition (VMD) method, thus solving the 
disadvantage of not decomposing a fixed number of 
sequences [20]. Gyamerah et al. used a combination of EMD 
and VMD with a generalized additive model(GAM) to 
forecast bitcoin prices [21]. The authors found that the 
forecasting error of the combined VMD method was smaller 
than that of the combined EMD method. In addition, 
Facebook proposed the Prophet method based on the STL [22] 
method, which can decompose the periodicity of time series. 
Prophet methods can decompose time series into seasonality, 
trends, and add-ons. We can comprehensively decompose 
time-series data using signal decomposition and prophetic 
methods. 

B. Neural Network Methods 

The right forecasting strategy can reduce the error of 
time-series forecasts. The multiple output strategy (MOS) is 
the most widely used multistep forecasting method among 
the multistep forecasting strategies [23]. The MOS requires 
fitting the dependencies between multiple inputs and multiple 
outputs using a model with more forecasting power. The ML 
model fits better than the statistical algorithm and has better 
forecasting capability for nonlinear series [24]. H. 
Hewamalage, Rahman Aowabin, and Shahid Farah et al. used 
a recurrent neural network (RNN) to forecast long sequences, 
showing better forecasting results than statistical models 
[25],[27]. However, single DL models cannot achieve 
satisfactory forecasting results in forecasting the power load 
data of offshore oil and gas platforms. Therefore, in this 
paper, the forecasting error in multiple steps is reduced based 
on the existing DL models combined with data 
decomposition methods. 

C. Model Design 

Our model uses the time-series decomposition method to 
decompose the intrinsic factors in the original data. We then 
perform feature extraction on these factors. We need to 
consider how to accurately breakdown the intrinsic factors in 
the raw data. The VMD and Prophet methods can help us 
decompose the power load data. The VMD method is an 
adaptive signal processing method that can fix the number of 
decompositions. It also solves the problems of mode mixing 
and end effects. The VMD method can decompose a complex 
time series into several stationary subsequences with 
different frequency scales. Solving the variational problem in 
the VMD method requires that the sum of the individual 
integral mode functions (IMFs) equals the original signal. 
Moreover, variational optimization needs to consider band 

limits and inherent multivariate modulation oscillations [28]. 
The variational constraint expression is shown in (1): 
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where K is the number of IMFs, }{u kk ｝｛  is the central 

frequency after decomposition, (t) is the Dirac function 

and   is the convolution operator. Converting constrained 
variational problems to unconstrained variational problems 
requires the introduction of a Lagrange multiplier  . This 
calculation process is shown in (2). 
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where   is the quadratic penalty factor. Solving (2) yields 

the modal component ku  and the central frequency k . The 

solution process is expressed as follows (3). 
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The Prophet method yields four series, trend )(tg , period

)(ts , holiday )(th , and residual t , by decomposing the 

periodicity of the original time series. The )(tg  in the 

Prophet method is based on the logistic function and the 
piecewise linear function. )(tg  is as follows (4).  
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where )(ta  is the logistic regression function and   

denotes the amount of variation in the growth rate at time t. 
The periodic term usually shows a specific variation with 
days, weeks, months, etc. The Fourier series representation of 

)(ts  takes the form (5). 
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where P  denotes the period series, the model uses the 
indicator function to denote the holiday term, and )(th  is 

expressed as shown in (6). 
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where ik  denotes the range of influence of holidays, 

),0(~ 2vNormalk , and v  is affected by the )(ts  

holidays_prior _scale metric. 
We use the Seq2seq model to forecast the decomposed 

sequences. The encoder and decoder of Seq2seq are 
connected by an encoding vector, generally the last hidden 

state value th  of the encoder, the transformation )( thq  of 

the previously hidden state value, or the transform of all 
hidden states. 

The encoder and decoder use LSTM as the feature 
extractor. Each cell of the LSTM model has a containment 
gate structure and memory vector. The calculation process of 
the three-door structure is as follows (7). 
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where oif f,i,f represent the forgetting gate, the input gate, 

and the output gate, respectively. oif WW ,,W  are all 

matrices of dimension ],[ ndd  , 1th  is the history vector 

of the previous cell, and tx  is the input vector of the current 

cell. The output of the current cell is represented as (8). 
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The encoder receives all the input subsequences and 

outputs the corresponding coding vectors, and the decoder 
decodes the integrated coding vectors.  

 

III. EXPERIMENT PREPARATION 

A. Training and Test Samples 

Generator power outages or temporary adjustments in the 
production environment of an offshore oil and gas field 
platform may result in abnormal data collection or data 
collection gaps. Therefore, the data must be preprocessed 
before model training. We use the 3  principle to identify 
outliers and use the data from the time point before the 
missing values to replace the missing values. We then use the 
VMD and Prophet methods to decompose the preprocessed 
time-series data. Fig. 1 shows the sequence of intrinsic 
factors obtained after the decomposition of preprocessed 
time-series data. Intrinsic factor sequences cannot be used 
directly as input for model training. As shown in Fig. 2, we 
convert these sequences of intrinsic factors into supervised 
learning data. A fixed window intercepts the sequences into 
short sequences of fixed length, and the window keeps 
sliding to produce multiple consecutive short sequences. This 
transformation process is known as the sliding window 
algorithm. The input of the LSTM input contains a sample, 
time step, and feature. The data input process is shown in Fig. 

Fig. 1. Decompose the sequence of intrinsic factors from the preprocessed 
time-series data. 
 

 
Fig. 2. Converting data to supervised learning data. 
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3. The processed dataset contains 104480 sample data points, 
of which 90% are training samples and 10% are test samples. 
We used the random crop method to crop the training and test 
samples to ensure a uniform distribution of the sample data.  

B. Baseline 

Recurrent neural networks are the first choice in 
time-series forecasting. Recurrent neural networks 
outperform ML and statistical methods in complex nonlinear 
time-series tasks [29],[30]. Hochreiter S et al. first proposed 
LSTM to improve RNNs [31]. Zheng et al. verified that 
LSTM has minor forecasting errors compared to ML models 
for complex power load data [32]. LSTM solves the gradient 
explosion and disappearance of RNNs. As a result, LSTM 
methods are able to remember longer time-series information. 
Zhang Yu et al. introduced the Seq2seq structure in 
short-term wind power forecasting [33]. The Seq2seq model 
uses LSTM as an encoder and decoder, and the authors 
showed that Seq2seq forecasts better than LSTM for longer 
sequences. 

Time-series decomposition most often uses the signal and 
STL decomposition method. Signal decomposition methods 
decompose an original signal sequence into several more 
concise subsignal sequences. Niu et al. [34] used a combined 
VMD method and neural network model to forecast 

time-series data. The authors concluded that the combined 
model consisting of the VMD method and the neural network 
model had a smaller forecasting error than the single neural 
network model. The Prophet method is based on the STL 
method. The STL method uses robust locally weighted 
regression as the smoothing method. 

From the above, we use the three models Seq2seq, 
VMD-Seq2seq, and Prophet-Seq2seq as the baseline. 

C. Experiment Overall Design 

The forecasting scheme in this paper includes a data 
preprocessing part based on data decomposition and a data 
training forecasting part. 

Fig. 4 shows the forecasting process of the model. We 
detect and process outliers and missing values in the original 
time-series data. Then, we use the VMD method to 
decompose the preprocessed data into multiple IMFs and the 
Prophet method to decompose the preprocessed data into 
sequences such as trends and add-ons. Finally, we use the 
sliding window method to convert these decomposed 
sequences into supervised learning data. 

The DL model is shown in Fig. 5. The encoder uses LSTM 
as the feature extractor. Each sub-LSTM in the encoder uses 
supervised learning data as input. The output of each 
sub-LSTM is the output of the last time step, and these 
outputs can be considered subcoding vectors. The output of 
the encoder is the sum of all subcoding vectors. The decoder 
uses this encoding vector as input for each time step. The 
decoder contains only one LSTM module, and the output of 

Fig. 4. Overall Forecast Scenario. 
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each time step of LSTM corresponds to a fully connected 
layer. The final step of the decoder is to combine the forecast 
sequences based on the outputs of these fully connected 
layers.  

 

IV. EXPERIMENTS AND ANALYSIS 

This section mainly involves the relevant empirical 
process and results. The experiment is conducted using a 
Windows 10 operating system with an Intel i7-8700K 
processor, 32 GB of RAM, and a GTX1070ti GPU.  

A. Experimental Setup and Results 

In this paper, we carried out two groups of controlled 
experiments. The first group of experiments compared the 
forecasting errors of the four models, Seq2seq, 
VMD-Seq2seq, Prophet-Seq2seq, and 
VMD-prophet-Seq2seq. The original power load data was 
processed into multiple sequences using VMD and Prophet 
methods, and the Seq2seq model was used to forecast the 
subsequences. In this set of experiments, the LSTM module 
had 60 units, and the number of IMFs in the VMD method 
was 6. The experimental results are shown in Fig. 6, Fig. 7, 
and Fig. 8. In addition, another set of experiments explored 
the effect of the number of LSTM units in the 
VMD-Prophet-Seq2seq model on the forecasting effect. The 
experiments set five sets of parameters with different units, 
and the numbers of units were 40, 50, 60, 70, and 80. The 
resulting graph is shown in Fig. 9. In this paper, three 
evaluation metrics, the root mean square error (RMSE), mean 

absolute error (MAE) and mean absolute percentage error 
(MAPE), were used.  

The results of the first group of experiments are shown in 
Table I. When different forecasting steps were chosen, all 
three evaluation metrics of VMD-Prophet-Seq2seq were the 
smallest, and the Seq2seq model had the highest evaluation 

Fig. 5. Deep learning models used for forecasting.  
 

Fig. 6. Forecasting the predictive effect of each model when the sequence 
length is 10.  
 

Fig. 7. Forecasting the predictive effect of each model when the sequence 
length is 20. 
 

Fig. 8. Forecasting the predictive effect of each model when the sequence 
length is 30. 
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metrics among the four models. The evaluation metrics of the 
VMD-Prophet-Seq2seq model for forecasting time steps of 
n=10 and n=20 were not significantly different. A similar 
pattern of results was obtained in the VMD_Seq2seq model. 
We speculate that this might be due to a forecasting sequence 
that is too short. For the same evaluation indicator, the 
indicator values of all four models increase with the increase 
in the forecasting step. 

Table Ⅱ shows the results of the second group of 
experiments. We added multiple sets of comparison 
experiments containing different numbers of LSTM units. 
The results confirm that increasing the number of LSTM 
units decreases the forecasting error. We obtained good 
results with this simple method. Another new finding is that 
the model's forecasting error increases rather than decreases 
when the units slightly increase from 70 to 80. 

B. Model Principles and Analysis 

Validating these models in real scenarios is crucial for 
selecting the best model. Among the different decomposition 
methods described in Table 1, the VMD-Prophet-Seq2seq 
model has a minor forecasting error and, in combination with 
the experiments in Table 2, has the best results when the 
number of units is 70. Therefore, VMD-Prophet-Seq2seq is 
more suitable for offshore platform power load forecasting 
when the number of units is 70. 

Based on the empirical findings above, the proposed 
research methodology can be applied to time-series data that 
is influenced by seasonal and holiday factors, such as 
merchandise sales volume. We use single-feature time-series 
data, which the model can use to forecast more accurately 
when more multidimensional features are not available. For a 
similar single-feature data scenario, given a single-feature 

power load sequence },,...,,{:L 21 NN xxx  of length N , k  

of units },...,,{:IMF ,2,1,k Nkkk xxx  of length N are obtained 

using VMD and Prophet decomposition. For each component, 

kIMF  is converted into a subset of l  subsequences 

according to the sliding window method, as shown in Fig. 2, 
and each subsequence can be expressed as an 

},...,,,...,,{: ,,1,1,,, osubksubksubkisubkisubkkl xxxxxIMF 

, where i  is the input length and o  is the output length. The 
above method transforms the single-feature sequence into 
multiple subsets, and each subset can be represented as a 

single-feature data subset inD   with n  samples and length 

i . Subset D is denoted },...,,{ 21 kDDDD  . 

In the encoder part of the Seq2seq model, each subset is 
taken as the input of a single LSTM unit, and each subset 

yields a context vector kC . Then, the context vectors of each 

subset are cumulated to obtain a new context vector C , 
calculated as follows (9). 

.
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In the decoder part, the coding vector C  is taken as input 
for each time step of the LSTM unit in the decoder. The time 
step of the LSTM unit is equal to the number of forecasted 
time steps q . Each time step of the LSTM unit outputs the 

number of time steps through the fully connected layer of a 
single neuron, and these values are combined to form the 

output sequence },...,,{ 21 qOOOO  . 

As shown in Fig. 1, we obtained ten subsequences using 
the VMD and Prophet methods. Among the six subsequences 
decomposed by the VMD method, the IMF1 series exhibits 
nonperiodicity, and the five subsequences IMF2, IMF3, 
IMF4, and IMF5 exhibit some periodicity. Similarly, among 
the four subsequences decomposed by the Prophet method, 

Fig. 9. Line graph of the prediction results of the VMD-Prophet-Seq2seq 
model using different numbers of neurons. 
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TABLE I 
MODEL PREDICTION RESULT INDICATORS 

Indices 
Model 

RMSE MAE MAPE 

Seq2seq 
n=10 
n=20 
n=30 

69.348 
76.104 
84.226 

50.800 
55.701 
61.696 

3.491% 
3.831% 
4.226% 

VMD-Seq2seq 
n=10 
n=20 
n=30 

48.645 
47.779 
49.062 

36.867 
36.694 
37.684 

2.538% 
2.542% 
2.599% 

Prophet-Seq2seq 
n=10 
n=20 
n=30 

49.287 
53.084 
57.207 

37.304 
40.572 
44.888 

2.580% 
2.800% 
3.098% 

VMD-Prophet-Seq2seq 
n=10 
n=20 
n=30 

45.153 
45.494 
46.192 

34.898 
34.920 
35.474 

2.411% 
2.414% 
2.450% 

 
TABLE Ⅱ 

MODEL REPRESENTATION OF DIFFERENT NUMBER OF UNITS 

Units RMSE MAE MAPE 

40 51.260 39.108 2.682% 
50 48.666 37.431 2.585% 

60 46.192 35.474 2.450% 
70 45.087 34.581 2.389% 
80 45.137 34.697 2.393% 
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additive_terms, daily and weekly show some periodicity, 
while trend does not show periodicity. The encoder uses 
LSTM as a feature extractor to more accurately capture the 
patterns of periodic data. The error of feature extraction for 
data with significant periodicity is significantly smaller than 
that for the original complex data. The two nonperiodic 
sequences of IMF1 and 'trend' obtained by decomposition are 
more compact than the original sequences. The extractor with 
the same parameters extracts the compact subsequence from 
the decomposition better than the original data extraction. 
Therefore, the feature extraction of the more compact 
subsequence can obtain more accurate feature information, 
and the accumulation of the feature information helps in 
obtaining smaller forecasting errors. 

 

V. CONCLUSION 

We proposed a combined VMD-Prophet-Seq2seq model 
that combines DL and decomposition methods. The model 
was suitable for multistep time-series forecasting scenarios 
with a single function. We verified that the combined model 
of the time-series decomposition method and deep learning 
model could improve the accuracy of time-series prediction 
by increasing the number of time-series decomposition 
methods used. Future research will focus on further feature 
engineering, using data dimensionality reduction to decrease 
the training time of the model. 
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