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Abstract—Cocentered Orthogonal Loop and Dipole (COLD)
antenna has been effectively used for polarization estimation
and direction finding. One important feature of the COLD
is the nonpresence of electromagnetic mutual coupling due to
the orthogonality between the loop plane and dipole axis. This
orthogonality may not be maintained in practical situations. For
a dipole and a loop - cocentered but with their axes skewed
(a.k.a. slanted, i.e., not perpendicular) - this paper proposes a
simple closed form of their electromagnetic mutual impedance
and self-impedances, in terms of the two antennas skew angle,
the dipole length, and the loop circumference. Using “EMCoS
Antenna VLab”, the mutual impedance between the dipole and
loop and their self-impedances were determined. The best fit
model of the real-valued scalars, namely, the magnitude of the
mutual impedance and magnitude and phase of self-impedances
are selected according to the goodness-of-fit R2 or “coefficient
of determination” and the number of optimized coefficients in
the candidate models. The best fit models are then related to
pertinent electromagnetic principles.

Index Terms—COLD antenna, dipole and loop antenna
array, method of moments, mutual coupling, mutual impedance,
modeling of mutual impedance.

I. INTRODUCTION

C omposite antenna is preferred over single antenna for
favorable radiation characteristics and improved over-

all communication performance [1]. Loop-dipole composite
antenna [2], [3], [4] increases directivity gain over a single
loop or a single dipole antenna. The loop-dipole composite
antennas are widely used in broadband or multiband wire-
less applications. A study in [5] designed a compact and
unidirectional loop-dipole composite for medical diagnostic
and wideband microwave-based applications, while [6] pro-
posed a planar wideband composite antenna composed of an
antipodal loop radiator and a symmetrical dipole.

A very popular configuration of a loop-dipole composite
antenna is the Cocentered Orthogonal Loop and Dipole
(COLD) antenna pair. The orthogonality between the dipole
axis and loop plane, if maintained, ensures that the magnetic
loop and electric dipole moment are aligned. Hence, on
any plane orthogonal to the dipole axis, the omnidirectional
characteristic of the COLD antenna pair is maintained.

[7] used the COLD antenna to a borehole radar in order
to obtain additional information on the polarization state
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of the arrival waves. The COLD antenna pair’s use in the
polarizarization and/or arrival-angles estimations are investi-
gated in [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23].

COLD antenna has also been popularly used as an ele-
ment of a uniform linear [24], [25] and non-uniform linear
arrays [26], [27] for a more efficient range, polarization
and direction-of-arrival estimations. The uniform linear array
consisting of COLD antenna pair elements presents polariza-
tion sensitive properties suitable for the source localization
of narrowband far-field and time-varying sources, direction
finding, and near-field and far-field source signals beamform-
ing.

Computer electromagnetics (CEM) simulation packages,
such as Method of Moments (MoM)-based antenna simu-
lation software, have been very useful in characterizing and
modeling the electromagnetic fields interaction in antenna ar-
rays. Veering away from the use of analytical methods which
often involves complicated integration and nested summa-
tions, these antenna simulation software provide quicker
computations without sacrificing the accuracy of the results.
[38], [39], [40], [41] are some of the works that implemented
MoM-based computer simulation tools on their research. [42]
investigated the electromagnetic mutual coupling between
two orthogonal loops by changing the location of the loop’s
feedpoint. Using the “EMCoS Antenna VLab”, the authors
were able to generate numerical values and show clearer
3D illustrations of the mutual and self-impedances of the
orthogonal loops. [43] modeled the mutual coupling between
skewed crossed dipoles by varying the dipoles’ length, sep-
aration and skew angle using the “EMCoS Antenna VLab”
in computing the mutual impedance.

Indeed, the COLD antenna pair has been physically im-
plemented in [44], [45]. The COLD antenna pair’s various
electromagnetic characteristics (e.g., bandwidth, polarization,
quality factor, radiation pattern, self-impedance) have been
analyzed in [46], [47], [48].

Indeed, if the dipole axis and the loop plane are perfectly
perpendicular, no mutual coupling would exist. However, this
ideality may be unrealized in practical situations.

This work will characterize and model the mutual
impedance and self-impedances resulting from a nonorthog-
onality between the loop and the dipole and will investigate
how the mutual impedance and self-impedances would be
affected by the dipole length, the loop circumference, the
skew angle, and the rotational angle.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_15

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 



II. A SKEWED COLD ANTENNA PAIR

Fig. 1 shows a cocentered and skewed pair of an extremely
thin circular loop of radius R lying on the x-y plane and an
infinitesimally thin center-fed dipole of length L. The dipole
is skewed by a polar angle ϕ from the z-axis and rotated
from the loop’s feeding gap by an azimuth angle β.

Fig. 1. The geometry of a cocentered nonorthogonal loop and dipole
antenna pair .

III. MUTUAL COUPLING AND MUTUAL IMPEDANCE

In this paper, the electromagnetic mutual coupling between
the loop and dipole antenna pair in Fig. 1 will be exhibited
by their mutual impedance.

Fig. 2. The two-port network system.

The cocentered but nonorthogonal dipole and loop form a
two-port network system as shown in Fig. 2. The voltages
at port 1 (i.e., at the dipole) and port 2 (i.e., at the loop) are
[49]

V1 = Z1,1I1 + Z1,2I2

V2 = Z2,1I1 + Z2,2I2.

}
(1)

When I1 is set to zero in (1), Z1,2 is expressed as

Z1,2 =
V1
I2

∣∣∣∣
I1=0

.

Z1,2 is the mutual impedance measured at the dipole when
it is open-circuited and loop is excited. When I2 is set to
zero, Z2,1 is expressed as

Z2,1 =
V2
I1

∣∣∣∣
I2=0

.

Z2,1 is the mutual impedance measured at the loop when it
is open-circuited and the dipole is excited. Z1,1 = V1

I1
and

Z2,2 = V2

I2
represent the self-impedances when I2 = 0 and

I1 = 0, respectively.

IV. METHOD OF MOMENTS SIMULATION

The Method of Moments (MoM) [50] is a popular numer-
ical solution to many electromagnetic field problems such
as antenna radiation and impedance. One of the simulation
software that implements the MoM is “EMCoS Antenna
VLab” [51].

In this paper, VLab obtains the entries of the 2×2 mutual
impedance matrix in (2) that vary with the four independent
variables, namely, dipole length (Lλ ), the loop circumference
(Cλ = 2πR

λ ), the skew angle or orthogonality ϕ, and the
rotational angle β.

Z =

[
Z1,1 Z1,2

Z2,1 Z2,2

]
(2)

In all VLab simulations, both the dipole and the loop
always have a core radius of 1×10−5λ, the dipole always has
a feeding gap of λ

50 , whereas the loop always has a feeding
gap of 1

8

◦. The range of values of the four independent
variables are: (i) the skew angle between the two axes,
ϕ ∈ [1◦, 45◦], (ii) the dipole’s azimuth rotational angle,
β ∈ [1◦, 90◦], (iii) the wavelength-normalized dipole length,
L
λ ∈ [0.10, 1.00], and (iii) the wavelength-normalized large
loop circumference, Cλ = 2πR

λ ∈ [1, 4].
For every combination of the four independent variables

(Cλ ,
L
λ , ϕ, β), the mutual impedance matrix in (2) is obtained.

Due to the principle of reciprocity, |Z1,2| = |Z2,1|,
which was also confirmed in the VLab simulation. The
real-valued scalars to be modeled are the magnitude of the
mutual impedance |Z1,2| = |Z2,1|, the magnitude of the
dipole’s self-impedance |Z1,1|, the phase of the dipole’s
self-impedance 6 Z1,1, the magnitude of the loop’s self-
impedance |Z2,2|, and the phase of the loop’s self-impedance
6 Z2,2.

V. MODEL FITTING

The plots of |Z1,2| = |Z2,1|, |Z1,1|, 6 Z1,1, |Z2,2| and
6 Z2,2 are carefully examined on all perspectives and then
the candidate models are fitted.

Three major steps are followed to obtain the best fit model.
1) Form the objective function.

The objective function in (3) describes the sum of
squares error (SSE) between the the proposed model
and the VLab data.

SSE =
∑

(ZVLab − Zmodel)
2 (3)

The objective here is to minimize the SSE.
2) Find the optimized coefficients from the proposed

model.
The optimized coefficients {c1, c2, ..., cq} that mini-
mize the SSE are obtained through (4).

{c1, c2, ..., cq} = arg min
c

∑
(ZVLab − Zmodel)

2 (4)

The ultimate goal here is to obtain the minimum
number of coefficients or degrees-of-freedom.

3) Compute the R2.
The goodness-of-fit test is performed through the co-
efficient of determination or R2 ∈ [0, 1] in (5).
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R2 = 1− SSE

SST
(5)

SST =
∑(

ZVLab − Z̄VLab
)2

(6)

where SST in (6) denotes the sum of squares total and
Z̄VLab indicates the mean of observed VLab data.
The ultimate goal is to select the best fit model as
evidenced by the model’s R2 (i.e., the closer the value
of R2 to 1, the better) and the model with fewer
degrees-of-freedom.

VI. MODEL OF THE MAGNITUDE OF MUTUAL
IMPEDANCE |Z1,2| = |Z2,1|

The best fit model for the magnitude of the mutual
impedance is

|Z1,2| = |Z2,1|

≈
∣∣∣∣(a1 + a2 cos

(
a3
C

λ
+ a4

)
exp

(
−C
λ

+ a5
L

λ

))∣∣∣∣
| sin(ϕ)|| sin(a6β)| (7)

where

a1 := 19.1651

a2 := 77.1140

a3 := 0.9234π

a4 := −1.3128π

a5 := 4.8423

a6 := 0.3149π.

The coefficient of determination or R2 is 0.9866. This
means that only 1.34% of the variation from the VLab data
was not explained by the model in (7).

A more refined expression may be obtained when the
optimized coefficient values are rounded off to a1 = 20, a2 =
75, a3 = 23

25π, a4 = − 131
100π, a5 = 24

5 , a6 = π2

10 , giving an R2

of 0.9807.
The model of the magnitude of mutual coupling |Z1,2| =
|Z2,1| in (7) is dependent on the wavelength-normalized loop
circumference C

λ , wavelength-normalized dipole length L
λ ,

the skew angle ϕ and the rotational angle β.
|Z1,2| = |Z2,1| is proportional to | sin(ϕ)|. Stronger

mutual coupling exists when the skew angle |ϕ| approaches
90◦ (i.e., the dipole and loop would become more parallel).
Hence, |Z1,2| = |Z2,1| monotonically increases as suggested
by the non-negative factor | sin(ϕ)| in (7). This is due to the
increasing magnitude of the induced current as the dipole tilts
towards the horizontal loop. When ϕ = 0, |Z1,2| = |Z1,2| =
0 (i.e., no mutual coupling). Conforming with the existing
electromagnetic principles, the multiplicative factor | sin(ϕ)|
is due to the projection of electric field from the driving
dipole on the induced loop when the dipole is skewed by an
angle |ϕ|.
|Z1,2| = |Z2,1| monotonically increases as β increases

with the multiplicative factor | sin(a6β)|. As the dipole

through the rotational angle β moves away from the feed-
point, the dipole and loop’s electromagnetic fields would be-
come more aligned, hence intensifying the mutual coupling.
At a special case where β = 0, |Z1,2| = |Z1,2| = 0 for all
values of ϕ.

(7) can be broken down into (8) and (9) to further discuss
the conformance of the results to existing electromagnetic
principles. Fig. 3 plots the relationship described in (9) and
clearly illustrates the behavior mentioned above due to the
effects of varying skew angle ϕ and rotational angle β.

|Z1,2|
K
(
C
λ ,

L
λ

) =
|Z2,1|

K
(
C
λ ,

L
λ

) ≈ | sin(ϕ)|| sin(c6β)|, (8)

|Z1,2|| csc(ϕ)|| csc(a6β)| = |Z2,1|| csc(ϕ)|| csc(a6β)|

≈ K

(
C

λ
,
L

λ

)
, (9)

where

K

(
C

λ
,
L

λ

)
:=

∣∣∣∣a1 + a2 cos

(
a3
C

λ
+ a4

)
exp

(
−C
λ

+ a5
L

λ

)∣∣∣∣ .
(10)

Fig. 3. How |Z1,2| = |Z2,1| varies with the skew angle ϕ and rotational
angle β.

K
(
C
λ ,

L
λ

)
in (10) describes the effect of loop circumfer-

ence and dipole length on |Z1,2| = |Z1,2|. This is shown
in Fig. 4. The wavelength-normalized loop circumference
C
λ affects |Z1,2| = |Z1,2| by causing an oscillation that
exponentially decays with increasing loop circumference as
shown in Figure 5. This is true in terms of electromagnetics
since the current nonuniformity occurs for loop’s C

λ > 0.4π
which produces a cosine distribution along the loop.
|Z1,2| = |Z1,2| monotonically increases with the increas-

ing wavelength-normalized dipole length L
λ (i.e., exp

(
a5

L
λ

)
).

This conforms with the existing electromagnetic principles as
the current carrying capacity of the dipole increases with its
length, hence increasing the induced current and contributing
to a higher magnitude of mutual impedance.
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Fig. 4. How |Z1,2| = |Z2,1| varies with the wavelength-normalized loop
circumference C

λ
and wavelength-normalized dipole length L

λ
.

Fig. 5. How K
(
C
λ

)
varies with C

λ
.

VII. MODEL OF THE MAGNITUDE OF DIPOLE’S
SELF-IMPEDANCE |Z1,1|

The best fit model for the magnitude of Z1,1 is

|Z1,1| ≈ |b1 + b2 exp (β − b3ϕ)|
(
L

λ
− b4

)2

(11)

where

b1 := 24466.8076

b2 := 31.4922

b3 := 2.9000

b4 := 0.4755.

The model of |Z1,1| in (11) obtained an R2 of 0.9759.
This means that only 2.41% of the variation from the VLab
data was not explained by the model.

A more refined expression may be obtained when the opti-
mized coefficient values are rounded off to b1 = 25000, b2 =
30, b3 = 29

10 , b4 = 951
2000 , giving an R2 of 0.9752.

As seen from the model in (11), the excited dipole’s self-
impedance |Z1,1| is dependent on the wavelength-normalized
dipole length L

λ , the skew angle ϕ and the rotational angle β
but independent of the wavelength-normalized loop circum-
ference C

λ .
Rewriting (11) in the form of (12), we can observe that

|Z1,1| is affected by ϕ and β only through the multiplicative
factor ψ (ϕ, β).

|Z1,1| ≈ ψ (β, ϕ)T

(
L

λ

)
, (12)

where

ψ (β, ϕ) := |b1 + b2 exp (β − b3ϕ)| (13)

T

(
L

λ

)
:=

(
L

λ
− b4

)2

. (14)

Fig. 6. How ϕ and β affect the magnitude of the dipole’s self-impedance.

When the dipole skew away from orthogonality, |Z1,1|
decreases and it exponentially increases with increasing
rotational angle β. Fig. 6 illustrates these observations.

When the loop and dipole are orthogonal (i.e., ϕ = 0, β =
0), the model in (11) would degenerate to |Z1,1| ≈ (b1 +
b2)T

(
L
λ

)
, which means that the dipole is fully isolated from

the loop due to the absence of mutual coupling.
A minimum value of |Z1,1| in (11) is obtained at L

λ =
0.4755. The parabolic expression described in (14) and
shown in Fig. 7 conforms to the dipole’s input impedance
characteristics where the first resonance and anti-resonance
appear near L

λ = 0.5 and L
λ = 1.0, respectively.
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Fig. 7. How L
λ

affects the magnitude of isolated dipole’s self-impedance.

From the theory in antenna array, the sum of mu-
tual impedance and self-impedance is equal to the input
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impedance. Moreover, when the mutual impedance is zero
(i.e., the dipole is fully isolated from the loop), the dipole’s
input impedance is equal to its self-impedance.

VIII. MODEL OF THE DIPOLE’S SELF-IMPEDANCE
PHASE 6 Z1,1

The best fit model for the phase of Z1,1 is

6 Z1,1 ≈ (c1 + c2 exp(−c3β + c4ϕ)) cos

(
c5
L

λ
+ c6

)
(15)

where

c1 := 1.6731

c2 := 0.0015

c3 := 4.0815

c4 := 3.2711

c5 := 1.9863π

c6 := 2.5569π.

The model of 6 Z1,1 in (15) obtained an R2 value of
0.8878. This means that only 11.22% of the variation from
the VLab data was not explained by the model.

A more refined expression may be obtained when the
optimized coefficient values are rounded off to c1 = 17

10 , c2 =
3

2000 , c3 = 4, c4 = 13
4 , c5 = 2π, c6 = 51

20π, giving an R2 of
0.8874.
6 Z1,1 is independent of the wavelength-normalized

loop circumference C
λ but dependent on the wavelength-

normalized dipole length L
λ , the skew angle ϕ and the

rotational angle β.
(15) can be broken down into two multiplicative factors

M (β, ϕ) and cos
(
c5
L
λ + c6

)
as shown in (16).

6 Z1,1 ≈ M (β, ϕ) cos

(
c5
L

λ
+ c6

)
, (16)

where

M (β, ϕ) := c1 + c2 exp(−c3β + c4ϕ). (17)

In the multiplicative factor M (β, ϕ) in (17), 6 Z1,1 in-
creases exponentially as the skew angle |ϕ| approaches 90◦,
while it decreases as the rotational angle |β| approaches 90◦.
This is illustrated in Fig. 8.
6 Z1,1 register negative and positive values due to the muli-

plicative factor cos
(
c5
L
λ + c6

)
. In fact, with L

λ ∈ [0.1, 0.47]
and L

λ ∈ [0.98, 1.0], negative 6 Z1,1 can be observed.
Whereas, with L

λ ∈ [0.48, 0.97], positive phase can be
noticed. The points of zero crossings, i.e., near L

λ = 0.50
and near L

λ = 1.0 in Fig. 9 correspond with the dipole’s
resonant and anti-resonant lengths, respectively.

IX. MODEL OF THE MAGNITUDE OF LOOP’S
SELF-IMPEDANCE |Z2,2|

The best fit model for the magnitude of Z2,2 is

Fig. 8. How β and ϕ affect the phase of isolated dipole’s self-impedance.
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Fig. 9. How L
λ

affects the phase of isolated dipole’s self-impedance.

|Z2,2| ≈ d1 exp

−( C
λ − d2
d3

)2


+d4 exp

−( C
λ − d5
d6

)2


+d7 exp

−( C
λ − d8
d9

)2
 (18)

where

d1 := 6993

d2 := 1.499

d3 := 0.1252

d4 := 4874

d5 := 2.503

d6 := 0.1786

d7 := 4189

d8 := 3.507

d9 := 0.2032.
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The computed R2 is 0.9102. This means that only 8.98%
of the variability was not explained by the model.

A more refined expression may be obtained when the opti-
mized coefficient values are rounded off to c1 = 7000, c2 =
3
2 , c3 = 3

25 , c4 = 5000, c5 = 5
2 , c6 = 3

20 , c7 = 4000, c8 =
7
2 , c9 = 1

5 , giving an R2 of 0.9013.
The excited loop’s self-impedance |Z2,2| is dependent only

on the wavelength-normalized loop circumference C
λ . The

model in (18) follows a three-term Gaussian function. The
three peaks on the curves are centered at approximately c2 =
1.50, c5 = 2.50, and c8 = 3.50. This conforms with the
theory of electromagnetics since the maximum directivity of
the loop occurs near C

λ = 1.50, where the impedance is
too large. The amplitude of the peaks, as shown in Fig. 10,
decreases as C

λ gets larger. From the theory on large loop
antenna, the resonance (i.e., the magnitude of the impedance
is minimum) occurs near C

λ = 1.00 and it is just repetitive
near C

λ = 2.00, 3.00, and 4.00.
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7000

Fig. 10. How C
λ

affects the magnitude of loop’s self-impedance.

X. MODEL OF THE LOOP’S SELF-IMPEDANCE PHASE
6 Z2,2

The best fit model for the phase of Z2,2 is

6 Z2,2 ≈ e1 + e2 sin

(
e3
C

λ
+ e4

)
exp

(
−e5

C

λ

)
(19)

where

e1 := −10.6100

e2 := 99.7700

e3 := −1.9904π

e4 := 3.0112π

e5 := 0.09388.

The model of 6 Z2,2 in (19) obtained an R2 of 0.9651.
This means that only 3.49% of the variation from the VLab
data was not explained by the model.

A more refined expression may be obtained when the opti-
mized coefficient values are rounded off to e1 = − 53

5 , e2 =
100, e3 = − 199

100π, e4 = 301
100π, e5 = 19

200 , giving an R2 of
0.9651.

The model in (19) resembles an expression of a damped
sinewave or an exponential damping, where the peak-to-
peak amplitudes of 6 Z2,2 decrease with each oscillation
and with increasing C

λ . The positive peaks appear near
C
λ = 1.25, 2.25, 3.25, while the negative peaks appear near
C
λ = 1.75, 2.75, 3.75, as illustrated in Fig. 11. The zero
crossings that occur near C

λ = 1.5, 2.5, 3.5 coincide with
the peaks of |Z2,2| as shown Fig.10.
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Fig. 11. How C
λ

affects the phase of loop’s self-impedance.

Due to the loop’s resonance near C
λ = 1.00, 2.00, 3.00,

and 4.00, the phase of the loop is zero because there is no
reactance.

XI. CONCLUSION

This paper successfully obtained low-dimensional models
of the magnitude of mutual impedance and the magnitude
and phase of the dipole and loop self-impedances for the
cocentered but nonorthogonally oriented loop and dipole as
evidenced by the high R2 values, hence obtaining small
fitting errors. The orthogonality of the COLD antenna pair
may not be maintained in practical situations, thus the char-
acterization of cocentered but nonorthogonally oriented loop
and dipole is deemed important. The open literature presents
complicated equations that involve complex integrals and
nested summations for solving the mutual impedance and
self-impedances of the loop and dipole. With the aid of
EMCoS Antenna VLab, the obtained models provide very
simple closed form expressions that are intuitive and conform
with the existing electromagnetic principles.
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