
 

 

 

 

Abstract— Researchers in the domains of machine learning and 

artificial intelligence are particularly interested in the problem 

of object identification. Detection and identification of similar 

objects are one of the most difficult challenges in computer 

vision image recognition. This study will identify the following 

musical instruments: cello, clarinet, erhu, guitar, saxophone, 

trumpet, French horn, harp, recorder, bassoon, and violin. 

Various musical instruments have the same size, shape, and 

sound. Furthermore, we are impressed by the ease with which 

humans can identify very similar objects, and for computers, 

this is a difficult task.  In this work, we attempted to distinguish 

between things that seemed to be extremely similar at the level 

of human perception. Next, we deploy Yolo V4 to determine 

which musical instruments are comparable to one another. 

Following that, the performance of the Yolo V4 and Densenet 

models will be evaluated. We can improve the detection 

performance of musical instruments that are similar based on 

the outcomes of our experiments. In comparison to the findings 

of other experiments, Yolo V4 demonstrates the highest possible 

average accuracy, coming in at 94.70 percent and better than 

previous methods. 

 
Index Terms—Musical Instrument Detection, Similar object, 

Densenet, Yolo V4, Deep learning. 

 

I. INTRODUCTION 

bject detection is a kind of computer technology related 

to computer vision and image processing. This 

technology is concerned with finding examples of semantic 

objects of a particular class, including musical instruments 

[1][2], people [3][4], buildings [5], traffic sign [6][7], or cars 

[8][9] in video and digital images. Despite the widespread use 

of object detectors, the performance of object detectors may be 

uneven in some circumstances. The flute and clarinet have 

several complementary characteristics. As members of the 

same family, the articulation, and dynamic capabilities of the 

two instruments are similar. They are identical in terms of 

shape, size, and sound. Moreover, Cello and violin are 

classifying as members of the string family, and they are 

different from each other. The most significant distinction 

between a cello and a violin is their size. 
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When playing the Cello, it is customary to sit in a sitting 

posture with the instrument held between the legs.  On the other 

hand, the violin is resting between the shoulder and the chin of 

the player. 

When played, cellos and violins have one thing in 
common: they both need a bow. As with the violin, the cello is 
played with the right hand using a bow that crosses the four 
strings. According to Figure 1, the guitar, the violin, and the 
cello all have a similar basic shape that varies to some degree. 
Computers have a considerably more difficult time than people 
do when trying to identify musical instruments that are like one 
another. Our research works were particularly impressed by the 
ease with which humans can identify visual identification 
difficulties, such as recognizing very similar musical 
instrument objects. Moreover, while this situation is obvious to 
humans, it poses difficulties for computers. 

Yolo exerts the most impact in situations requiring 
quicker time detection. It has a high detection rate and a high 
degree of accuracy. Yolo V4, the latest version of Yolo, was 
announced in 2020. Most recent scientific models require 
multiple GPUs for training and large mini-batch sizes. 
According to past research, when training with a single GPU, 
the training process is lengthy, tiring, and ultimately 
ineffective. Yolo V4 [10][11] takes a new solution to this 
problem by training object detectors on a single GPU with a 
lower mini-batch size than previously used. With this 
technique, it is possible to train faster on a single GPU, which 
is extremely precise. 

CNN models, such as Densenet and Yolo V4, as well as 
feature extraction approaches, are examined in this article. In 
the course of our investigation, we adapted them to the People 
Playing Musical Instrument (PPMI dataset) [12]. The PPMI 
dataset consists of pictures of individuals interacting with 
twelve distinct musical instruments. On the list are the cello, 
bassoon, clarinet, flute, French horn, erhu, guitar, harp, 
recorder, trumpet, saxophone, and violin. In research articles, 
it is difficult to find many object detectors based on deep 
learning that are uniquely tailored to the musical instrument 
identification problem area. We have had difficulty locating 
one that assesses numerous crucial variables, including mAP, 
IoU, and detection time. 

The following is a summary of the paper's contributions. 

Human vision was the first step in the process of identifying 

items that were quite similar. Yolo V4 is used to identify 

musical instruments that share similar characteristics. Next, 

the Yolo V4 model is evaluated in terms of detection time, 

mAP, IoU, and floating-point functions (FLOPS). As part of 

this investigation, we'll identify several musical instruments 

that are similar.
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(a) Bassoon (b) Cello (c) Clarinet (d) Erhu (e) Flute (f) French horn 

    

 

 

(g) Guitar (h) Harp (i) Recorder (j) Saxophone (k) Trumpet (l) Violin 

Figure 1.  Musical Instruments. 

The following is the structure of this paper: Related work 

is included in Section II. Section III describes the approach 

that we suggest. Section IV included an explanation of the 

experiment and its findings. A detailed explanation of our 

study findings is provided in Section V of this report. Finally, 

in Section VI, conclusions are reached and recommendations 

for further research are made. 

II. RELATED WORKS 

A. Similar Object Recognition 

Deep learning recognition has enabled significant 

advances in most object identification algorithms [13][14]. 

Object recognition is simple for humans, but it is very difficult 

for computers to distinguish two things that are almost identical 

in appearance and function. The two-stage detector consists of 

two processes that work together. First, using a region-based 

CNN (RCNN) [15][16], the detector extracts recommendations 

for areas where items can be found in the image. After that, it 

categorizes each region of interest (RoI) separately [17].  

However, although the two-stage detector has excellent 

performance, it has significant drawbacks. It takes a long time 

to train a model, and longer to test it, because of the two 

procedures involved. A single-stage detector is recommended 

to minimize the amount of prediction time. This time is 

required by predicting the position of the item as well as its 

class and score at the same time. The single-stage detector does 

not have a region proposal procedure because it is a one-step 

detector. Yolo [18] and Single Shot Detector (SSD) [19] are 

the most representative single-stage detectors. Both have only 

one CNN architecture [20]. Single-stage detectors are more 

efficient, have more competitive overall performance, and have 

fewer model parameters than their two-stage counterparts. 

Shijin Song et al. [21] developed a more efficient CNN 

network design that allows small objects to be identified more 

accurately while requiring less computation and enabling 

simpler deployment. They cut the CNN network, greatly 

reducing the size and operating time of the model and 

maintaining accuracy. The fully convoluted layers are replaced 

with fully connected layers at the same time, which increases 

the computational efficiency. 

With the help of entropy loss, M. Ju et al. [22] have 

developed an object identification approach that can more 

accurately distinguish between objects that have similar 

appearances. If the detector uses entropy loss, it is more likely 

to generate accurate predictions about the bounding box class 

that is being seen. The degradation of trust is also lessened 

because of this. As a result, similar objects are better able to be 

detected. 

B. Yao et al. [12] proposed a new representation of image 

features named "grouplets" be developed. Grouplets are used 

to capture structured information contained in an image by 

storing several discriminatory visual characteristics and their 

spatial arrangement in the image. With the use of a dataset 

consisting of seven different PPMI activity, the author shows 

that grouplets outperform other state-of-the-art methods in 

terms of categorization and detection of human-object 

interactions in a variety of situations. 

The Generative Adversarial Network (GAN) was used in 

conjunction with the Yolo method by C. Dewi et al. [23] to 

detect musical instruments that are similar to each other. Yolo 

is fast Region based Convolutional Neural Network (CNN) 

with powerful computation. Yolo-GAN will increase the Yolo 

detection process capacity and surpass the original Yolo 

capability when Deep Convolution Yolo-GAN is used. In our 

experiment we will implement the newest version of Yolo V4 

with the PPMI dataset with 12 different musical instruments. 

 

B. Yolo V4 and Densenet  

The most recent version of Yolo is Yolo V4, published 
by [10] in 2020. Moreover, the Yolo V4 implement 
CSPDarknet53 [24] as a backbone network. Also, Spatial 
Pyramid Pooling in the neck structure and Yolo V3 [25] in 
the head layer. Yolo V4 makes use of a Mish [26] activation 
mechanism to operate in the backbone. Mish is a 
contemporary, smooth, and non-monotonic characteristic of 
the neural activation function that can be observed in 
Equation (1). 

𝑓(𝑥) = 𝑥 tanh (ln(1 + 𝑒𝑥))       (1) 

Where, ln(1 + 𝑒𝑥) is the soft plus activation function 

[27].  
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In addition, Yolo V4 offers several additional 

enhancement methods, including the following: (1) Use a 

new data augmentation technique, such as mosaic and 

adversarial training, to supplement the existing data. (2) 

Select the optimal hyperparameters through the Genetic 

Algorithm. (3) Improve the efficiency of current techniques 

by making them more suited for efficient training and 

inference, including SAM and PAN [28]s. Complete Yolo V4 

specifications divided by two as follows: (1) Bag of Freebies 

(BoF) [29] Backbone. (2) Bag of Specials (BoS) Backbone. 
Yolo V4 uses many techniques that build on the 

foundation of Yolo V3 for training and customization, while 
also enhancing the core network, essentially without making 
any significant structural changes. Yolo V3 splits the input 
image into (N × N) grids cells [30] with the same size and 
forecast bounding boxes and probabilities for each grid cell. 
It takes advantage of multi-scale fusion to provide 
predictions, and a single neural network is used to generate a 
complete picture. Like the previous box, dimension clusters 
are used to forecast bounding boxes, which are then applied 
as bounding boxes. Based on this, the K-means approach is 
utilized to carry out dimensional clustering on the target 
boxes contained within the dataset. As a result, nine prior 
boxes of diverse sizes that are equally dispersed over feature 
graphs at various scales are obtained. Moreover, Yolo V3 
admits personal bounding box anchor for each ground truth 
object [31]. 

The Densenet is primarily comprised of three components: 

the Dense Block, the Transition Layer, and the Growth Rate 

[32]. As input, every layer in Densenet receives everything 

from previous layers, and as output, every layer in Densenet 

receives everything from prior levels [33]. Densenet offers a 

number of appealing benefits, including the fact that it 

promotes feature reuse while also alleviating the vanishing 

gradient issue [34][35]. However, there are some apparent 

flaws in it as well. Before combining feature maps acquired 

from previous layers by concatenating them, each layer 

simply combines feature maps obtained from preceding 

levels by concatenating them without considering the 

interdependencies between various channels. Second, the 

connection between the interlayer feature map and the feature 

map of the interlayer is not clearly shown. Adaptively 

learning the correlation coefficients between layers by 

modeling the correlation of feature maps between the layers 

is very beneficial [36]. There are m layers contained within 

each Dense Block, with each layer being connected in a feed-

forward method to all the consecutive layers that come after 

it. If 𝑥𝑚 is denoted as the output from the 𝑚𝑡ℎ layer, it is 

calculated using Equation (2): 

𝑥𝑚 = 𝐻𝑚([𝑥1, 𝑥2, … , 𝑥𝑚−1]),     (2) 

where 𝐻𝑚 shows how the combination method might work 

in this layer. Within it, each individual feature layer is 

subjected to the processing of a concatenation function. 

III. METHODOLOGY 

Yolo V4 for the identification of musical instruments is 

described in the following sections. Figure 2 depicts an 

overview of system methods. The BBox mark tool [37] was 

adopted to make a bounding box for all object. The labeling 

procedure was carried out for each class and there may be 

multiple marks on one image. Following that, each class label 

is associated with a single training model. The bounding box 

labeling tool's return values are object coordinates 

(𝒙𝟏, 𝒚𝟏, 𝒙𝟐, 𝒚𝟐). These coordinates of items are distinct from 

the input value of Yolo. Instead, the Yolo input value is the 

center point and width and height (x, y, w, h). Consequently, 

the bounding box coordinates in the Yolo input format must 

be adjusted by the system because of the change. The 

modification process is based on Equations (3) – (8). 

𝑑𝑤 = 1/𝑊         (3) 

𝑥 =
(𝑥1+ 𝑥2)

2
× 𝑑𝑤       (4) 

𝑑ℎ = 1/𝐻        (5) 

𝑦 =
(𝑦1+ 𝑦2)

2
× 𝑑ℎ       (6) 

𝑤 = (𝑥2 −  𝑥1) × 𝑑𝑤      (7) 

ℎ = (𝑦2 − 𝑦1) × 𝑑ℎ      (8) 

H denotes the image's height, dh denotes the image's 

absolute height, W denotes the image's width, and dw denotes 

the image's absolute width. W denotes the image's width, and 

dw denotes the image's absolute width. As a result, float 

values relative to the image's width and height (dw and dh) 

may be anywhere in range 0 to 1. 

The following is the procedure for detecting objects 

using Yolo V4:  

(1) Separates the image into N×N grids. Each grid 

generates a total of K bounding boxes by utilizing anchor box 

computation. It estimates B boundary boxes for every grid 

cell, along with a confidence score for each forecast boundary 

box. 

(2) No matter how many boxes B were in the array, only 

one object was recognized. Additionally, it predicts the 

probability of C conditional classes and one for each class 

(for the probability of the object class occurring). 

(3) The CNN layers used to obtain all features from the 

image and predicts the 𝑏 = [𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 , 𝑏ℎ, 𝑏𝑐]𝑇and the 

𝑐𝑙𝑎𝑠𝑠 = [𝑐𝑙𝑎𝑠𝑠1, 𝑐𝑙𝑎𝑠𝑠2, … . , 𝑐𝑙𝑎𝑠𝑠𝑐]𝑇.  

(4) Estimates the optimum confidence 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ of the K 

bounding boxes with the threshold 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠 . If 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ > 

𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠, meaning that the bounding box contains the object. 

The bounding box would not contain the object otherwise.  

(5) The algorithm then selects the most probable 

category for the item's kind from the available choices. Non-

Maximum Suppression (NMS) is used in our studies to 

conduct a maximum local search on drop boxes, redundant 

output, and object detection findings. (6) The last step 

produces an image that has been classified and labeled with 

the class. When it comes to detecting objects in an image, 

non-maximum suppression is an important step to take. NMS 

is a classic algorithm that analyzes detection candidates and 

only retains the best of them after thorough evaluation. 

However, because the computations are expensive, it is 

difficult to accelerate with traditional hardware architectures. 

This type of problem is addressed by the quadric architecture, 

which provides the performance required for resource-

constrained edge performance. 
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Figure 2.  An overview of the system. 

IV. EXPERIMENT RESULTS 

A. Dataset 

The PPMI dataset includes photographs of people 

engaging with a variety of musical instruments. Bassoon, 

cello, clarinet, French horn, erhu, flute, guitar, harp, 

saxophone, trumpet, recorder, and violin are among the 

instruments in the dataset. B. Yao gathered images of musical 

instruments and published them in [12]. 

TABLE I 
MUSICAL INSTRUMENT DATASET. 

Class Name Total 

Image 

Training Testing 

Bassoon 362 253 109 

Cello 322 225 97 

Clarinet 316 221 95 

Erhu 337 236 101 

Flute 315 221 95 

French horn 327 229 98 

Guitar 326 228 98 

Harp 332 232 100 

Recorder 309 216 93 

Saxophone 326 228 98 

Trumpet 330 231 99 

Violin 340 238 102 

Total Image 3942 2759 1183 

Aditya Khosla gathered images of instruments such as the 

cello, clarinet, harp, recorder, and trumpet, which he then 

published in September 2010. Initially, the dataset included 

100 pictures in each category for training and 100 images for 

testing. Table I contains a glimpse of the dataset. We trained 

and tested our models in this article using the PPMI dataset. 

The collection contains images of individuals performing 

musical instruments from a variety of angles, positions, and 

backgrounds. The diversity of individuals who play musical 

instruments is determined by the way the instruments are 

performed. Using data augmentation techniques such as 

rotation and flip, we expand each category's dataset. The 

collection comprises of 309-462 photos per category. The 

total number of photos in our dataset is now 3942, including 

2759 for training and 1183 for testing. 

An Nvidia GTX2070 Super GPU accelerator, an AMD 

Ryzen 7 3700X Central Processing Unit (CPU) with an 8-

core processor, and 32GB of DDR4-3200 memory were all 

components of the environment that was used to train the 

musical instrument recognition model. 

B. Densenet and Yolo V4 Training Result  

Our experiment enhances the Densenet and Yolo V4 

configurations during the training phase by applying a 

learning rate of 0.001 to evaluate, a learning rate decay of 0.1 

at every epoch, and a momentum learning rate of 0.9. Figure 

3(a) indicates that the training process with Densenet is 

consistent. After 27000 epochs, the training stage stays the 

same and ends after 45000 epochs. Densenet uses max 

batches = 45000, mask scale = 1, and the training loss value 

reaches 0.0731. Also, Yolo V4 uses learning rate = 0.0013, 

burn in = 1000, max batches = 24000, policy = steps, steps = 

19200, 21600, scales = 0.1,0.1, and the iteration is unsteady 

and goes up and down, ending at 24000 epochs with a loss 

value of 0.7576 in Figure 3. (b). 

Moreover, training performance result shown in Table II. 

Yolo V4 achieve the loss value 0.758 with 60.11% IoU and 

81.32% mAP. Thus, our Yolo V4 training model detected the 

objects with high accuracy. In other hand, Densenet exhibit 

74.77% mAP with 50.69% IoU. In this study, IoU is utilized 

to determine the degree to which our projected border 

overlaps with the ground truth, which is the boundary of the 

real object being investigated. Yolo V4 exhibited a greater 

mean absolute performance than Densenet in almost all the 

testing groups. 
IoU computes the overlap ratio between the prediction 

(pred) and ground-truth (gt) border boxes, as indicated in 

Equation (9)[38][39][40].  

𝑰𝒐𝑼 =
𝑨𝒓𝒆𝒂𝒑𝒓𝒆𝒅 ∩ 𝑨𝒓𝒆𝒂𝒈𝒕

𝑨𝒓𝒆𝒂𝒑𝒓𝒆𝒅 ∪ 𝑨𝒓𝒆𝒂𝒈𝒕
       (9) 

 

Nonetheless, the output samples fall into three 

categories. True positive (TP) is the number of properly 

identified samples; false positive (FP) is the number of 

incorrectly recognized samples [41][42], true negative (TN) 

is the number of unrecognized samples. Precision and recall 

are described by [43][44] in Equation (10)-(11). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (11) 

Moreover, F1 is shown in Equation (12) [45][46][47]. 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
      (12) 
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 TABLE II 
TRAINING PERFORMANCE RESULTS. 

Model Loss 

Value 

Class 

Name 

Class 

ID 

AP 

(%) 

TP FP Precision Recall F1-

score 

IoU (%) mAP@0.50 

(%) 

Yolo V4 0.758 Bassoon 0 77.59 63 19 0.77 0.78 0.78 60.11 81.32 

Cello 1 77.85 56 13 

Clarinet 2 69.73 58 40 

Erhu 3 86.45 71 21 

Flute 4 71.22 68 26 

French 

horn 

5 83.45 66 9 

Guitar 6 90.55 63 6 

Harp 7 98.09 66 5 

Recorder 8 71.32 82 29 

Saxophone 9 88.92 71 21 

Trumpet 10 77.42 59 23 

Violin 11 83.25 78 26 

Densenet 0.073  Bassoon 0 72.25 57 28 0.67 0.74 0.7 50.69 74.77 

Cello 1 79.19 63 22           

Clarinet 2 66.03 56 47           

Erhu 3 78.36 61 23           

Flute 4 75.22 68 43           

French 
horn 

5 82.26 75 27           

Guitar 6 79.46 57 14           

Harp 7 93.95 63 11           

Recorder 8 52.82 63 58           

Saxophone 9 83.05 69 26           

Trumpet 10 61.73 51 31           

Violin 11 69.87 78 46           

 
(a) 
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(b) 

Figure 3.  Training result using (a) Densenet and (b) Yolo V4. 
 

 

Figure 4.  Result of comparison of detection time (milliseconds). 

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_27

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 



 

 

 

 

TABLE III 

TESTING ACCURACY RESULTS PERFORMANCE COMPARISON 

Class Name Class ID DCYolo-GAN 

[23] 

Yolo V2 

[23] 

Grouplet 

[12] 

Resnet 50 

SPP [48] Densenet Yolo V4 

Bassoon 0 82% 82% 78.50% 85% 96% 95% 

Cello 1 90% 86% 87.60% 81% 95% 92% 

Clarinet 2 93% 92% 95.70% 89% 90% 93% 

Erhu 3 98% 98% 84.00% 81% 77% 95% 

Flute 4 89% 86% 87.70% 82% 91% 91% 

French horn 5 
92% 92% 87.70% 78% 79% 96% 

Guitar 6 98% 96% 93.00% 79% 94% 95% 

Harp 7 100% 100% 76.30% 98% 94% 96% 

Recorder 8 84% 84% 84.60% 85% 79% 89% 

Saxophone 9 
98% 98% 82.30% 93% 89% 99% 

Trumpet 10 90% 90% 87.10% 85% 88% 99% 

Violin 11 98% 96% 76.50% 80% 74% 96% 

 Average 92.67% 91.67% 85.10% 84.64% 87% 94.70% 

In addition, Equations (13) [18] shows the Yolo loss function. 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)

2 + (y − �̂�𝑖)
2] 

𝐵

𝑗=0

𝑠2

𝑖=0

 

+ 𝝀𝒄𝒐𝒐𝒓𝒅 ∑ ∑ 𝕝𝒊𝒋
𝒐𝒃𝒋

[(√𝒘𝒊 − √�̂�𝒊)
𝟐

+  (√𝒉𝒊 − √�̂�𝒊)

𝟐

] 

𝑩

𝒋=𝟎

𝒔𝟐

𝒊=𝟎

 

+ ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − �̂�𝑖)
2

  

𝐵

𝑗=0

𝑠2

𝑖=0

 

+ ∑ 𝕝𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(c) − �̂�𝑖(𝑐))2

𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑠2

𝑖=0    (13) 

where𝕝𝒊𝒋
𝒐𝒃𝒋

 indicates if the object is present in cell i, and 

𝕝𝒊𝒋
𝒐𝒃𝒋

 denotes that the 𝒋𝒕𝒉bounding box predictor in cell i is 

responsible for the prediction. Next, (𝒙, �̂�, �̂�, �̂�, �̂�, �̂�) are 

represented as the center coordinates, width, height, 

confidence, and category probability of the predicted 

bounding box. Those symbols without the cusp are true 

labels. Furthermore, our works set the 𝝀𝒄𝒐𝒐𝒓𝒅 to 0.5, 

indicating that the width and height errors are less effective 

in the calculation. Then, 𝝀𝒏𝒐𝒐𝒃𝒋 = 0.5 is used to reduce the 

impact of many empty grids on the loss value.  
 

V. DISCUSSIONS 

 

Table III shows the results of tests performed using images 

other than those in our dataset and the accuracy of the findings 

obtained. Overall, Yolo V4 is more precise than the previous 

version. Yolo V4 increases the accuracy of previous method in 

all class except for Clarinet, Erhu, Guitar, Harp, and Violin. 

Moreover, Saxophone and Trumpet leading the highest 

accuracy 99% for Yolo V4. Followed by French horn 96%, 

Basson 95%, Cello 92%, Flute 91%, and Recorder 89%. The 

optimum total average accuracy obtained by Yolo V4 with 

94.70% accuracy. Next, DCYolo-GAN [23] exhibits 92.67%, 

Yolo V2 [23] 91.67%, Densenet 87% and Grouplet [12] gains 

85.10% accuracy. Harp instrument obtained the highest 

accuracy 100% by using DCYolo-GAN and Yolo V2 [23]. 

Also, Clarinet musical instrument exhibits the maximum 

accuracy 95.70% employing Grouplet [12]. Figure 4 describes 

the comparison results between Yolo V4 and Densenet in terms 

of detection time. The average detection time for the Yolo V4 

is 60.08 milliseconds. Furthermore, the average detection time 

for Densenet is 42.03 milliseconds. In terms of detection time, 

it can be determined that Densenet is faster than Yolo V4. 

The clarinet and the flute are two wind instruments that are 

quite comparable to one another in terms of their appearance, 

the way they are played, and the dimensions of the instruments. 

Comparable musical instruments include the guitar, violin, and 

cello. Guitar, violin, and cello are all stringed instruments. 

Although these three musical instruments are comparable to 

one another in terms of color, shape, and size, their dimensions 

couldn't be more dissimilar. The violin is the smallest 

instrument, the guitar is in the middle, and the cello is the 

biggest. Figure 5 shows the recognition result of guitar and 

cello. Densenet gave the workspace more space of 104.86 MB, 

the total number of BFLOPS was 31.883, and 306 layers were 

loaded from the weights-file. Image 4.jpg is predicted in 

49.242 milliseconds with the result violin obtains 87%, and 

guitar 97% accuracy shown in Figure 5(a). Furthermore, 

recognition result of Yolo V4 by using the same image describe 

in Figure 5(b). Image 4.jpg is predicted in 67.740000 

milliseconds as a result the violin gains 99% and the guitar 94% 

accuracy. Yolo V4 loaded 162 layers from weights-file and 

required additional workspace size 52.43 MB and total 

BFLOPS 59.634. Yolo V4 gets the highest average accuracy 

across all violin and guitar classes, although it requires more 

time to recognize objects in an image. Yolo V4 exhibits the 

optimum total BFLOPS 59.643 compared to Densenet.
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(a) Densenet (b) Yolo V4 

Figure 5.  Violin and Guitar recognition results. 

  
(a) Densenet (b) Yolo V4 

Figure 6.  Guitar and Cello recognition result. 

  
(a) Densenet (b) Yolo V4 

Figure 7.  Flute and Bassoon recognition result.  
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Densenet Yolo V4 
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(c) (d) 

Figure 8.  Violin and Recorder recognition result.  

Densenet Yolo V4 

  
(a) (b)  

  
(c) (d) 

Figure 9.  The missed detection results. 
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Moreover, Figure 6(a) describes the recognition result of 

guitar and cello using Densenet. After load 306 layers from 

weights-file, Images 5.jpg is predicted in 49.173 milli-

seconds. As a result, guitar achieves 74% and cello 

40%accuracy. In the other hand, Yolo V4 predicted guitar 

52% and cello 89% in 68.222 milli-seconds that shown in 

Figure 6(b). Flute and bassoon recognition result example 

describes in Figure 7. The two instruments are quite similar 

in shape and size. Flute obtained 49% accuracy and bassoon 

87% using Densenet with prediction time 48.632 milli-

seconds and it is presented in Figure 7(a). Yolo V4 predicts 

flute 64% and bassoon 89% accuracy in 67,876 milliseconds 

as shown in Figure 7(b). 

As a consequence of the test results in Figure 5, Figure 6, 

and Figure 7, it can be concluded that each model can 

correctly identify all classes with coordinate ranges and 

bounding box accuracy. The recognition result of violin and 

recorder with multiple objects could be seen in Figure 8. The 

optimum accuracy is obtained by Yolo V4 in Figure 8(b). 

Yolo V4 can recognize 5 recorders in the image with the 

accuracy 53%, 83%, 89%, 87%, and 54%, successively. The 

violin9.jpg image is predicted in 67.898000 milliseconds as 

shown in Figure 8(b) and can recognize 5 violins with 57%, 

85%, 87%, 45%, and 90% accuracy, respectively. However, 

Figure 9 describes the missed detection results. In addition, 

Densenet shows missed detections in Figure 9(a) and Figure 

9(c). Furthermore, Densenet can only detect the clarinet with 

87% accuracy in 48,521 milliseconds as shown in Figure 9(a). 

Yolo V4 can detect all musical instruments in Figure 9(b) and 

Figure 9(d). Yolo V4 can detect guitar 52% accuracy and 

cello 89% accuracy as seen on Figure 9(b).   

Some benefits of Yolo V4 is as follows: (1) Yolo V4 is not 

only an effective and potent object detection model, but it also 

makes it possible for anyone with a graphics processing unit 

(GPU) that is either a 1080 Ti or a 2080 Ti to train a super-

fast and accurate object detector. (2) Verification has been 

performed on the influence of the latest object detection 

methods, including the "Bag-of-Freebies" and the "Bag-of-

Specials," on the training of detectors. (3) All of the state-of-

the-art methods, such as Cross-iteration batch normalization 

(CBN) [49], Path aggregation network (PAN) [50] , and 

others, have been improved to be more efficient for single 

general processing unit (GPU) [51] training. 

VI. CONCLUSIONS 

In this study, the primary focus is on how we attempted 

to differentiate between things that appear extremely like the 

human eye. Densenet and Yolo V4 are used to identify 

musical instruments in our investigations. In this research, we 

recognized several similar music instruments. Our work 

examines CNN models combined with various backbone 

architectures and extractor features, including the Densenet 

and Yolo V4, for object recognition. In this experiment, the 

key features of the detector are investigated. Moreover, we 

were able to increase the performance of the detection of 

similar music instruments based on the results of our 

experiment. Yolo V4 showed the maximum average accuracy 

of 94.70% compared to the previous results, Grouplet [12] 

only achieves accuracy 85.10 %, DC-Yolo GAN [23] 92.67 

%, and Yolo V2 91.67%. 

As part of our future research, we would like to identify 

an incorrectly shaped musical instrument in an image. In 

addition, we are incorporating Explainable Artificial 

Intelligence (XAI) in our future research to shed more light 

on the image. 
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