

Abstract—Currently, the square-free and Wieferich prime

problems of number theory can be solved only via

computational means. Because an efficient Wieferich prime

exploration algorithm involves the investigation of a squared

factor of Mersenne numbers with a prime exponent, we propose

an inverse factorization algorithm to obtain both the exponent

and another factor of the minimum Mersenne number with a

specified factor. If we specify any prime, we can detect whether

it is a Wieferich prime. We demonstrated the procedure with

suitable examples and discussed the application of the classical

baby-step giant-step algorithm to this limitation. Moreover, the

inverse factorization is generalized not only to Mersenne

numbers but also to repunits and repdigits. Finally, we briefly

discuss cipher applications by applying our algorithm to a

concrete example of inverse factorization of Mersenne numbers.

This encryption algorithm expands the bit length by the

nonlinearity between plaintext and ciphertext. The block length

of the ciphertext becomes the decryption key. Block lengths that

are less than the decryption key include a computation load

maximization block, which improves the security.

Index Terms— block cipher, inverse factorization, repunits,

Wieferich primes

I. INTRODUCTION

ersenne numbers, which are related to perfect

numbers [1], [2], have been studied for a long time and

can be expressed in the form 𝑀𝑛 = 2
𝑛 − 1 for some (𝑛 ∈ ℕ)

[3]. However, it remains unclear whether all Mersenne

numbers that have prime exponents have squared factors; this

is known as the so-called square-free problem (SFP) [4]. In

relation to the Mersenne numbers are the Wieferich primes,

which are prime numbers 𝑝 that satisfy 2𝑝−1 ≡ 1 (mod 𝑝2).
In 2005, it was reported that no Wieferich prime is less than

1.25 ∙ 1015, except 1093 and 3511 [5], [6]; this situation is

unchanged to date. The issue of whether an infinite number

of Wieferich primes exist is known as the Wieferich prime

problem (WPP). Observations based on computer

experimentation [7] suggest that only a finite number of

Wieferich primes exist. However, because there is no

theoretical definitive algorithm to solve SFP and WPP, they

are approached through computational means. The work of

Keller and Richstein [8] may be referred for more generalized

𝑎𝑝−1 ≡ 1 (mod 𝑝𝑟).

SFP can be examined using the results of the Mersenne

Manuscript received November 3, 2021; revised July 3, 2022.

H. Nakayama is an undergraduate student at the Faculty of Liberal Arts in

the Open University of Japan. (corresponding author to provide e-mail:

1710745506@campus.ouj.ac.jp)
S. Anbe is the President of a cram school, namely, Learning Forest

“English and Mathematics Seminar.” (e-mail: 5zp7ac@bma.biglobe.ne.jp)

prime search. If a prime 𝑝 is specified, 𝑀𝑝 = 2𝑝 − 1 can be

computed. When 𝑀𝑝 is determined to be a composite number

using the Lucas–Lehmer test [3] or a primality test [9] using

an elliptic curve [10], it is possible to examine duplicate

factors via factorization [2], [11]. However, the SFP is related

to the WPP. As reported by Warren and Bray in 1967 [12], if

a Fermat or Mersenne number is not square-free, for any

prime factor 𝑝 whose square divides the given number,

2𝑝−1 ≡ 1 (mod 𝑝2) . Thus, modulo 𝑝2 can be used to

examine whether 2𝑝−1 ≡ 1 (mod 𝑝2) is satisfied for a prime

factor 𝑝 [5], indicating that the Mersenne number 𝑀𝑝−1 =

2𝑝−1 − 1 has 𝑝2 as a factor. Therefore, the efficient strategy

is to determine the Wieferich prime 𝑝 before approaching the

SFP. Although 𝑝 is prime, 𝑝 − 1 is an even number when 𝑝

≠ 2. When 2ℎ𝑛 = 𝑝 − 1 (ℎ ∈ ℕ), the prime exponent 𝑛 of

the minimum Mersenne number with factor 𝑝2 may be

determined such that 2𝑝−1 = 22ℎ𝑛 ≡ 2𝑛 ≡ 1 (mod 𝑝2) .

Research on arithmetic sequences for the exponents of

composite Mersenne numbers suggests the presence of

infinitely multiple composite Mersenne numbers with a prime

exponent [13]. Moreover, research of Carlitz module analogs

of Mersenne primes demonstrates that infinitely many

composite Mersenne numbers exist [14]. This includes the

existence of composite Mersenne numbers with a prime

exponent, which provides a counterexample to the SFP by

WPP. Furthermore, the numerical factorization of Mersenne

numbers with a specific exponent 𝑛 has been examined in

certain approaches [2], [11]. However, few computational

approaches are available to determine the exponent 𝑛 of a

Mersenne number factored to have a specified factor 𝑝 .

Therefore, identifying an approach to efficiently obtain a

Mersenne number with a specified odd number 𝑝 as a factor

without (numerical) factorization should be useful to provide

a computational solution for both SFP and WPP.

In this study, we develop an inverse factorization

algorithm for obtaining another factor 𝑞 and exponent 𝑛 of a

Mersenne number 𝑀𝑛 = 𝑝𝑞 with a specified odd 𝑝 and show

how this procedure can be applied to SFP and WPP. By

applying an expansion (the inverse of factorization), 𝑛 can be

obtained if 𝑝 and 𝑞 are properly specified. When 𝑀𝑛 = 2
𝑛 −

1 = 𝑝𝑞, the factorization is denoted as 𝑓, expansion as 𝑓−1,

and inverse factorization as 𝑓~1 . In particular,
𝑓 ∶ 𝑛 → (𝑝, 𝑞)
𝑓−1 ∶ (𝑝, 𝑞) → 𝑛

𝑓~1 ∶ 𝑝 → (𝑛, 𝑞). (1)

An Inverse Factorization of Minimum Mersenne

Number with a Specified Factor

Harunori Nakayama and Seiji Anbe

M

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

mailto:1710745506@campus.ouj.ac.jp
mailto:5zp7ac@bma.biglobe.ne.jp

We now discuss the structure of this study. To prepare the

groundwork, we introduce the ordered pairs (cells) for

handling a 1D real number in a 2D real-number space. Next,

we demonstrate the facility of the inverse transform of the

original 1D real number for such ordered pairs. We call the

ordered pairs “cells” in this study. Next, the multiplication of

a cell is defined, and an outer algorithm is introduced. The

algebraic space comprising cells is known as a real cell space.

We show that a number can be decomposed into two

components using multiplication as the primary operation.

The inverse factorization algorithm is developed by applying

the binary representation [6] of Mersenne numbers based on

common multiplication because Mersenne numbers are

repunits [15]. In the “Methods” section, proposed algorithms

for approaching the SFP and WPP are sequentially presented,

including examples and pseudocodes. Using the exponent 𝑛I
of the Mersenne number with a prime factor 𝑝, the exponent

𝑛II of the Mersenne number with a factor 𝑝2 is shown to

usually be estimated by 𝑝𝑛I . In the “Results” section,

focusing on known Wieferich primes, we applied the inverse

factorization to all two known Wieferich and 20 non-

Wieferich primes and tabulate the results and confirmed that

Wieferich and non-Wieferich primes can be distinct.

Moreover, there is a public table [16] that listed up 104

Wieferich numbers based on Agoh, Dilcher, and Skula’s

definition [17]. Using this data, certain detection results of the

Wieferich composites are presented. A primality test is

required to distinguish between Wieferich primes and

composites. In the “Discussion” section, we consider the time

complexity of the proposed algorithm with similar known

algorithms and present certain future challenges. Furthermore,

the inverse factorization algorithm of Mersenne numbers is

generalized to repunits and repdigits [15]. Finally, we discuss

cipher applications by applying the inverse factorization

algorithm to a concrete example of inverse factorization of

Mersenne numbers.

II. PRELIMINARIES

We then introduce the conversion of 1D numbers to 2D

numbers and vice versa, following which we provide an

algebraic structure to 2D numbers.

A. Introduction of ordered pairs (cells)

Given a number 𝑠, an exponent 𝑘 can be generated as the

logarithm of 𝑠 with base 𝑚. The relationship between 𝑠 and

𝑘 is as follows:

𝑠 ∈ 𝑆0, 𝑘, 𝑥, 𝑦 ∈ 𝑆1, 𝛾 ∈ 𝑆2, 𝛼 ∈ 𝑆3, 𝑚 ∈ ℝ+ − {1},
where

𝑠 = 𝑚𝑘 = 𝑚𝑥+𝑦. (2)

𝑆0 is the zeroth-number space; 𝑥 and 𝑦 are elements of the

first number space 𝑆1; 𝛾 lies in the second number space 𝑆2,

𝑆2 ⊆ 𝑆1; 𝛼 is a parameter of the distribution ratio, which is an

element of the third number space 𝑆3; and ℝ+ ∪ {0} is the

nonnegative real-number space.

We then apply an additive decomposition [18] to 𝑠 using

the following two properties of additive decompositions:

Additive decomposition using a weighted average [19]:

Let 𝑢, 𝑣 be the weights of the weighted average.

For 𝑘 ∈ 𝑆1, 𝑢, 𝑣 ∈ 𝑆2, and 𝑢 + 𝑣 ≠ 0, because

𝛼 = 𝑢 (𝑢 + 𝑣)⁄ and 1 − 𝛼= 𝑣 (𝑢 + 𝑣)⁄ , then

 𝑘 = 𝛼𝑘 + (1 − 𝛼)𝑘 =
𝑢

𝑢+𝑣
𝑘 +

𝑣

𝑢+𝑣
𝑘. (3)

Additive decomposition of the zeroth element:

For 𝛾 ∈ 𝑆2,

 0 = (+ 𝛾) + (− 𝛾). (4)

Any real number 𝑘 can be expressed using the additive

operation as follows:

 𝑘 = [𝑘] + [0] = [𝛼𝑘 + (1 − 𝛼)𝑘] + [(+ 𝛾) +
(− 𝛾)]

 = [𝛼𝑘 + 𝛾] + [(1 − 𝛼)𝑘 + (− 𝛾)]. (5)

This additive decomposition defines the ordered pair of

cells (𝑥, 𝑦) ∈ 𝑆1
2 as follows:

 (𝑥, 𝑦) ∶= [𝛼𝑘, (1 − 𝛼)𝑘] × (𝛾, − 𝛾) = [𝛼𝑘 + 𝛾, (1 −
𝛼)𝑘 – 𝛾],

 𝑘 = 𝑥 + 𝑦, 𝛾 = (1 − 𝛼)𝑥 − 𝛼𝑦 (6).

B. Inverse cell conversion

2D cells can then be reverted to their original 1D form

using

 |(𝑥, 𝑦)| ∶= 𝑚𝑥+𝑦 (7),

which is known as the “value” of the cell (x, y).

C. Definition of multiplication

The multiplicative operation × in a cell is defined as

natural multiplication. For 𝑆0 = ℝ
+, with ℝ as the real-

number space, 𝑆1, 𝑆2 = ℝ, if 𝑥1, 𝑥2, 𝑦1 , 𝑦2 ∈ 𝑆1 and the set of

the cells 𝐹 = ℝ2 . Multiplication is then provided by the

mapping ×∶ 𝐹 × 𝐹 ⟶ 𝐹, and the algebraic system (𝐹,×) of

the binary relation (𝑐1, 𝑐2) ∈ 𝐹 × 𝐹 is defined as follows:

 𝑐1 × 𝑐2 = (𝑥1, 𝑦1) × (𝑥2, 𝑦2): = (𝑥1 + 𝑥2 , 𝑦1 + 𝑦2)

(8).

Multiplication is associative and commutative; therefore,

if j = 1, 2, 3, 𝑥j, 𝑦j ∈ 𝑆1, 𝑛 ∈ ℝ
+ − {1}, 𝑐j ∈ 𝐹, 𝛼 > 0, 1 −

𝛼 > 0, and 𝑐j = (𝑥j, 𝑦j), then

𝑐1 × (𝑐2 × 𝑐3) = (𝑐1 × 𝑐2) × 𝑐3, (9)

 𝑐1 × 𝑐2 = 𝑐2 × 𝑐1. (10)

D. Definitions of binary operations like a vector space

In the real cell space (𝐹,+,×) , we define the binary

operation on the field 𝐾 by considering it as the real space ℝ;

i.e., using the mapping ∘ : 𝐾 × 𝐹 ⟶ 𝐾 × 𝐹, we define the

algebraic system (𝐹, +,×,∘) of the binary relation (𝑟, 𝑐) ∈
𝐾 × 𝐹 and the additive inverse using the ring structure of the

field 𝐾.

Let 𝑆0 = 𝑆1 = 𝑆2 = 𝑆3 = ℝ , 𝑟 ∈ ℝ, 𝑥, 𝑦 ∈ 𝑆1, 𝑚 ∈
ℝ+ − {1} , 𝑐 ∈ 𝐹 = ℝ2 , the operation +1 ∘ (𝑥, 𝑦) is

shortened as +1, and the cell relationship is defined as +1 ∘
(𝑥, 𝑦): = (𝑥, 𝑦) (i.e., 1 ∘ 𝑐 = 𝑐).

For certain cell value 𝑠 , the definition is extended as

follows:

 |𝑐|: = 𝑟𝑠 = 𝑟|(𝑥, 𝑦)| = 𝑟𝑚𝑥+𝑦 ∈ ℝ. (11)

For 𝛾 ∈ 𝑆2, 𝛼 ∈ 𝑆3, 𝛼 > 0, and 1 − 𝛼 > 0, one has

 𝑐 = 𝑟 ∘ (𝑥, 𝑦) : = 𝑟𝑚𝑥+𝑦 ∘ (𝛾, −𝛾) = |𝑐| ∘ (𝛾, −𝛾).
 (12)

For j = 1, 2, 𝑟, 𝑟 j ∈ ℝ, 𝑥, 𝑦, 𝑥j, 𝑦j ∈ 𝑆1, 𝑐, 𝑐j ∈ 𝐹, 𝛼 > 0,

and 1 − 𝛼 > 0, the following holds:

 (𝑟1 + 𝑟2) ∘ 𝑐 = 𝑟1 ∘ 𝑐 + 𝑟2 ∘ 𝑐, (13)

 𝑟1(𝑟2 ∘ 𝑐) = (𝑟1𝑟2) ∘ 𝑐, (14)

 𝑟 ∘ (𝑐1 × 𝑐2) = (𝑟 ∘ 𝑐1) × 𝑐2. (15)

When 𝑟 > 0, we have

 𝑐 = 𝑟 ∘ (𝑥, 𝑦) = (𝛼 log𝑚 𝑟 + 𝑥, (1 − 𝛼) log𝑚 𝑟 + 𝑦)

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

 (16).

III. METHODS

A. Inverse factorization of Mersenne numbers

Because 𝑚 ∈ ℕ, any natural number 𝑠 can be expressed

using a series expansion [20] of l terms, as shown in Equation

17 (i.e., as a sum of cell values), namely,

 𝑠 =∑𝑟j𝑚
j

𝑙−1

j=0

= 𝑟0𝑚
0 + 𝑟1𝑚

1 + 𝑟2𝑚
2 +⋯+ 𝑟𝑙−1𝑚

𝑙−1

= 𝑟0|𝑐0| + 𝑟1|𝑐1| + 𝑟2|𝑐2| + ⋯+ 𝑟𝑙−1|𝑐𝑙−1|

= ∑ 𝑟j|𝑐j|
𝑙−1
j=0 , (17)

where 𝑟j are included in ℕ ∪ {0}.

Remark 3.1. If 𝑠 is a Mersenne number, all coefficients 𝑟𝑗

are 1, and base 𝑚 = 2 is assumed.

Example 3.2. If 𝑚 = 3 and 𝑠 =23 in Equation 17, the

series expansion of the cell values that contain only the

second component is

23 = 2 ∙ 30 + 1 ∙ 31 + 2 ∙ 32
= 2 ∙ |(0,0)| + 1 ∙ |(0,1)| + 2 ∙ |(0,2)|.

Theorem 3.3. Let 𝑝𝑦 , 𝑞𝑥 ∈ ℕ ∪ {0} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ ℕ ∪

{0},𝑚 ∈ ℕ − {1} 𝑎𝑛𝑑 𝑑𝑒𝑛𝑜𝑡𝑒 𝑝 = ∑ 𝑝𝑦𝑚
𝑦𝑙𝑏−1

𝑦=0 and 𝑞 =

∑ 𝑞𝑥𝑚
𝑥𝑙𝑎−1

𝑥=0 . Then, we have

𝑝𝑞 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

,

(18)

where 𝑥 + 𝑦 = 𝑘 ∈ ℕ ∪ {0} , 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1 (Fig. 1 for

details).

Proof. Given 𝑝 = ∑ 𝑝𝑦𝑚
𝑦𝑙𝑏−1

𝑦=0 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 and

𝑞 = ∑ 𝑞𝑥𝑚
𝑥𝑙𝑎−1

𝑥=0 = ∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 ,

𝑝𝑞 = ∑ 𝑝𝑦|(0, 𝑦)|

 𝑙𝑏−1

𝑦=0

∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1

𝑥=0

 = ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑎−1

𝑘−𝑦=0

 𝑙𝑏−1

𝑦=0

 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

,

where 𝑥 + 𝑦 = 𝑘 ∈ ℕ ∪ {0}, 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1. □

Remark 3.4. If 𝑚 = 2 in Equation 18, 𝑝𝑙𝑏−1 = 𝑞𝑙𝑎−1 =

1 . Moreover, both 𝑝𝑦 and 𝑞𝑥 can only consider the

values 0 and 1. In particular, if 𝑝𝑞 is odd, 𝑝0 = 𝑞0 = 1.

Here, 𝑘 ≥ 0, and 𝑚𝑘 corresponds to the place of 𝑝𝑞, 𝑥 +
𝑦 = 𝑘, 𝑘 = 0, 1, 2, … , 𝑙𝑎 − 1,… , 𝑙𝑎 + 𝑙𝑏 − 2 .

Furthermore, 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1. However, 𝑙𝑎 and 𝑛 remain

unknown if only 𝑝 is specified.

Example 3.5. Consider a case of a Mersenne number

with an odd prime exponent. If 𝑚 = 3, 𝑝 = 23, 𝑎𝑛𝑑 𝑞 =
89 in Equation 18, 𝑝𝑞 = 2047 = 𝑀11 , as is shown

below:

𝑝𝑞 = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 2

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=0

3

𝑘=3

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=𝑘−4

6

𝑘=4

,

𝑝0𝑞0 = 4, 𝑝0𝑞1 = 4, 𝑝1𝑞0 = 2, 𝑝0𝑞2 = 0, 𝑝1𝑞1 = 2, 𝑝2𝑞0
= 4,

𝑝0𝑞3 = 0, 𝑝1𝑞2 = 0, 𝑝2𝑞1 = 4,
𝑝0𝑞4 = 2, 𝑝1𝑞3 = 0, 𝑝2𝑞2 = 0, 𝑝1𝑞4 = 1, 𝑝2𝑞3 =

0, 𝑝2𝑞4 = 2.

We use the representations of 𝑝:

𝑝 = 23 = 2 ∙ |(0,0)| + 1 ∙ |(0,1)| + 2 ∙ |(0,2)|

=∑𝑝𝑦|(0, 𝑦)|

 2

𝑦=0

,

where 𝑝0 = 2, 𝑝1 =1, 𝑝2 = 2, 𝑙𝑏 − 1 = 2, and

𝑞 = 89 = 2 ∙ |(0,0)| + 2 ∙ |(1,0)| + 0 ∙ |(2,0)| + 0 ∙ |(3,0)|

+1 ∙ |(4,0)| = ∑𝑞𝑥|(𝑥, 0)|

 4

𝑥=0

,

where 𝑞0 = 2, 𝑞1 = 2, 𝑞2 = 0, 𝑝3 = 0, 𝑞4 = 1, 𝑙𝑎 − 1 = 4,
 𝑛 − 1 = 6.

Consequently,

𝑝𝑞 = ∑𝑝𝑦|(0, 𝑦)|

 2

𝑦=0

∑𝑞𝑥|(𝑥, 0)|

 4

𝑥=0

=∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑘−𝑦=0

 2

𝑦=0

Fig. 1. View of three-region decomposition using multiplication in cell space

(each square represents one cell)

 𝑝𝑞 = ①+②+③

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

 = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 2

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=0

3

𝑘=3

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=𝑘−4

6

𝑘=4

 = 𝑝0𝑞0|(0, 0)| +∑𝑝𝑦𝑞1−𝑦|(1 − 𝑦, 𝑦)|

 1

𝑦=0

+∑𝑝𝑦𝑞2−𝑦|(2 − 𝑦, 𝑦)|

 2

𝑦=0

 +∑𝑝𝑦𝑞3−𝑦|(3 − 𝑦, 𝑦)|

 2

𝑦=0

 +∑𝑝𝑦𝑞4−𝑦|(4 − 𝑦, 𝑦)|

 2

𝑦=0

+∑𝑝𝑦𝑞5−𝑦|(5 − 𝑦, 𝑦)|

 2

𝑦=1

+∑𝑝𝑦𝑞6−𝑦|(6 − 𝑦, 𝑦)|

 2

𝑦=2

= 𝑝0𝑞0|(0, 0)|
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|)
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|)
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|)
+(𝑝0𝑞4|(4, 0)| + 𝑝1𝑞3|(3, 1)| + 𝑝2𝑞2|(2, 2)|)
+(𝑝1𝑞4|(4, 1)| + 𝑝2𝑞3|(3, 2)|)
+𝑝2𝑞4|(4, 2)|

In this example, the sum of coefficients of each digit 𝑘,

which is

 𝜎𝑘: =

{

 ∑ 𝑝𝑦𝑞𝑘−𝑦
𝑘
𝑦=0 (𝑘 ≤ 𝑙𝑏 − 1)

 ∑ 𝑝𝑦𝑞𝑘−𝑦
 𝑙𝑏−1
𝑦=0 (𝑙𝑏 ≤ 𝑘 ≤ 𝑙𝑎 − 2)

 ∑ 𝑝𝑦𝑞𝑘−𝑦
 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)
 (𝑙𝑎 − 1 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2)

 (19)

can be determined as follows:

𝜎0 = 𝑝0𝑞0 = 4

 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 4 + 2 = 6

𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 = 0 + 2 + 4 = 6

𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 = 0 + 0 + 4 = 4

 𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2 = 2 + 0 + 0 = 2

𝜎5 = 𝑝1𝑞4 + 𝑝2𝑞3 = 1 + 0 = 1, 𝜎6 = 𝑝2𝑞4 = 2

When 𝜎𝑘 ≥ 𝑚, a carry-up is required. The carry-up is the

operation of adding ⌊𝜎𝑘 𝑚⁄ ⌋ to the next digit 𝜎𝑘+1 and

executing 𝜎𝑘 − ⌊𝜎𝑘 𝑚⁄ ⌋.
Example 3.6. We then use a binary representation

because of the nature of Mersenne numbers and show the

application of Equation 19. If 𝑚 = 2, 𝑝 = 23, 𝑞 = 89 in

Equation 18, 𝑝𝑞 = 2047 = 𝑀11, we have

𝑝 = 23 = 1 ∙ |(0,0)| + 1 ∙ |(0,1)| + 1 ∙ |(0,2)| + 0 ∙ |(0,3)|

 +1 ∙ |(0,4)| = ∑𝑝𝑦|(0, 𝑦)|,

 4

𝑦=0

where 𝑝0 = 1, 𝑝1 = 1, 𝑝2 = 1, 𝑝3 = 0, 𝑝4 = 1, 𝑙𝑏 − 1 = 4,
and

𝑞 = 89 = 1 ∙ |(0,0)| + 0 ∙ |(1,0)| + 0 ∙ |(2,0)| + 1 ∙ |(3,0)|
+1 ∙ |(4,0)| + 0 ∙ |(5,0)| + 1 ∙ |(6,0)|

 = ∑𝑞𝑥|(𝑥, 0)|

 6

𝑥=0

,

where 𝑞0 = 1, 𝑞1 = 0, 𝑞2 = 0, 𝑝3 = 1, 𝑞4 = 1, 𝑞5 = 0,

𝑞6 = 1, 𝑙𝑎 − 1 = 6, 𝑛 − 1 = 10.

Consequently,

𝑝𝑞 = ∑𝑝𝑦|(0, 𝑦)|

 4

𝑦=0

∑𝑞𝑥|(𝑥, 0)|

 6

𝑥=0

 = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

4

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑦=0

5

𝑘=5

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑦=𝑘−6

10

𝑘=6

= 𝑝0𝑞0|(0, 0)|
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|)
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|)
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|+𝑝3𝑞0|(0, 3)|)
+(𝑝0𝑞4|(4, 0)| + 𝑝1𝑞3|(3, 1)| + 𝑝2𝑞2|(2, 2)|

 + 𝑝3𝑞1|(1, 3)|+𝑝4𝑞0|(0, 4)|)
+(𝑝0𝑞5|(5, 0)| + 𝑝1𝑞4|(4, 1)| + 𝑝2𝑞3|(3, 2)|

 + 𝑝3𝑞2|(2, 3)|+𝑝4𝑞1|(1, 4)|)
+(𝑝0𝑞6|(6, 0)| + 𝑝1𝑞5|(5, 1)| + 𝑝2𝑞4|(4, 2)|

 + 𝑝3𝑞3|(3, 3)|+𝑝4𝑞2|(2, 4)|)
+(𝑝1𝑞6|(6, 1)| + 𝑝2𝑞5|(5, 2)| + 𝑝3𝑞4|(4, 3)|+𝑝4𝑞3|(3, 4)|)
+(𝑝2𝑞6|(6, 2)| + 𝑝3𝑞5|(5, 3)| + 𝑝4𝑞4|(4, 4)|)
+(𝑝3𝑞6|(6, 3)| + 𝑝4𝑞5|(5, 4)|)
+𝑝4𝑞6|(6, 4)|.

The coefficients of each digit sum are as follows:

𝜎0 = 𝑝0𝑞0 = 1,
𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 + 1 = 1,
𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 = 0 + 0 + 1 = 1,
𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 + 𝑝3𝑞0 = 1 + 0 + 0 + 0 = 1,
𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2 + 𝑝3𝑞1 + 𝑝4𝑞0

= 1 + 1 + 0 + 0 + 1 = 3,
𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 + 𝑝3𝑞2 + 𝑝4𝑞1

= 0 + 1 + 1 + 0 + 0 = 2,
𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 + 𝑝3𝑞3 + 𝑝4𝑞2

= 1 + 0 + 1 + 0 + 0 = 2,
𝜎7 = 𝑝1𝑞6 + 𝑝2𝑞5 + 𝑝3𝑞4 + 𝑝4𝑞3 = 1 + 0 + 0 + 1 = 2,
𝜎8 = 𝑝2𝑞6 + 𝑝3𝑞5 + 𝑝4𝑞4 = 1 + 0 + 1 = 2,
𝜎9 = 𝑝3𝑞6 + 𝑝4𝑞5 = 0 + 0 = 0,
𝜎10 = 𝑝4𝑞6 = 1.

Then, let 𝑅𝑘 ∈ ℕ ∪ {0} be the carry-up from digit 𝑘 to

digit 𝑘 + 1 and let 𝑇𝑘 ∈ ℕ ∪ {0} be the sum of the total cell

values of digit 𝑘 and 𝑅𝑘−1 . However, for convenience, we

then set 𝑅−1: = 0, which yields the following:

 𝑇𝑘 = 𝑅𝑘−1 + 𝜎𝑘. (20)

Furthermore, let 𝑉𝑘 ∈ ℕ ∪ {0} be the difference between

𝑇𝑘 and the carry-up 𝑅𝑘; i.e.,

 𝑉𝑘 = 𝑇𝑘 −𝑚𝑅𝑘. (21)

Because 𝑝, 𝑝𝑦 , and 𝑙𝑏 are known, 𝑞𝑘−𝑦 and 𝑛 are

determined based on the property that all coefficients of

Mersenne numbers are unity for the base 𝑚 = 2. Thus, all

𝑉𝑘 = 1, and the initial values are 𝑅0 = 0, 𝑉0 = 1, and 𝑇0 = 1.

𝑅𝑘, 𝑇𝑘 , and 𝑉𝑘 , are sequentially calculated. If 𝑞𝑘 is

determined such that 𝑉𝑘 = 1 for 𝑘, 𝑉𝑘+1 to 𝑉𝑘+𝑙𝑏−1 are unity,

𝑅𝑘+𝑙𝑏−1 = 0, and the calculation is finished.

Note that 𝑘 is maximal when the calculation ends, which is

when k = 𝑛 − 1. Usually, 𝑀𝑛, in which we are interested, is

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

the positional system [21] of 𝑉𝑘 in binary.

Because 𝑝0 = 1 , we have 𝑞𝑘 = 0 or 1 , and 𝑇𝑘 ≡ 𝑉𝑘 ≡
1 (mod 2). Subsequently, we can determine that

 𝑅𝑘 = ⌊𝑇𝑘 𝑚⁄ ⌋. (22)

Thus, the Mersenne numbers 𝑀𝑛 are calculated as follows:

 𝑀𝑛 = 𝑝𝑞 = 𝑝∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 . (23)

Moreover, this algorithm can calculate the Mersenne

number with 𝑝2 rather than the specified prime factor 𝑝. Even

if 𝑝 is an odd number that is not a prime, the inverse

factorization of the Mersenne numbers is possible. If the

specified 𝑝 is prime and 𝑙𝑎 = 1, 𝑝 is a Mersenne prime.

Proposition 3.7. Let 𝑝𝑦 , 𝑞𝑥 ∈ ℕ ∪ {0} for all 𝑥, 𝑦 ∈ ℕ ∪

{0}, 𝑝 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 , and 𝑞 = ∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1
𝑥=0 for

a base 𝑚 ∈ ℕ− {1} , and let 𝑝𝑞 =

∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 ∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1
𝑥=0 .

𝑅𝑙𝑎+𝑙𝑏−2 𝑖𝑠 𝑡ℎ𝑒𝑛 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑚 − 1.

Proof. Because 𝑅𝑙𝑎+𝑙𝑏−2 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 when 𝑝𝑦 , 𝑞𝑥 =

𝑚 − 1, each coefficient in Equation 18 is (𝑚 − 1)2.

When 𝑘 = 0, 𝜎0 = 𝑇0 = (𝑚 − 1)2 and 𝑅0 = 𝑚 − 2, 𝑉0 =
1.

When 1 ≤ 𝑘 ≤ 𝑙𝑏 − 1,

𝜎𝑘 = (𝑘 + 1)(𝑚 − 1)2,

𝑇𝑘 = (𝑘 + 1)𝑚2 − (𝑘 + 2)𝑚,

𝑅𝑘 = (𝑘 + 1)𝑚 − (𝑘 + 2),
𝑉𝑘 = 0.

When 𝑙𝑏 ≤ 𝑘 ≤ 𝑙𝑎 − 1,

𝜎𝑘 = 𝑙𝑏(𝑚 − 1)2

𝑇𝑘 = 𝑙𝑏𝑚
2 − 𝑙𝑏𝑚 − 1,

𝑅𝑘 = 𝑙𝑏𝑚 − (𝑙𝑏 + 1),
𝑉𝑘 = 𝑚 − 1.

When 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2,

𝜎𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)(𝑚 − 1)2,

𝑇𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)𝑚
2 − (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)𝑚 − 𝑉𝑘,

𝑅𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)(𝑚 − 1),

 𝑉𝑘 = {
𝑚 − 2 (𝑘 = 𝑙𝑎)

 𝑚 − 1 (𝑙𝑎 + 1 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2).

Therefore, 𝑅𝑙𝑎+𝑙𝑏−2 ≤ 𝑚 − 1. □

Corollary 3.8. Let 𝑘𝑎 ∈ ℕ ∪ {0}, 0 ≤ 𝑘𝑎 ≤ 𝑙𝑎 − 1. If all

𝑉𝑘 = 𝑞𝑘 are determined for 𝑘 ≤ 𝑘𝑎 , 𝑞(2) =

𝑉𝑘𝑎𝑉𝑘𝑎−1⋯𝑉1𝑉0 , and 𝑝𝑞(2) =

𝑅𝑘𝑎+𝑙𝑏−1𝑉𝑘𝑎+𝑙𝑏−1𝑉𝑘𝑎+𝑙𝑏−2⋯𝑉1𝑉0, and then 𝑅𝑘𝑎+𝑙𝑏−1 ≤

𝑚 − 1 for 𝑞𝑘𝑎 ≠ 0.

Example 3.9. If 𝑚 = 2 , 𝑝 = 23, 𝑞 = 89 , and 𝑝𝑞 =
2047 = 𝑀11, we apply the carry-up technique below.

Using the results of Example 4, one has

𝑇0 = 𝑅−1 + 𝜎0 = 0 + 1 = 1, 𝑅0 = ⌊𝑇0 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉0
= 𝑇0 − 2𝑅0 = 1 − 0 = 1,

𝑇1 = 𝑅0 + 𝜎1 = 0 + 1 = 1, 𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉1
= 𝑇1 − 2𝑅1 = 1 − 0 = 1,

𝑇2 = 𝑅1 + 𝜎2 = 0 + 1 = 1, 𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉2
= 𝑇2 − 2𝑅2 = 1 − 0 = 1,

𝑇3 = 𝑅2 + 𝜎3 = 0 + 1 = 1, 𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉3
= 𝑇3 − 2𝑅3 = 1 − 0 = 1,

𝑇4 = 𝑅3 + 𝜎4 = 0 + 3 = 3, 𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉4
= 𝑇4 − 2𝑅4 = 3 − 2 = 1,

𝑇5 = 𝑅4 + 𝜎5 = 1 + 2 = 3, 𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉5
= 𝑇5 − 2𝑅5 = 3 − 2 = 1,

𝑇6 = 𝑅5 + 𝜎6 = 1 + 2 = 3, 𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉6
= 𝑇6 − 2𝑅6 = 3 − 2 = 1,

𝑇7 = 𝑅6 + 𝜎7 = 1 + 2 = 3, 𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉7
= 𝑇7 − 2𝑅7 = 3 − 2 = 1,

𝑇8 = 𝑅7 + 𝜎8 = 1 + 2 = 3, 𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉8
= 𝑇8 − 2𝑅8 = 3 − 2 = 1,

𝑇9 = 𝑅8 + 𝜎9 = 1 + 0 = 1, 𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉9
= 𝑇9 − 2𝑅9 = 1 − 0 = 1,

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, 𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋

= 0, 𝑉10 = 𝑇10 − 2𝑅10 = 1 − 0 = 1.
Therefore, using the binary positional system, 𝑝𝑞(2) =

𝑉10𝑉9𝑉8𝑉7𝑉6𝑉5𝑉4𝑉3𝑉2𝑉1𝑉0 = 11111111111(2) = 2
11 − 1.

Then, the framework of Theorem 3.3 is restrained to

𝑝𝑙𝑏−1𝑞𝑙𝑎−1 ≠ 0 and 0 ≤ 𝑝𝑦 , 𝑞𝑥 ≤ 𝑚 − 1 for all 𝑥, 𝑦 ∈ ℕ ∪

{0}.
Theorem 3.10. When p and q are odd, consider the

composite Mersenne number 𝑀𝑛 = 2
𝑛 − 1 = 𝑝𝑞 . The

exponent 𝑛 of the minimum Mersenne number that has

the specified factor p and another factor 𝑞 can be

uniquely determined.

Proof. Because 𝑚 = 2, we obtain for the specified factor

𝑝

𝑝𝑞 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

.

= 𝑝0𝑞0|(0, 0)|
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|)
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|)
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|

+ 𝑝3𝑞0|(0, 3)|)
⋮

+(𝑝0𝑞𝑙𝑏−1|(𝑙𝑏 − 1, 0)| + 𝑝1𝑞𝑙𝑏−2|(𝑙𝑏 − 2, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞1|(1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞0|(0, 𝑙𝑏 − 1)|)

+(𝑝0𝑞𝑙𝑏|(𝑙𝑏 , 0)| + 𝑝1𝑞𝑙𝑏−1|(𝑙𝑏 − 1, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞2|(2, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞1|(1, 𝑙𝑏 − 1)|)

+(𝑝0𝑞𝑙𝑏+1|(𝑙𝑏 + 1, 0)| + 𝑝1𝑞𝑙𝑏|(𝑙𝑏 , 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞3|(3, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞2|(2, 𝑙𝑏 − 1)|)

⋮

+(𝑝0𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 0)| + 𝑝1𝑞𝑙𝑎−4|(𝑙𝑎 − 4, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏−1|(𝑙𝑎 − 𝑙𝑏 − 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−2|(𝑙𝑎 − 𝑙𝑏 − 2, 𝑙𝑏 − 1)|)

+(𝑝0𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 0)| + 𝑝1𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏|(𝑙𝑎 − 𝑙𝑏 , 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−1|(𝑙𝑎 − 𝑙𝑏 − 1, 𝑙𝑏 − 1)|)

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

+(𝑝0𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 0)| + 𝑝1𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 1)|

+ ⋯+𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏+1|(𝑙𝑎 − 𝑙𝑏 + 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏|(𝑙𝑎 − 𝑙𝑏 , 𝑙𝑏 − 1)|)

⋮

+(𝑝𝑙𝑏−3𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 3)|

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 𝑙𝑏 − 1)|)

+(𝑝𝑙𝑏−2𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 𝑙𝑏 − 1)|)

+𝑝𝑙𝑏−1𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 1)|.

Moreover,

𝜎0 = 𝑝0𝑞0,
𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0,
𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0,
𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 + 𝑝3𝑞0,

 ⋮
𝜎𝑙𝑏−1 = 𝑝0𝑞𝑙𝑏−1 + 𝑝1𝑞𝑙𝑏−2 +⋯+ 𝑝𝑙𝑏−2𝑞1 + 𝑝𝑙𝑏−1𝑞0,

𝜎𝑙𝑏 = 𝑝0𝑞𝑙𝑏 + 𝑝1𝑞𝑙𝑏−1 +⋯+ 𝑝𝑙𝑏−2𝑞2 + 𝑝𝑙𝑏−1𝑞1,

𝜎𝑙𝑏+1 = 𝑝0𝑞𝑙𝑏+1 + 𝑝1𝑞𝑙𝑏 +⋯+ 𝑝𝑙𝑏−2𝑞3 + 𝑝𝑙𝑏−1𝑞2,

 ⋮
𝜎𝑙𝑎−3 = 𝑝0𝑞𝑙𝑎−3 + 𝑝1𝑞𝑙𝑎−4 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏−1

 +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−2,

𝜎𝑙𝑎−2 = 𝑝0𝑞𝑙𝑎−2 + 𝑝1𝑞𝑙𝑎−3 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏

 +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−1,

𝜎𝑙𝑎−1 = 𝑝0𝑞𝑙𝑎−1 + 𝑝1𝑞𝑙𝑎−2 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏+1

 +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏

 ⋮
𝜎𝑙𝑎+𝑙𝑏−4 = 𝑝𝑙𝑏−3𝑞𝑙𝑎−1 + 𝑝𝑙𝑏−2𝑞𝑙𝑎−2 + 𝑝𝑙𝑏−1𝑞𝑙𝑎−3

𝜎𝑙𝑎+𝑙𝑏−3 = 𝑝𝑙𝑏−2𝑞𝑙𝑎−1 + 𝑝𝑙𝑏−1𝑞𝑙𝑎−2

𝜎𝑙𝑎+𝑙𝑏−2 = 𝑝𝑙𝑏−1𝑞𝑙𝑎−1,

and

𝑇0 = 𝜎0 = 1, 𝑅0 = ⌊𝑇0 2⁄ ⌋ = 0, 𝑉0 = 𝑇0 − 2𝑅0 = 1,
𝑇1 = 𝑅0 + 𝜎1, 𝑅1 = ⌊𝑇1 2⁄ ⌋, 𝑉1 = 𝑇1 − 2𝑅1 = 1,
𝑇2 = 𝑅1 + 𝜎2, 𝑅2 = ⌊𝑇2 2⁄ ⌋, 𝑉2 = 𝑇2 − 2𝑅2 = 1,
𝑇3 = 𝑅2 + 𝜎3, 𝑅3 = ⌊𝑇3 2⁄ ⌋, 𝑉3 = 𝑇3 − 2𝑅3 = 1,
 ⋮
𝑇𝑙𝑏−1 = 𝑅𝑙𝑏−2 + 𝜎𝑙𝑏−1,

 𝑅𝑙𝑏−1 = ⌊𝑇𝑙𝑏−1 2⁄ ⌋, 𝑉𝑙𝑏−1 = 𝑇𝑙𝑏−1 − 2𝑅𝑙𝑏−1 = 1,

𝑇𝑙𝑏 = 𝑅𝑙𝑏−1 + 𝜎𝑙𝑏 ,

 𝑅𝑙𝑏 = ⌊𝑇𝑙𝑏 2⁄ ⌋, 𝑉𝑙𝑏 = 𝑇𝑙𝑏 − 2𝑅𝑙𝑏 = 1,

𝑇𝑙𝑏+1 = 𝑅𝑙𝑏 + 𝜎𝑙𝑏+1,

 𝑅𝑙𝑏+1 = ⌊𝑇𝑙𝑏+1 2⁄ ⌋, 𝑉𝑙𝑏+1 = 𝑇𝑙𝑏+1 − 2𝑅𝑙𝑏+1 = 1,

 ⋮
𝑇𝑙𝑎−3 = 𝑅𝑙𝑎−4 + 𝜎𝑙𝑎−3,

 𝑅𝑙𝑎−3 = ⌊𝑇𝑙𝑎−3 2⁄ ⌋, 𝑉𝑙𝑎−3 = 𝑇𝑙𝑎−3 − 2𝑅𝑙𝑎−3 = 1,

𝑇𝑙𝑎−2 = 𝑅𝑙𝑎−3 + 𝜎𝑙𝑎−2,

 𝑅𝑙𝑎−2 = ⌊𝑇𝑙𝑎−2 2⁄ ⌋, 𝑉𝑙𝑎−2 = 𝑇𝑙𝑎−2 − 2𝑅𝑙𝑎−2 = 1,

𝑇𝑙𝑎−1 = 𝑅𝑙𝑎−2 + 𝜎𝑙𝑎−1,

 𝑅𝑙𝑎−1 = ⌊𝑇𝑙𝑎−1 2⁄ ⌋, 𝑉𝑙𝑎−1 = 𝑇𝑙𝑎−1 − 2𝑅𝑙𝑎−1 = 1,

 ⋮
𝑇𝑙𝑎+𝑙𝑏−4 = 𝑅𝑙𝑎+𝑙𝑏−5 + 𝜎𝑙𝑎+𝑙𝑏−4,

 𝑅𝑙𝑎+𝑙𝑏−4 = ⌊𝑇𝑙𝑎+𝑙𝑏−4 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−4 = 𝑇𝑙𝑎+𝑙𝑏−4 − 2𝑅𝑙𝑎+𝑙𝑏−4
= 1,

𝑇𝑙𝑎+𝑙𝑏−3 = 𝑅𝑙𝑎+𝑙𝑏−4 + 𝜎𝑙𝑎+𝑙𝑏−3,

 𝑅𝑙𝑎+𝑙𝑏−3 = ⌊𝑇𝑙𝑎+𝑙𝑏−3 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−3 = 𝑇𝑙𝑎+𝑙𝑏−3 − 2𝑅𝑙𝑎+𝑙𝑏−3
= 1,

𝑇𝑙𝑎+𝑙𝑏−2 = 𝑅𝑙𝑎+𝑙𝑏−3 + 𝜎𝑙𝑎+𝑙𝑏−2,

 𝑅𝑙𝑎+𝑙𝑏−2 = ⌊𝑇𝑙𝑎+𝑙𝑏−2 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−2 = 𝑇𝑙𝑎+𝑙𝑏−2 − 2𝑅𝑙𝑎+𝑙𝑏−2
= 1.

First, because 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑙𝑏−1 are known and 𝑝0, 𝑞0 =

1 , it is evident that 𝑉0 = 1 . Next, the unknown values

𝑞1 and 𝑇1 are either 0 or 1; however, these are uniquely

determined because 𝑉1 = 1 is required. Assuming that 𝑞1 =
0, we can obtain that 𝑞1 = 0 or 1 if 𝑇1 is odd or even. Next,

based on the determined 𝑞1, 𝑇1 is calculated again, and so 𝑅1

and 𝑉1 are calculated. We then repeat the procedure from

𝑞2 , 𝑇2 to 𝑞𝑙𝑎−1 , 𝑇𝑙𝑎−1 , which can be similarly determined.

Consequently, although 𝑙𝑎 − 1 is unknown, we can

determine 𝑇𝑙𝑎−1 , 𝑅𝑙𝑎−1 , and 𝑉𝑙𝑎−1 when 𝑘 = 𝑙𝑎 − 1 .

Furthermore, using Corollary 3.8, we can determine all 𝑇𝑘,

𝑅𝑘, and 𝑉𝑘 for 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2 . The multiplication

operation is complete when all 𝑉𝑘 = 1 for 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 +
𝑙𝑏 − 2 and 𝑅𝑙𝑎+𝑙𝑏−2 = 0 . The exponent of the minimum

Mersenne number with the specified 𝑝 as a factor is 𝑛 = 𝑙𝑎 +
𝑙𝑏 − 1. Using the binary positional system, we obtain another

factor 𝑞(2) as 𝑞𝑙𝑎−1𝑞𝑙𝑎−2⋯𝑞1𝑞0 = 𝑉𝑙𝑎−1𝑉𝑙𝑎−2…𝑉1𝑉0. □

Theorem 3.10 shows that the inverse factorization of

Mersenne numbers is possible; the corresponding algorithm

is provided in Algorithm 3.11.

Algorithm 3.11: Inverse factorization of Mersenne numbers

INPUT: Specify an odd number 𝑝 that is a factor of the

given Mersenne number.

OUTPUT: The decimal exponent 𝑛 of the Mersenne

number with the decimal factor 𝑝 and another

binary factor 𝑞.

1: Specify the divisor 𝑝(10) in decimals.

2: Express 𝑝 in a binary expansion, i.e., a series expansion

with the term number 𝑙𝑏:

𝑝(10) = ∑ 𝑝y ∙ 2
𝑦 = 𝑝𝑙𝑏−1 𝑝𝑙𝑏−2⋯ 𝑝0 (2)

𝑙𝑏−1
𝑦=0 .

3: Assign each digit of 𝑝 in the binary positional system to

the cell 𝑝y𝑞0 ∘ (0, 𝑦).

For 𝑦 = 0 to 𝑙𝑏 − 1; 𝑙𝑏 − 1 = ⌊log2 𝑝(10)⌋

 𝑝y ← 𝑝y; initial condition

Next y

4: Let 𝑅−1 = 0, 𝜎0 = 0, and 𝑇0 = 0. Let 𝑉𝑐 = null.
5: For 𝑘 = 0 to 𝑝 − 1

6: Determine 𝑞𝑘 under the condition 𝑉𝑘 = 1.

Note that any coefficient of a digit with 𝑘 greater than

𝑘 = 𝑘𝑎 in the calculation is set to zero.

If 𝑇𝑘 is odd, then

For 𝑦 = 0 to 𝑙𝑏 − 1

 𝑞𝑘 ← 0; thus 𝑝y𝑞𝑘 ← 0

Next y

Else if 𝑇𝑘 is even, then

For 𝑦 = 0 to 𝑙𝑏 − 1

𝑞𝑘 ← 1; thus 𝑝y𝑞𝑘 ← 𝑝𝑦

Next y

End if

7: Calculate 𝜎𝑘, 𝑇𝑘 , and 𝑅𝑘. Let 𝑉𝑐 = 1.

For 𝑦 = 0 to 𝑙𝑏 − 1,
𝜎𝑘+𝑦 ← 𝜎𝑘+𝑦 + 𝑝y𝑞𝑘 ,

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

𝑇𝑘+𝑦 ← 𝑅𝑘+𝑦−1 + 𝜎𝑘+𝑦 ,

𝑅𝑘+𝑦 ← ⌊𝑇𝑘+𝑦 2⁄ ⌋,

𝑉𝑘+𝑦 ← 𝑇𝑘+𝑦 − 2 𝑅𝑘+𝑦 ,

𝑉𝑐 ← 𝑉𝑐 ∗ 𝑉𝑘+𝑦 . This step is the preparation to

examine the completion of the

calculation using Corollary 3.8.

Next y

8: Obtain a string of divisors 𝑞(2) and let arr(𝑘) be a

string

variable.

arr(𝑘) ← 𝑞𝑘& arr(𝑘) , where “&” is the string

concatenation operator.

9: Use Corollary 3.8 to examine the completion of the

calculation.

If 𝑉𝑐 = 1, and 𝑅𝑘+𝑙𝑏−1 = 0, then go to 11

10: Next 𝑘

11: Output 𝑛 = 𝑘 + 𝑙𝑏

12: Output arr(𝑘) as 𝑞(2) , which is a positional system in

binary representation in the order of decreasing exponent.

Or convert 𝑞(2) to a decimal using the binary expansion

and output 𝑞(10).

13: End

Corollary 3.12. For the base 𝑚 = 2 , let 𝑝𝑦 , 𝑞𝑥 for

all 𝑥, 𝑦 ∈ ℕ ∪ {0}, 𝑝 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 , and 𝑞 =

∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 . When the minimum Mersenne number

𝑝𝑞 = 2𝑛 − 1 𝑎𝑛𝑑 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1 with the specified

factor 𝑝 is known, all 𝑞𝑘𝑎 such that 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 −

2 are zero. Therefore, 𝑞𝑙𝑎 , 𝑞𝑙𝑎+1, …, 𝑞𝑙𝑎+𝑙𝑏−2 are zero.

Proof. From Theorem 3.10, the specified 𝑝 with the

highest order 𝑙𝑏 − 1 yields another factor 𝑞 such that all

𝑉𝑘𝑎 = 1 for 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 − 2. The highest order of

𝑞 is 𝑙𝑎 − 1, and 𝑝𝑞 = 2𝑙𝑎+𝑙𝑏−1 − 1. Therefore, all 𝑞𝑘𝑎

such that 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 − 2 are zero. □

In Example 3.13, applying Corollary 3.8 to a Mersenne

number and confirming the completion of the calculation

complicates the explanation, we apply Corollary 3.12 instead.

Example 3.13. Let us use inverse factorization to

determine the exponent 𝑛 of the minimum Mersenne

number with 𝑝 = 23 as a factor and another divisor 𝑞.

We have

𝑝 = 23 = 10111(2),

𝑙𝑏 − 1 = 4,

𝑝0|(0,0)| = 1 ∙ |(0,0)|, 𝑝1|(0,1)| = 1 ∙ |(0,1)|, 𝑝2|(0,2)|

= 1 ∙ |(0,2)|, 𝑝3|(0,3)|

= 0 ∙ |(0,3)|, 𝑝4|(0,4)| = 1 ∙ |(0,4)|.
Thus, 𝑝0 = 1, 𝑝1 = 1, 𝑝2 = 1, 𝑝3 = 0, 𝑝4 = 1.

We then consider each of these values in turn.

When 𝑘 = 0, 𝑞0 = 0, then 𝜎0 = 𝑝0𝑞0 = 0,
𝑇0 = 𝑅−1 + 𝜎0 = 0 + 0 = 0, which is even.

Therefore, 𝑞0 = 1 is determined, 𝑎𝑛𝑑 so 𝑝0𝑞0 = 1, 𝑇0 =
1, and

𝑅0 = ⌊𝑇0 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0.
Thus, 𝜎0 = 1, 𝑇0 = 1, 𝑅0 = 0, 𝑉0 = 1.

When 𝑘 = 1 , if 𝑞1 = 0, then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 +
1 = 1,

𝑇1 = 𝑅0 + 𝜎1 = 0 + 1 = 1, which is odd.

Consequently, 𝑞1 = 0 is determined, so 𝑝0𝑞1 = 𝑝1𝑞1 =
 𝑝2𝑞1 = 𝑝3𝑞1 = 𝑝4𝑞1 = 0, 𝑇1 = 1, and

𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0.
Hence,

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1.

Remark 3.14. Consider the case where 𝑞𝑘 is assumed to

be 1 rather than 0. If 𝑞𝑘 = 1, we obtain 𝑉𝑘 = 1 when 𝑇𝑘

is odd, so 𝑞𝑘 = 1. If 𝑞𝑘 = 1, we obtain 𝑉𝑘 = 0 when 𝑇𝑘

is even, so 𝑞𝑘 = 0.

When 𝑘 = 1 , if 𝑞1 = 1, then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 1 +
1 = 2,

𝑇1 = 𝑅0 + 𝜎1 = 0 + 2 = 2, which is even.

Thus, 𝑞1 = 0 is determined, 𝑝0𝑞1 = 𝑝1𝑞1 = 𝑝2𝑞1 =
𝑝3𝑞1 = 𝑝4𝑞1 = 0, 𝑇1 = 1,
𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1.

When 𝑘 = 2 and 𝑞2 = 0, one has 𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 +
𝑝2𝑞0 = 0 + 0 + 1 = 1, followed by

𝑇2 = 𝑅1 + 𝜎2 = 0 + 1 = 1, which is again an odd number.

Thus, 𝑞2 = 0 is determined, 𝑝0𝑞2 = 𝑝1𝑞2 = 𝑝2𝑞2 =
𝑝3𝑞2 = 𝑝4𝑞2 = 0, 𝑇2 = 1,

𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,
𝜎2 = 1, 𝑇2 = 1, 𝑅2 = 0, 𝑉2 = 1.

When 𝑘 = 3 , if 𝑞3 = 0, 𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 +
𝑝3𝑞0 = 0 + 0 + 0 + 0 = 0,
𝑇3 = 𝑅2 + 𝜎3 = 0 + 0 = 0, which is even.

Thus, 𝑞3 = 1, 𝑝0𝑞3 = 1, 𝑝1𝑞3 = 1, 𝑝2𝑞3 = 1, 𝑝3𝑞3 =
0, 𝑝4𝑞3 = 1, 𝑇3 = 1,
𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎3 = 1, 𝑇3 = 1, 𝑅3 = 0, 𝑉3 = 1.

Finally, when 𝑘 = 4 and 𝑞4 = 0, we obtain 𝜎4 = 𝑝0𝑞4 +
𝑝1𝑞3 + 𝑝2𝑞2 + 𝑝3𝑞1 + 𝑝4𝑞0 = 0 + 1 + 0 + 0 + 1 = 2 ,

followed by

𝑇4 = 𝑅3 + 𝜎4 = 0 + 2 = 2, which is even.

Thus, 𝑞4 = 1, 𝑝0𝑞4 = 1, 𝑝1𝑞4 = 1, 𝑝2𝑞4 = 1, 𝑝3𝑞4 =
0, 𝑝4𝑞4 = 1, 𝑇4 = 3,
𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1,

𝜎4 = 3, 𝑇4 = 3, 𝑅4 = 1, 𝑉4 = 1.

When 𝑘 = 5 and 𝑞5 = 0, 𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 +
𝑝3𝑞2 + 𝑝4𝑞1 = 0 + 1 + 1 + 0 + 0 = 2, and

𝑇5 = 𝑅4 + 𝜎5 = 1 + 2 = 3, which is odd.

Thus, 𝑞5 = 0, 𝑝0𝑞5 = 𝑝1𝑞5 = 𝑝2𝑞5 = 𝑝3𝑞5 = 𝑝4𝑞5 = 0,
𝑇5 = 3,
𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1,

𝜎5 = 2, 𝑇5 = 3, 𝑅5 = 1, 𝑉5 = 1.

When 𝑘 = 6 and 𝑞6 = 0, 𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 +
𝑝3𝑞3 + 𝑝4𝑞2 = 0 + 0 + 1 + 0 + 0 = 1, and

𝑇6 = 𝑅5 + 𝜎6 = 1 + 1 = 2, which is even.

Thus, 𝑞6 = 1, 𝑝0𝑞6 = 1, 𝑝1𝑞6 = 1, 𝑝2𝑞6 = 1, 𝑝3𝑞6 = 0, 𝑝4𝑞6
= 1, 𝑇6

= 3,
𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1,

𝜎6 = 2, 𝑇6 = 3, 𝑅6 = 1, 𝑉6 = 1.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

When 𝑘 = 7 and 𝑞7 = 0, then 𝜎7 = 𝑝0𝑞7 + 𝑝1𝑞6 +
𝑝2𝑞5 + 𝑝3𝑞4 + 𝑝4𝑞3 = 0 + 1 + 0 + 0 + 1 = 2, and

𝑇7 = 𝑅6 + 𝜎7 = 1 + 2 = 3, which is odd.

Thus, 𝑞7 = 0, 𝑝0𝑞7 = 𝑝1𝑞7 = 𝑝2𝑞7 = 𝑝3𝑞7 = 𝑝4𝑞7 = 0,
𝑇7 = 3,
𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1,

𝜎7 = 2, 𝑇7 = 3, 𝑅7 = 1, 𝑉7 = 1.

When 𝑘 = 8 and 𝑞8 = 0, then 𝜎8 = 𝑝0𝑞8 + 𝑝1𝑞7 +
𝑝2𝑞6 + 𝑝3𝑞5 + 𝑝4𝑞4 = 0 + 0 + 1 + 0 + 1 = 2, and

𝑇8 = 𝑅7 + 𝜎8 = 1 + 2 = 3, which is odd.

Thus, 𝑞8 = 0, 𝑝0𝑞8 = 𝑝1𝑞8 = 𝑝2𝑞8 = 𝑝3𝑞8 = 𝑝4𝑞8 = 0, 𝑇8
= 3,

𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1,

𝜎8 = 2, 𝑇8 = 3, 𝑅8 = 1, 𝑉8 = 1.

When 𝑘 = 9 and 𝑞9 = 0, then 𝜎9 = 𝑝0𝑞9 + 𝑝1𝑞8 +
𝑝2𝑞7 + 𝑝3𝑞6 + 𝑝4𝑞5 = 0 + 0 + 0 + 0 + 0 = 0, and

𝑇9 = 𝑅8 + 𝜎9 = 1 + 0 = 1, which is odd.

Thus, 𝑞9 = 0, 𝑝0𝑞9 = 𝑝1𝑞9 = 𝑝2𝑞9 = 𝑝3𝑞9 = 𝑝4𝑞9 = 0, 𝑇9
= 1,

𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎9 = 0, 𝑇9 = 1, 𝑅9 = 0, 𝑉9 = 1.

When 𝑘 = 10 and 𝑞10 = 0, then

𝜎10 = 𝑝0𝑞10 + 𝑝1𝑞9 + 𝑝2𝑞8 + 𝑝3𝑞7 + 𝑝4𝑞6 = 0 + 0 +
0 + 0 + 1 = 1, and

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, which is odd.

Thus, 𝑞10 = 0, 𝑝0𝑞10 = 𝑝1𝑞10 = 𝑝2𝑞10 = 𝑝3𝑞10 =
𝑝4𝑞10 = 0, 𝑇10 = 1,
𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎10 = 1, 𝑇10 = 1, 𝑅10 = 0, 𝑉10 = 1.

Because 𝑞6 ≠ 0 and 𝑞7 = 𝑞8 = 𝑞9 = 𝑞10 = 0 , then 𝑙𝑎 −
1 = 6 and 𝑙𝑏 − 1 = 4 , where all 𝑞𝑘𝑎 for which 𝑙𝑎 ≤ 𝑘𝑎 ≤

𝑙𝑎 + 𝑙𝑏 − 2 are 0. Therefore, based on Corollary 3.12, the

multiplication calculation is complete and 𝑛 = 11. Using the

binary positional system, another factor is

𝑞 = 𝑞6𝑞5𝑞4𝑞3𝑞2𝑞1𝑞0 = 1011001(2)

 = 1 ∙ 26 + 0 ∙ 25 + 1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙
20 = 89.

Similar to Example 3.13, the exponent of the Mersenne

number with 𝑝2 = 232 = 529 as a factor becomes 𝑛 = 253.

B. Adapting the algorithm for Wieferich primes

Using inverse factorization, we can determine the exponent

𝑛 of the minimum Mersenne number with a factor of 𝑝2, 𝑝 is

odd. However, there are innumerable Mersenne numbers with

a factor of 𝑝2 , including Wieferich primes. There are two

algorithms to determine only the Wieferich primes.

In the first method, specifying a prime factor 𝑝 , after

determining the exponent 𝑛I of the minimum Mersenne

number with 𝑝2 as a specified factor using inverse

factorization, we determine the exponent 𝑛II of the minimum

Mersenne number with 𝑝2 as a factor. If 𝑝 is a Wieferich

prime, then 𝑛II = 𝑛I . If it is not a Wieferich prime, the

calculation can be ended when the calculation of 𝑛II reaches

𝑛I.

Proposition 3.15. By the inverse factorization of

Mersenne numbers, let the exponent 𝑛𝐼 be from the

specified prime factor 𝑝 and let exponent 𝑛𝐼𝐼 be from the

factor 𝑝2. If 𝑛𝐼 = 𝑛𝐼𝐼, 𝑝 is a Wieferich prime.

Proof. Let the exponent of the Mersenne number with a

prime factor 𝑝 be 𝑛𝐼 and the other factor be 𝑞𝐼. Let the

exponent of the Mersenne number with a factor of 𝑝2 be

𝑛𝐼𝐼 and the other factor be 𝑞𝐼𝐼. Then,

 𝑀𝑛I = 2𝑛I − 1 = 𝑝𝑞I, (24)

 𝑀𝑛II = 2
𝑛II − 1 = 𝑝2𝑞II. (25)

Moreover, using proportional coefficients ℎI ∈ ℕ,

 𝑝 = ℎI𝑛I + 1 (26)

if 𝑛I = 𝑛II , then 2𝑛I − 1 = 𝑝𝑞I = 𝑝
2𝑞II . Thus, 2𝑛I ≡

1 (mod 𝑝2). Using Equation 26, 2(𝑝−1) ℎI⁄ ≡ 2𝑝−1 ≡

1 (mod 𝑝2). Therefore, 𝑝 is a Wieferich prime. □

Next, we confirm that the inverse factorization of non-

Wieferich primes can be applied in another means. In the past,

research into non-Wieferich primes assumed the abc

conjecture [22], [23]; however, we handle the scenario that

holds regardless of the abc conjecture.

Proposition 3.16. Consider a non-Wieferich prime 𝑝 ,

𝑛𝐼 ∈ ℕ − {1}. If 2
𝑛𝐼 ≡ 1 (𝑚𝑜𝑑 𝑝) with the minimum

exponent 𝑛𝐼 , 2𝑝𝑛𝐼 ≡ 1 (𝑚𝑜𝑑 𝑝2) with the minimum

exponent 𝑝𝑛𝐼.

Proof. Because 𝑝 is a non-Wieferich prime, Equation 24

gives 𝑞𝐼 ≢ 0 (𝑚𝑜𝑑 𝑝) . We can then obtain (2𝑛𝐼)ℎ =
(𝑝𝑞𝐼 + 1)

ℎ ; herein, ℎ ∈ ℕ − {1} . Using binomial

coefficients, we have

(𝑝𝑞I + 1)
ℎ = (ℎ

0
)(𝑝𝑞I)

ℎ + (ℎ
ℎ−1

)(𝑝𝑞I)
ℎ−1 +

 (ℎ
ℎ−2

)(𝑝𝑞I)
ℎ−2 +⋯+ (ℎ

ℎ−1
)(𝑝𝑞I)

1 + (ℎ
ℎ
)(𝑝𝑞I)

0.

Thus,

(2𝑛I)ℎ − 1 = (𝑝𝑞I + 1)
ℎ − 1 = (ℎ

0
)(𝑝𝑞I)

ℎ +

 (ℎ
ℎ−1

)(𝑝𝑞I)
ℎ−1 + (ℎ

ℎ−2
)(𝑝𝑞I)

ℎ−2 +⋯+ (ℎ
ℎ−1

)(𝑝𝑞I)
1.

When more than two terms have exponents (𝑝𝑞I), they

have 𝑝2 as a factor. Moreover, all binomial coefficients are

natural numbers. Consequently, we have at least (ℎ
ℎ−1

) ≡

0 (mod 𝑝) for (2𝑛I)ℎ − 1 = (𝑝𝑞I + 1)
ℎ − 1 ≡ 0 (mod 𝑝2).

Therefore, (ℎ
ℎ−1

) = ℎ ≡ 0 (mod 𝑝).When ℎ = 𝑝 , 2𝑝𝑛I ≡

1 (mod 𝑝2) with the minimum exponent 𝑝𝑛I. □

It is self-evident that Proposition 3.16 can be applied to odd

numbers except for Wieferich primes. This is a convenient

algorithm for obtaining from the specified prime factor 𝑝

except for Wieferich primes and through inverse factorization,

the 𝑛II exponent of the Mersenne number that has 𝑝2 as a

factor.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

Another algorithm for determining only the Wieferich

primes uses Corollary 3.17 after determining the exponent 𝑛II
of the minimum Mersenne number with the squared specified

prime factor 𝑝, p2, using inverse factorization.

Corollary 3.17. If 𝑝 is a non-Wieferich prime with

minimum exponent 𝑛𝐼 and 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1 , then

𝑛𝐼𝐼 − 𝑝 > 0. If 𝑝 is a Wieferich prime, then 𝑛𝐼𝐼 − 𝑝 < 0.

Proof. Proposition 3.16 gives 𝑛𝐼𝐼 − 𝑝 = 𝑝(𝑛𝐼 − 1) > 0.

However, if 𝑝 is a Wieferich prime, then 𝑛II = 𝑛I so

that 𝑛II − 𝑝 = 𝑛I − 𝑝 < 0 because ℎI − 1 ≥ 0 and 𝑝 −
𝑛I = (ℎI − 1)𝑛I + 1 > 0 from Equation 26. □

Proposition 3.18. If 𝑝 is a non-Wieferich prime with

minimum exponent 𝑛𝐼 and 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1,

 1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I ≡ 0 (mod 𝑝) (27).

Proof. Because 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1 and 2𝑝𝑛𝐼 ≡
1 (𝑚𝑜𝑑 𝑝2),
𝑀𝑝𝑛I = 2

𝑝𝑛I − 1

 = (2𝑛I − 1)(1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I)

 ≡ 0 (mod 𝑝2).
From Equation 24, 2𝑛I − 1 has only one 𝑝 as a factor

such

that it must be 1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I
≡ 0 (mod 𝑝). □

C. An algorithm for the square-freeness decision on

Mersenne numbers with prime exponents

First, we use the method discussed in Section B to

determine the Wieferich prime and the value of 𝑛 of the

associated Mersenne number. We use the trial division [24]

to determine whether the exponent 𝑛 is prime. If 𝑛 is prime,

a counterexample of the SFP is reported; hence, the problem

is solved. Algorithm 3.19 is one possible trial division

algorithm [25].

Algorithm 3.19: Trial division algorithm

INPUT: The exponent 𝑛 of the Wieferich prime 𝑝

obtained from the inverse factorization of

Algorithm 3.11.

OUTPUT: Exponent 𝑛, either prime or composite.

1: Check if 𝑛 is even.

𝑛0 ⟵ 𝑛 2⁄ − ⌊𝑛 2⁄ ⌋
If 𝑛0 = 0 then goto 3

2: Check if 𝑛 is divisible by an odd number less than or equal

to ⌊√𝑛⌋.

For 𝑑 = 3 to ⌊√𝑛⌋ step 2

 𝑛0 ⟵ 𝑛 𝑑⁄ − ⌊𝑛 𝑑⁄ ⌋
 If 𝑛0 = 0, then goto 3

Next 𝑑

3: Output “prime” or “composite”

If 𝑛0 = 0, then

Output “composite”

Else if 𝑛0 ≠ 0, then

Output “prime”

End if

4: End

D. Computer implementation

We implemented Algorithm 3.11 for the inverse

factorization of Mersenne numbers in a computer running

Windows 10 Home, version 1909, with 8.00 GB (7.39 GB

available) of RAM and using an AMD E2-9000 RADEON

R2, 4 COMPUTE CORE 2C+2G 1.80-GHz microprocessor.

We then calculated the corresponding values using MS Excel

from Microsoft Office Personal Premium and Algorithm 3.11

coded in Visual Basic for Applications (VBA).

VBA requires the a priori declaration of variables for the

Mersenne number 𝑀𝑛 = 𝑝𝑞, and (𝑝 − 1)⌈log2 𝑝⌉ pcs as cells

and log2 𝑝 pcs as the number of digits of 𝑝 in binary.

Moreover, 𝑝 − 1 pcs each of 𝜎𝑘, 𝑇𝑘, 𝑅𝑘, and 𝑉𝑘 are declared

in advance. Furthermore, 𝑝 − 1 pcs array variables arr(𝑥)
are declared for outputting 𝑞 as a string.

Moreover, a prime factor 𝑝 or its square was required in

Algorithm 3.11 and was determined using Algorithm 3.19.

IV. RESULTS

Tables I and II present the detection results using inverse

factorization for the two known Wieferich primes, 1093 and

3511, and ten samples before and after them. The inverse

factorizations were run via Algorithm 3.11 based on Theorem

3.10. These tables show the Mersenne number exponent 𝑛I
with the prime factor 𝑝 and the Mersenne number exponent

𝑛II with the factor 𝑝2 . Moreover, 𝑛II − 𝑝 is given. These

results show that the two known Wieferich primes can be

detected based on both Proposition 3.15 and Corollary 3.17.

Moreover, the example that follows shows an accurate

sequential calculation.

TABLE I

DETECTION OF WIEFERICH PRIME 1093

𝑝 𝑛I 𝑝2 𝑛II 𝑛II − 𝑝

1061 1060 1125721 1124660 1123599

1063 531 1129969 564453 563390

1069 356 1142761 380564 379495

1087 543 1181569 590241 589154

1091 1090 1190281 1189190 1188099

1093 364 1194649 364 −729

1097 274 1203409 300578 299481

1103 29 1216609 31987 30884

1109 1108 1229881 1228772 1227663

1117 1116 1247689 1246572 1245455

1123 1122 1261129 1260006 1258883

TABLE II

DETECTION OF WIEFERICH PRIME 3511

𝑝 𝑛I 𝑝2 𝑛II 𝑛II − 𝑝

3463 577 11992369 1998151 1994688

3467 3466 12020089 12016622 12013155

3469 3468 12033961 12030492 12027023
3491 3490 12187081 12183590 12180099

3499 3498 12243001 12239502 12236003

3511 1755 12327121 1755 −1756

3517 3516 12369289 12365772 12362255

3527 1763 12439729 6218101 6214574

3529 882 12453841 3112578 3109049
3533 3532 12482089 12478556 12475023

3539 3538 12524521 12520982 12517443

 TABLE III

 PRIMALITY JUDGMENT FOR 𝑛II OF WIEFERICH PRIMES

Wieferich prime

𝑝
𝑛II Judgment for 𝑛II

1093 364 = 22 ∙ 7 ∙ 13 composite

3511 1755 = 33 ∙ 5 ∙ 13 composite

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

Table III shows an investigation of SFP using the results of

detected Wieferich primes. These exponents 𝑛II are both

composites, not counterexamples, and agree with the known

facts.

Table IV shows the detection results with the inverse

factorization using certain Wieferich numbers from the public

table [16]. This shows that even if 𝑛I = 𝑛II , it is not

necessarily Wieferich primes. We can see that Wieferich

composite numbers take 𝑛II − 𝑝 < 0 , indicating that a

primality test is necessary for the specified 𝑝 to distinguish

between a Wieferich prime and Wieferich composite.

However, if 𝑛I = 𝑛II or 𝑛II − 𝑝 < 0 with a specified odd

number 𝑝, it indicates either Wieferich prime or Wieferich

composite; therefore, we can detect a Wieferich number.

Example 4.1. Given 𝒑 = 𝟐𝟑, 𝒏𝑰 = 𝟏𝟏, 𝒒𝑰 =

𝟏𝟎𝟏𝟏𝟎𝟎𝟏(𝟐) = 𝟖𝟗, 𝒑
𝟐 = 𝟓𝟐𝟗, we use Proposition 3.15

to determine whether 𝒑 is a Wieferich prime number.

𝑝2 = 529 = 1000010001(2),

𝑙𝑏 − 1 = 9,

𝑝0 = 1, 𝑝1 = 0, 𝑝2 = 0, 𝑝3 = 0, 𝑝4 = 1, 𝑝5 = 0, 𝑝6 =
0, 𝑝7 = 0, 𝑝8 = 0, 𝑝9 = 1.

Assume

𝑘 = 0, 𝜎0 = 1, 𝑝0𝑞0 = 1, 𝑇0 = 1, 𝑅0 = 0, 𝑉0 = 1.

When 𝑘 = 1 , if 𝑞1 = 0, then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 +
0 = 0, and

𝑇1 = 𝑅0 + 𝜎1 = 0 + 0 = 0, which is even.

Thus, 𝑞1 = 1, 𝑝0𝑞1 = 1, 𝑝1𝑞1 = 0, 𝑝2𝑞1 = 0, 𝑝3𝑞1 =
0, 𝑝4𝑞1 = 1, 𝑝5𝑞1 = 0, 𝑝6𝑞1 = 0, 𝑝7𝑞1 = 0, 𝑝8𝑞1 =
0, 𝑝9𝑞1 = 1, 𝑇1 = 1,
𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1.

When 𝑘 = 2, if 𝑞2 = 0, then 𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 =
0 + 0 + 0 = 0, and

𝑇2 = 𝑅1 + 𝜎2 = 0 + 0 = 0, which is even.

Thus, 𝑞2 = 1, 𝑝0𝑞2 = 1, 𝑝1𝑞2 = 0, 𝑝2𝑞2 = 0, 𝑝3𝑞2 =
0, 𝑝4𝑞2 = 1, 𝑝5𝑞2 = 0, 𝑝6𝑞2 = 0, 𝑝7𝑞2 = 0, 𝑝8𝑞2 =
0, 𝑝9𝑞2 = 1, 𝑇2 = 1,
𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎2 = 1, 𝑇2 = 1, 𝑅2 = 0, 𝑉2 = 1.

When 𝑘 = 3, if 𝑞3 = 0, then 𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 +
𝑝3𝑞0 = 0 + 0 + 0 + 0 = 0, and

𝑇3 = 𝑅2 + 𝜎3 = 0 + 0 = 0, which is even.

Thus, 𝑞3 = 1, 𝑝0𝑞3 = 1, 𝑝1𝑞3 = 0, 𝑝2𝑞3 = 0, 𝑝3𝑞3 =
0, 𝑝4𝑞3 = 1, 𝑝5𝑞3 = 0, 𝑝6𝑞3 = 0, 𝑝7𝑞3 = 0, 𝑝8𝑞3 =
0, 𝑝9𝑞3 = 1, 𝑇3 = 1,
𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎3 = 1, 𝑇3 = 1, 𝑅3 = 0, 𝑉3 = 1.

When 𝑘 = 4, if 𝑞4 = 0, then 𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2 +
𝑝3𝑞1 + 𝑝4𝑞0 = 0 + 0 + 0 + 0 + 1 = 1, and

𝑇4 = 𝑅3 + 𝜎4 = 0 + 1 = 1, which is odd.

Thus, 𝑞4 = 0, 𝑝0𝑞4 = 𝑝1𝑞4 = 𝑝2𝑞4 = 𝑝3𝑞4 = 𝑝4𝑞4 =
𝑝5𝑞4 = 𝑝6𝑞4 = 𝑝7𝑞4 = 0, 𝑝8𝑞4 = 𝑝9𝑞4 = 0, 𝑇4 = 1,
𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎4 = 1, 𝑇4 = 1, 𝑅4 = 0, 𝑉4 = 1.

When 𝑘 = 5, if 𝑞5 = 0, then 𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 +
𝑝3𝑞2 + 𝑝4𝑞1 + 𝑝5𝑞0 = 0 + 0 + 0 + 0 + 1 + 0 = 1, and

𝑇5 = 𝑅4 + 𝜎5 = 0 + 1 = 1, which is odd.

Thus, 𝑞5 = 0, 𝑝0𝑞5 = 𝑝1𝑞5 = 𝑝2𝑞5 = 𝑝3𝑞5 = 𝑝4𝑞5 =
𝑝5𝑞5 = 𝑝6𝑞5 = 𝑝7𝑞5 = 0, 𝑝8𝑞5 = 𝑝9𝑞5 = 0, 𝑇5 = 1,
𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎5 = 1, 𝑇5 = 1, 𝑅5 = 0, 𝑉5 = 1.

When 𝑘 = 6, if 𝑞6 = 0, then 𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 +
𝑝3𝑞3 + 𝑝4𝑞2 + 𝑝5𝑞1 + 𝑝6𝑞0 = 0 + 0 + 0 + 0 + 1 + 0 +
0 = 1, and

𝑇6 = 𝑅5 + 𝜎6 = 0 + 1 = 1, which is odd.

Thus, 𝑞6 = 0, 𝑝0𝑞6 = 𝑝1𝑞6 = 𝑝2𝑞6 = 𝑝3𝑞6 = 𝑝4𝑞6 =
𝑝5𝑞6 = 𝑝6𝑞6 = 𝑝7𝑞6 =0,𝑝8𝑞6 = 𝑝9𝑞6 = 0, 𝑇6 = 1,
𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎6 = 1, 𝑇6 = 1, 𝑅6 = 0, 𝑉6 = 1.

When 𝑘 = 7, if 𝑞7 = 0, then 𝜎7 = 𝑝0𝑞7 + 𝑝1𝑞6 + 𝑝2𝑞5 +
𝑝3𝑞4 + 𝑝4𝑞3 + 𝑝5𝑞2 + 𝑝6𝑞1 + 𝑝7𝑞0 = 0 + 0 + 0 + 0 + 1 +
0 + 0 + 0 = 1, and

𝑇7 = 𝑅6 + 𝜎7 = 0 + 1 = 1, which is odd.

Thus, 𝑞7 = 0, 𝑝0𝑞7 = 𝑝1𝑞7 = 𝑝2𝑞7 = 𝑝3𝑞7 = 𝑝4𝑞7 =
𝑝5𝑞7 = 𝑝6𝑞7 = 𝑝7𝑞7 =0, 𝑝8𝑞7 = 𝑝9𝑞7 = 0, 𝑇7 = 1,
𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎7 = 1, 𝑇7 = 1, 𝑅7 = 0, 𝑉7 = 1.

When 𝑘 = 8, if 𝑞8 = 0, then 𝜎8 = 𝑝0𝑞8 + 𝑝1𝑞7 + 𝑝2𝑞6 +
𝑝3𝑞5 + 𝑝4𝑞4 + 𝑝5𝑞3 + 𝑝6𝑞2 + 𝑝7𝑞1 + 𝑝8𝑞0 = 0 + 0 + 0 +
0 + 0 + 0 + 0 + 0 + 0 = 0, and

𝑇8 = 𝑅7 + 𝜎8 = 0 + 0 = 0, which is even.

Thus, 𝑞8 = 1, 𝑝0𝑞8 = 1, 𝑝1𝑞8 = 0, 𝑝2𝑞8 = 0, 𝑝3𝑞8 =
0, 𝑝4𝑞8 = 1, 𝑝5𝑞8 = 0, 𝑝6𝑞8 = 0, 𝑝7𝑞8 = 0, 𝑝8𝑞8 =
0, 𝑝9𝑞8 = 1, 𝑇8 = 1,
𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎8 = 1, 𝑇8 = 1, 𝑅8 = 0, 𝑉8 = 1.

When 𝑘 = 9, if 𝑞9 = 0, then

𝜎9 = 𝑝0𝑞9 + 𝑝1𝑞8 + 𝑝2𝑞7 + 𝑝3𝑞6 + 𝑝4𝑞5 + 𝑝5𝑞4 + 𝑝6𝑞3
+ 𝑝7𝑞2

 +𝑝8𝑞1 + 𝑝9𝑞0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
1 = 1, and

𝑇9 = 𝑅8 + 𝜎9 = 0 + 1 = 1, which is odd.

Thus, 𝑞9 = 0, 𝑝0𝑞9 = 𝑝1𝑞9 = 𝑝2𝑞9 = 𝑝3𝑞9 = 𝑝4𝑞9 =
𝑝5𝑞9 = 𝑝6𝑞9 = 𝑝7𝑞9 = 0, 𝑝8𝑞9 = 𝑝9𝑞9 = 0, 𝑇9 = 1,
𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, and

𝜎9 = 1, 𝑇9 = 1, 𝑅9 = 0, 𝑉9 = 1.

When 𝑘 = 10 , if 𝑞10 = 0, then 𝜎10 = 𝑝0𝑞10 + 𝑝1𝑞9 +
𝑝2𝑞8 + 𝑝3𝑞7 + 𝑝4𝑞6 + 𝑝5𝑞5 + 𝑝6𝑞4 + 𝑝7𝑞3 + 𝑝8𝑞2 +
𝑝9𝑞1 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1, and

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, which is odd.

Thus, 𝑞10 = 0, 𝑝0𝑞10 = 𝑝1𝑞10 = 𝑝2𝑞10 = 𝑝3𝑞10 =
𝑝4𝑞10 = 𝑝5𝑞10 = 𝑝6𝑞10 = 𝑝7𝑞10 = 0 , 𝑝8𝑞10 = 𝑝9𝑞10 =
0, 𝑇10 = 1,
𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0,

𝜎10 = 1, 𝑇10 = 1, 𝑅10 = 0, 𝑉10 = 1.

Because 𝑞8 = 1 , all coefficients of 𝑙𝑏 − 1 = 9 in

Corollary 3.12 are nonzero. The tentative exponent is 𝑛II =
11; however, the inverse factorization calculation cannot be

completed. Therefore, because 𝑛I ≠ 𝑛II, 𝑝 is not a Wieferich

prime.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

Example 4.2. When 𝒑 = 𝟐𝟑, 𝒏𝑰 = 𝟏𝟏, 𝒒𝑰 =

𝟏𝟎𝟏𝟏𝟎𝟎𝟏(𝟐) = 𝟖𝟗, 𝒂𝒏𝒅 𝒑
𝟐 = 𝟓𝟐𝟗, we use Corollary

3.17 to determine whether 𝒑 is a Wieferich prime. We

skip the calculations, which are available in the

software of Algorithm 3.11.

When inverse factorization is performed with the specified

factor 𝑝2 = 529 , the exponent is 𝑛II = 253 . Therefore,

because 𝑛II − 𝑝 = 253 − 23 = 230 > 0 , 𝑝 is a not a

Wieferich prime.

Example 4.3. When 𝒑 = 𝟏𝟎𝟗𝟑 =
𝟏𝟎𝟎𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏(𝟐), 𝒘𝒆 use Proposition 3.15 to

determine whether 𝒑 is a Wieferich prime.

The pairs of quantities 𝑛I, 𝑞I and 𝑛II, 𝑞II are calculated by a

computer that implements Algorithm 3.11 (Subsection 3.4).

For 𝑛I = 364, one has

𝑞I = 1110111111 0101101100 0111000101 0111001000

0100000110 0101001011 1010011011 1111110100

1100000111 1011101010 1010111110 1010011100

1110110100 0001110100 0010110000 0010000110

1110100011 0011111111 1100010000 0010100100

1110001110 1010001101 1110111110 0110101101

0001011001 0000000010 1100111110 0001000101

0101010000 0101011000 1100010010 1111100010

1111010011 1111011110 0100010111 0011 (2).

𝑛II = 364 and

𝑞II = 1110000010 1100101011 1011111011 0000011111

0010100000 1000001000 1001001100 0101100000

1111100100 1001001110 1101111100 1000001101

1000001111 1001000010 0011010111 1001101010

0011111111 1111111111 1100011111 0100110101

0001000001 0011111000 0011010111 1101111101

1101101100 1110100111 1100000110 1101101100

0100100000 1101111100 1001111100 0001101111

0111001010 0001100101 0111 (2).

Because 𝑛I = 𝑛II , we conclude that 𝑝 = 1093 is a

Wieferich prime. This confirms the known result in terms of

this number.

Example 4.3 uses Proposition 3.15 to confirm whether 𝑝 is

a Wieferich prime by obtaining each exponent 𝑛I and 𝑛II of

the minimum Mersenne number with the specified 𝑝 and 𝑝2.

Example 4.4 uses Corollary 3.17 to confirm whether 𝑝 is a

Wieferich prime and not by determining the minimum

Mersenne number for a specified 𝑝 but by determining the

exponent 𝑛II of the minimum Mersenne number with 𝑝2 as a

factor.

Example 4.4. When 𝒑 = 𝟏𝟎𝟗𝟑, we use Corollary 3.17

to determine whether 𝒑 is a Wieferich prime.

When 𝑝2 = 1194649 = 100100011101010011001(2),

we have 𝑛II = 364 . Therefore, because 𝑛II − 𝑝 = 364 −
1093 = −729 < 0, we conclude that 𝑝 is a Wieferich prime.

Moreover, 𝑛II = 364 is a composite number and not a

counterexample of the SFP.

V. DISCUSSION

A. Evaluation and expansion of the algorithm

The proposed algorithm of inverse factorization of

Mersenne numbers produces correct results for both SFP and

WPP. When examining the SFP without going through the

WPP, the exponent must pass the primality test; however, the

result of the test is much less than the result of the primality

test applied to the Mersenne numbers itself. Nevertheless, the

SFP or WPP only requires to determine the power of the

Mersenne number of the specified factor, and not the other

factors. Therefore, the SFP and WPP can be investigated

using existing algorithms for solving the discrete logarithm

problem (DLP) [26], [27]. This can be accomplished, e.g.,

using classical algorithms, such as the baby-step giant-step

(BSGS) algorithm [28], [29], developed by Shanks in 1969.

In general, the DLP is 𝑚𝑛 ≡ 𝑎 (mod 𝑝) and delivers 𝑛 for a

given 𝑚, 𝑎, and 𝑝.

Herein, we consider our algorithm and BSGS algorithm in

terms of time complexity. Using a hash table, the BSGS

algorithm was improved from 𝑂(√𝑝 log 𝑝) to 𝑂(√𝑝) .

However, the time complexity of our algorithm is 𝑂(𝑝 log 𝑝),
which is less efficient than the BSGS algorithm. Nevertheless,

for the WPP, the BSGS algorithm converges at a rate of

𝑂(√𝑝2) = 𝑂(𝑝), which is an improvement over the previous

convergence rate of 𝑂(√𝑝2 log 𝑝2) = 𝑂(𝑝 log 𝑝) . With

Proposition 3.15, the inverse factorization for the WPP

converges at a rate of 𝑂(𝑝 log 𝑝) + 𝑂(𝑝 log 𝑝) = 𝑂(𝑝 log 𝑝),
whereas with Corollary 3.17, we achieve even

𝑂(𝑝2 log 𝑝2) + 𝑂(1) = 𝑂(𝑝2 log 𝑝) . Therefore, the

proposed algorithm based on Proposition 3.15 performs

similar to the BSGS algorithm before improvement.

Because gcd(2, 𝑝) = 1 , we can consider 2𝑛I ≡ 2𝑝−1 ≡
1 (mod 𝑝) a reduced residue class group (ℤ 𝑝ℤ⁄)×. The order

of the group is 𝑝 − 1. We can factorize 𝑝 − 1 with the known

(numerical) factorization algorithm. Let 𝑝j be prime, for

Equation 26, we will be able to gain 𝑝 − 1 = ℎI𝑛I = 2ℎ1 ∙

3ℎ2 ∙ 5ℎ3 ∙ 7ℎ4 ∙ ⋯ ∙ 𝑝j
ℎj ≡ 𝑛I , ℎj ∈ ℕ ∪ {0} . Then, we can

obtain 2𝑛I ≡ 1 (mod 𝑝) from a proper combination of these

factors. First, the time complexity of factorizing the order of

TABLE IV
DETECTION OF WIEFERICH PRIME AND COMPOSITE NUMBERS

Wieferich

number 𝑝

𝑛I 𝑛II 𝑛II − 𝑝

1093 (prime) 364 364 −729

3279 364 1092 −2187

3511 (prime) 1755 1755 −1756

7651 1092 1092 −6559

10533 3510 3510 −7023

14209 1092 1092 −13117

17555 7020 7020 −10535

22953 1092 1092 −21861

31599 3510 3510 −28089

42627 1092 1092 −41535

45643 7020 7020 −38623

52665 7020 7020 −45645
68859 1092 9828 −59031
94797 3510 31590 −63207
99463 1092 1092 −98371
127881 1092 9828 −118053
136929 7020 7020 −129909
157995 7020 7020 −150975
228215 7020 7020 −221195
298389 1092 1092 −297297
410787 7020 7020 −403767
473985 7020 63180 −410805
684645 7020 7020 −677625
895167 1092 9828 −885339
1232361 7020 63180 −1169181

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

the group is 𝑂(√𝑝) for instance using trial division. Next,

we consider the time complexity for search to obtain the

exponent of the minimum Mersenne number. The maximum

search amount is the case when all excluding ℎ1 are zero, 𝑝 =

2ℎ1 + 1 . Consequently, we can use binary search,

𝑂(log ℎ1) = 𝑂(log log 𝑝) . To summarize, the worst time

complexity is 𝑂(√𝑝) + 𝑂(log log 𝑝) = 𝑂(√𝑝) . This is a

similar result to the BSGS algorithm after improvement,

𝑂(𝑝) for the WPP. Moreover, to obtain the other factor, 𝑞

requires to use division. Note that this procedure is different

from our aim without (numerical) factorization. Table V

summarizes the time complexity and output.

Next, we discuss algorithms to improve the efficiency of

the inverse factorization algorithm. For 2𝑛 − 1 ≡ 0 (mod 𝑝),
assume a composite number such as 𝑛 = ℎ𝑛3 is on the same

base 𝑚 = 2 , ℎ, 𝑛3 ∈ ℕ − {1} , with 2𝑛 = (2ℎ)𝑛3 ≡
1 (mod 𝑝). When inverse factorization is applied in the cell

space with 𝑚 = 2ℎ as the base, the minimum exponent is 𝑛3,

which is expected to be ℎ times more efficient. Thus, if 𝑚 =

2ℎ, as per its positional system, the Mersenne numbers are

(2ℎ − 1)(2ℎ − 1)⋯ (2ℎ − 1). In general, in base 𝑚 , each

digit of 𝑞 is obtained from {0, 1, … ,𝑚 − 1} , and the

condition that satisfies all 𝑉𝑘 = 𝑚 − 1 is uniquely

determined. When 𝑝 = 23,𝑚 = 2 is not a primitive root [30],

[31] of 𝑝. For example, the results of inverse factorization

with 𝑝 = 23 for bases 𝑚 = 2,3,4,5,6,7,8,9 are as follows:

211 − 1 = 10111(2) × 1011001(2),

311 − 1 = 212(3) × 101120021(3),

411 − 1 = 113(4) × 230201121(4),

522 − 1 = 43(5) × 102041332143424031123(5),

611 − 1 = 35(6) × 1322030441(6),

722 − 1 = 32(7) × 206251134364604155323(7),

811 − 1 = 27(8) × 2620544131(8),

911 − 1 = 25(9) × 3462311507(9),

where 𝑝 = 23(10) = 10111(2) = 212(3) = 113(4) =

43(5) = 35(6) = 32(7) = 27(8) = 25(9),

211 ≡ 311 ≡ 411 ≡ 522 ≡ 611 ≡ 722 ≡ 811 ≡ 911 ≡
1 (mod 23). However, when 𝑝 = 13, 𝑚 = 2 is a primitive

root of 𝑝. For example, the results of the inverse factorization

with 𝑝 = 13 for base 𝑚 = 2,3,4,5,6,7,8,9 are as follows:

212 − 1 = 1101(2) × 100111011(2),

33 − 1 = 111(3) × 2(3),

46 − 1 = 31(4) × 10323(4),

54 − 1 = 23(5) × 143(5),

612 − 1 = 21(6) × 24340531215(6),

712 − 1 = 16(7) × 35245631421(7),

84 − 1 = 15(8) × 473(8),

93 − 1 = 14(9) × 62(9),

where 𝑝 = 13(10) = 1101(2) = 111(3) = 31(4) = 23(5) =

21(6) = 16(7) = 15(8) = 14(9) , 212 ≡ 33 ≡ 46 ≡ 54 ≡

612 ≡ 712 ≡ 84 ≡ 93 ≡ 1 (mod 13). These results indicate

that multiple relationships exist between exponents obtained

by inverse factorization for different bases 𝑚. For example,

if 𝑚 = 2 is a primitive root of the specified factor 𝑝, 𝑝 − 1

would be implied by Fermat’s little theorem [32]. If we do

not know whether a number is a primitive root and if we can

determine the proportionality coefficient of the exponent of

𝑚 = 2, the efficiency should improve because reducing the

number of cells reduces the number of sums required to

calculate 𝜎𝑘. The base with 1 < ℎ ∈ ℕ and 𝑚 = 2ℎ performs

the inverse factorization of the specified 𝑝 to obtain its

exponent 𝑛3 . Excluding the instance when 𝑚 = 2 is not a

primitive root and (𝑝 − 1) 𝑛3⁄ = ℎ, if (𝑝 − 1) 𝑛3⁄ = ℎ, 2𝑛 −

1 = 2ℎ𝑛3 − 1. If (𝑝 − 1) 𝑛3⁄ ≠ ℎ, we conjecture 2𝑛 − 1 =
2𝑛3 − 1. For example, in the case of 𝑝 = 23,𝑚 = 4, it fails.

However, the larger the 𝑝 and the more bases 𝑚 = 2ℎ we

can select, the lower the probability of failure. Moreover, the

generalization of the inverse factorization to any base, 𝑚 ∈
ℕ,𝑚 ≠ 1, is applied to repunits 𝑅𝑛 ∶= (𝑚

𝑛 − 1) (𝑚 − 1)⁄ =
𝑝𝑞 . Moreover, we can use repunits as repdigits 𝑔𝑅𝑛 =
𝑝(𝑔𝑞),𝑚 − 1 ≥ 𝑔 ∈ ℕ , where the Mersenne numbers are

𝑚 = 2 and 𝑔 = 1 . The inverse factorization of repdigits

expanded based on Algorithm 3.11 is shown to Algorithm 5.1.

Algorithm 5.1: Inverse factorization of repdigits

INPUT: Specify Base 𝑚 and an odd number 𝑝 that is a

factor of the given repdigit, the coefficient 𝑔.

OUTPUT: The decimal exponent 𝑛 of the repdigit with the

decimal factor 𝑝, and another factor 𝑞 in base
𝑚.

1: Specify the divisor 𝑝(10) in decimal, and 𝑚,𝑔.

2: Express 𝑝 in a 𝑚-adic expansion; i.e., a series expansion

with term number 𝑙𝑏:

𝑝(𝑚) = ∑ 𝑝y ∙ 𝑚
𝑦 = 𝑝𝑙𝑏−1 𝑝𝑙𝑏−2⋯ 𝑝0 (𝑚)

𝑙𝑏−1
𝑦=0 .

3: Assign each digit of 𝑝 in the base 𝑚 positional system to

cell 𝑝y𝑞0 ∘ (0, 𝑦).

For 𝑦 = 0 to 𝑙𝑏 − 1; 𝑙𝑏 − 1 = ⌊log𝑚 𝑝(10)⌋

 𝑝y ← 𝑝y; initial condition

Next y

4: Let 𝑅−1 = 0, 𝜎0 = 0, and 𝑇0 = 0. Let 𝑉𝑐 = null.
5: For 𝑘 = 0 to 𝑝 − 1

6: Determine 𝑞𝑘 under the condition 𝑉𝑘 = 𝑔;

Note that any coefficient of a digit with 𝑘 greater

than 𝑘𝑎 in the calculation is set to zero.

 𝑇𝑘 ← 𝑅𝑘−1 + 𝜎𝑘

For 𝑞𝑘 = 0 to 𝑚 − 1

 If 𝑇𝑘 + 𝑝0𝑞𝑘 ≡ 𝑔 (𝑚𝑜𝑑 𝑚) then, goto 7:

Determine 𝑞𝑘.

Next 𝑞𝑘

7: Calculate 𝜎𝑘, 𝑇𝑘 , and 𝑅𝑘. Let 𝑉𝑐 = 1.

For 𝑦 = 0 to 𝑙𝑏 − 1,
Calculate 𝑝y𝑞𝑘.

𝜎𝑘+𝑦 ← 𝜎𝑘+𝑦 + 𝑝y𝑞𝑘 ,

𝑇𝑘+𝑦 ← 𝑅𝑘+𝑦−1 + 𝜎𝑘+𝑦 ,

TABLE V

 TIME COMPLEXITY AND OUTPUT

Time

Complexity

Time

Complexity
for WPP

Output

Proposition 3.15 𝑂(𝑝 log 𝑝) 𝑂(𝑝 log 𝑝) 𝑛, 𝑞(2)

Corollary 3.17 𝑂(𝑝 log 𝑝) 𝑂(𝑝2 log𝑝) 𝑛, 𝑞(2)

BSGS after
(hash table)

𝑂(√𝑝) 𝑂(𝑝) 𝑛

BSGS before

(no hash table)
𝑂(√𝑝 log 𝑝) 𝑂(𝑝 log 𝑝) 𝑛

Trial division

for 𝑝 − 1
𝑂(√𝑝) 𝑂(𝑝) 𝑛

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

𝑅𝑘+𝑦 ← ⌊𝑇𝑘+𝑦 𝑚⁄ ⌋,

𝑉𝑘+𝑦 ← 𝑇𝑘+𝑦 −𝑚 𝑅𝑘+𝑦 ,

8: This step is the preparation to examine the

completion of the calculation using Corollary

 3.8.

If 𝑉𝑘+𝑦 = 𝑔 then

𝑉𝑐 ← 𝑉𝑐 ∗ 𝑉𝑘+𝑦 𝑔⁄ .

Else if 𝑉𝑘+𝑦 ≠ 𝑔 then

 𝑉𝑐 ← 0

End if

Next y

9: Get a string of divisors 𝑞(𝑚) and let arr(𝑘) be a string

 variable.

 If 𝐿𝑒𝑛(𝑞𝑘) = 1, then

arr(𝑘) ← 𝑞𝑘& arr(𝑘), where “&” is the string

concatenation operator.

Else if 𝐿𝑒𝑛(𝑞𝑘) > 1, then: This function gets the

length of the string.

arr(𝑘) ← "("&𝑞𝑘& ")"& arr(𝑘): Notation

by the positional system in 𝑚 > 10.

End if

10: Use Corollary 3.8 to examine the completion of the

calculation.

If 𝑉𝑐 = 1, and 𝑅𝑘+𝑙𝑏−1 = 0, then goto 12

11: Next 𝑘

12: Output 𝑛 = 𝑘 + 𝑙𝑏

13: Output arr(𝑘) as 𝑞(𝑚), which is a positional system in

base 𝑚 representation in order of decreasing exponent.

Or convert 𝑞(𝑚) to decimal by using the binary expansion

and output 𝑞(10).

14: End

Note that another factor 𝑞 in the inverse factorization

generally differs for different bases. Let ℎ, ℎ′ ∈ ℕ and ℎ ≠ ℎ′.
When the base 𝑚 = 2 is a primitive root of the specified

factor 𝑝 , for any two bases 2ℎ and 2ℎ
′
, the other factors

obtained by the inverse factorization with a specified factor 𝑝

are equal, i.e., 𝑞(2ℎ) = 𝑞(2ℎ′). Nevertheless, the relationship

between 𝑞(2ℎ) and 𝑞(2ℎ′) is not equal in other cases. This is

an improvement considering that the DLP does not require

the identification of another factor 𝑞. Moreover, the ability to

determine another factor that the DLP does not require

indicates that there is a possibility of the application to the

algorithm for factoring Mersenne numbers. However, another

factor obtained using inverse factorization is binary, which

we must be converted to decimal if necessary, as performed

in Example 3.13. Depending on the size of 𝑞, this process

increases computation time and creates overflow issues;

therefore, it should be improved. Furthermore, depending on

the computing environment, the BSGS algorithm can cause

exponent calculation overflow, but not in the inverse

factorization.

The basic theory of inverse factorization is simpler than the

BSGS algorithm, which requires advanced mathematical

knowledge such as finite fields [28], [29] and group theory

[28], [29]. Precisely, lattice multiplication [33] can be

considered as an alternative to cell algebra. However, the

proposed approach should reduce the barriers to entry and

allow beginners to research the SFP and WPP.

B. Application to encryption

Recently, information security has become increasingly

relevant; research has been conducted on the secure storage

of passwords [34], the complex Vernam cipher [35], and the

efficient key exchange protocol [36]. Note that inverse

factorization of Mersenne numbers constitutes an encryption

algorithm. In conventional block encryption, the plaintext is

divided into multiple blocks with the same bit length and

converted into ciphertext of the same bit length [37]–[40].

Moreover, encryption may be used multiple times to

strengthen security. Furthermore, security may be

strengthened by converting plaintext blocked to the same bit

length into ciphertext of a different bit length, even if the text

is encrypted only once.

We now study whether this approach works for the inverse

factorization of Mersenne numbers, which encrypts odd 𝑝 of

plaintext to the other factor 𝑞. Moreover, the bit length of

each block of the ciphertext is not the same, and so the bit

length is increased to exceed that of the plaintext (Table V).

When ciphertexts divided into blocks are concatenated, the

bit length of each block is unknown, thereby making

decryption difficult. Thus, the sequence of bit lengths of the

ciphertexts is the decryption key. Therefore, we strengthen

security against ciphertext-only attacks [41] because the

attacker requires to divide each concatenated ciphertext to

determine each bit length to decrypt.

Note that this composite key has limited reusability and

each plaintext block length is not a key. Information

regarding the block lengths that divide the plaintext is

unnecessary for decryption, and the block lengths can be

changed. The decryption key sequence for the decryption is

generated. This approach strengthens security against known-

plaintext attacks [42].

Moreover, we must ensure encryption. For example, we

preprocess by adding 𝑤𝑝 =1 to the prefix and 𝑤𝑠 =1101(2) to

the suffix of each divided plaintext. The former is a measure

against digit loss, so 0100 is recognized as 100, and the latter

is a measure against even numbers and the types of Mersenne

and Fermat numbers, such as 1010101(2), 1001001(2), and

110011(2). These cannot be decoded. When 𝑝 = 0100, the

preprocessing to enable inverse factorization is

𝑤𝑝&𝑝&𝑤𝑠 = 1&0100&1101 = 101001101(2).

(𝑤𝑝, 𝑤𝑠) is the common key.

Conventionally, Σ is the alphabet, the encryption function

is Σ𝑙 → Σ𝑙 , 𝑙 ∈ ℕ [31], but the inverse factorization of

Mersenne numbers has the property Σ𝑙𝑏 → Σ𝑙𝑎 , 𝑙𝑎 , 𝑙𝑏 ∈ ℕ .

Cases exist where 𝑙𝑎 ≤ 𝑙𝑏 , but cases where 𝑙𝑎 > 𝑙𝑏 are more

prevalent in Table VI.

Moreover, the post processing replaces one character of the

first and last of the ciphertext with its equivalent of the

plaintext. For instance, the inverse factorization of

101001101(2) is 1100010011001110000001111011(2) ,

which is replaced by

0100010011001110000001111010(2) because the prefix

and suffix of the plaintext 𝑝 are both 0. We simply write this

postprocessing as 𝑤𝑐 =

[first character 𝑤𝑓 , last character 𝑤𝑙] , this case is 𝑤𝑐 =

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

[0,0].
Figure 2 shows the flowchart for encryption using inverse

factorization, which is detailed in Algorithm 5.3. Moreover,

Example 5.2 is a simple example of enciphering.

Example 5.2. The plaintext 𝒑(𝟐) =

𝟎𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟎 is divided into 3 bits to show the

ciphertext 𝒒 by inverse factorization of Mersenne

numbers, 𝒇~𝟏. Let prefix 𝒘𝒑 =1 and suffix 𝒘𝒔 =1101.

Because 𝑝(2) = 010&011&101&111&001&0 , dividing

each element block 𝑝j for j ∈ ℕ gives

𝑝1 = 1&010&1101 = 10101101 = 173(10),

𝑝2 = 1&011&1101 = 10111101 = 189(10),

𝑝3 = 1&101&1101 = 11011101 = 221(10),

𝑝4 = 1&111&1101 = 11111101 = 253(10),

𝑝5 = 1&001&1101 = 10011101 = 157(10),

𝑝6 = 1&0&1101 = 101101 = 45(10).

Moreover, the postprocessings are

𝑤𝑐1 = [0,0], 𝑤𝑐2 = [0,1], 𝑤𝑐3 = [1,1], 𝑤𝑐4 = [1,1], 𝑤𝑐5 =
[0,1], 𝑤𝑐6 = [0,0].

To encrypt, make 𝑝j and 𝑙𝑏j correspond to 𝑝 and 𝑙𝑏. As per

Line 3 of Algorithm 3.11 for the inverse factorization of

Mersenne numbers, we have 𝑞j, 𝑛j, and 𝑙𝑎j. Thus,

𝑞1 = 101111010110100100010000010001110000011101

100110000110101010001011000110010010011111110100

001010010110111011111011100011111000100110011110

010101011101001110011011011, 𝑛1 = 172, 𝑙𝑎1 = 165,

𝑞2 =10101101011, 𝑛2 = 18, 𝑙𝑎2 = 11,

𝑞3 =10010100010001011, 𝑛3 = 24, 𝑙𝑎3 = 17,

𝑞4 = 100000011000010010001101101010001111101011

110000110100100111011101100110001100101001011111

0001110101011, 𝑛4 = 110, 𝑙𝑎4 = 103,

𝑞5 = 110100001011011010011111110010111101001001

011, 𝑛5 = 52, 𝑙𝑎5 = 45,

𝑞6 =1011011, 𝑛6 = 12, 𝑙𝑎6 = 7.

Therefore, the ciphertext is

𝑤𝑐(𝑞(2))

= 𝑤𝑐1(𝑞1)&𝑤𝑐2(𝑞2)&𝑤𝑐3(𝑞3)&𝑤𝑐4(𝑞4)&𝑤𝑐5(𝑞5)&𝑤𝑐6(𝑞6)

=

0011110101101001000100000100011100000111011001

100001101010100010110001100100100111111101000010

100101101110111110111000111110001001100111100101

010111010011100110110100010110101110010100010001

011100000011000010010001101101010001111101011110

000110100100111011101100110001100101001011111000

111010101101010000101101101001111111001011110100

10010110011010,

and the decryption key sequence is

𝑙𝑎1, 𝑙𝑎2, 𝑙𝑎3, 𝑙𝑎4, 𝑙𝑎5, 𝑙𝑎6 = 165, 11, 17, 103, 45, 7 . Thus, this

example of 16 bits of plaintext produces an expanded

ciphertext of 348 bits.

Algorithm 5.3: Encryption using the inverse

factorization of Mersenne numbers

INPUT: A plaintext as a number 𝑝(2), its divided bits 𝑙,

and common keys (𝑤𝑝, 𝑤𝑠).

OUTPUT: The ciphertext 𝑞(2) and the decryption key

sequence 𝐾𝑑 = 𝑙𝑎1, … , 𝑙𝑎𝜔 , where 𝜔 is the

number of encryption blocks.

1: Let j ∈ ℕ ∪ {0} be a count number, set initial value j =
0.

2: Do

3: Plaintext 𝑝(2) is divided into blocks of 𝑙 bits from the

beginning and assigned to array variables 𝑝(j) in order.

𝑝(2) = 𝑝1&𝑝2&⋯&𝑝j&⋯&𝑝𝜔

𝑙𝑠 = j ∙ 𝑙 + 1

𝑝(j) ⟵ Mid(𝑝(2), 𝑙𝑠 , 𝑙) : A function that yields 𝑙

pieces of character as a base

point the 𝑙𝑠
th character from

the left end of the string 𝑝(2).

4: As the preprocessing, concatenate the prefix 𝑤𝑝 and

the suffix 𝑤𝑠 into each plaintext 𝑝(j) block and

assign it to 𝑝(j).
 𝑝(j) ⟵ 𝑤𝑝&𝑝(j)&𝑤𝑠

5: The bit length 𝑙𝑏 of 𝑝(j),
𝑙𝑏j = ⌊log10 𝑝(j)⌋ + 1.

6: Read the first and last characters of each plaintext for

post processing: 𝑤𝑐j ∶= [𝑤𝑓(j), 𝑤𝑙(j)].

𝑤𝑓(j) ⟵ Left(𝑝j, 1) : Get one character from the left

side of the 𝑝j string.

 𝑤𝑙(j) ⟵ Right(𝑝j, 1) : Get one character from the

 right side of the 𝑝j string.

7: To encrypt, make 𝑝(j) and 𝑙𝑏j correspond to 𝑝 and 𝑙𝑏,

to be taken from Line 3 of the Algorithm 3.11 for the

inverse factorization of Mersenne numbers.

(𝑛j, 𝑞j) = 𝑓
~1(𝑝j).

8: Get element 𝑙aj of the encryption key sequence,

 𝑙aj = 𝑛j − 𝑙𝑏j + 1

9: j ⟵ j + 1

10: Loop until 𝑝(j) = null: Iterates from Line 2 to Line 9 and

exits the loop when 𝑝(j) is null.

11: 𝜔 ⟵ j − 1

12: Using the obtained (𝑙𝑎j, 𝑞j) , compound the ciphertext

𝑞(2) and the decryption key sequence 𝐾𝑑 =

𝑙𝑎1, 𝑙𝑎2, ⋯ , 𝑙𝑎𝜔.

Let 𝐾𝑑 = null initially.

For j = 1 to 𝜔

𝑞j ← 𝑤𝑓(j) & Mid(𝑞j, 2, 𝑙𝑎j − 1) & 𝑤𝑙(j) ∶ 𝑤𝑐j(𝑞j)

 𝑞(2) ⟵ 𝑞(2)&𝑞j

 𝐾𝑑 ⟵𝐾𝑑&", "&𝑙𝑎j

TABLE VI
BIT LENGTH OF CIPHERTEXT CORRESPONDING TO PLAINTEXT OF BIT LENGTH 6

𝑝(2) 𝑞(2) 𝑙𝑎

100001 11111 5

100011 1110101 7

100101 1101110101100111110010001010011 31

100111 1101001 7

101001 110001111100111 15

101011 101111101 9

101101 1011011 7

101111 101011100100110001 18

110001 1010011100101111 16

110011 101 3

110101 10011010100100001110011111011001010110111100011 47

110111 100101001111001 15

111001 1000111110111 13

111011 10001010110110001111001011111011101010010011100001101 53

111101 1000011001001011100010100111110111100110110100011101011 55

111111 1 1

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

 Next j
13: Output 𝑞(2)

14: Output 𝐾𝑑 = 𝑙𝑎1, 𝑙𝑎2, ⋯ , 𝑙𝑎𝜔 .

15: End

The decryption is executed using the reverse process. First,

using the decryption key, we can divide each element block

of the ciphertext corresponding to the bit length. Next, read

the first and last characters of each ciphertext; if any of these

characters are 0, and replace them with 1. Then, executing as

per Line 3 of Algorithm 3.11 for the inverse factorization of

Mersenne numbers for each element block, we can obtain the

plaintexts divided into blocks. Remove the prefix 𝑤𝑝 and

suffix 𝑤𝑠 from the plaintext of each block. Finally,

concatenating the block plaintexts in order, we can obtain the

original plaintext.

Considering the computational complexity of inverse

factorization and that blocks of ciphertext are not sorted by

bit length, we assume that decoding is attempted in the

ascending order of bit length. Let the ciphertext be 𝑙𝑎 bits

long. From the beginning of the block, the inverse

factorization is performed bit by bit until the decipher

succeeds, and then the inverse factorization is repeated. Next,

we perform the same from the beginning of the next block.

Let 𝑙𝑎0 be a unit bit and 𝑚𝑙𝑎0−1 be the ciphertext

corresponding to the unit bit (herein, it is

𝑚 = 2). If the 𝜔𝑗
th search can decrypt the jth block search,

with 𝑧 ≤ 𝜔j ∈ ℕ being a parameter, the time complexity is

𝑂(2𝑙𝑎0−1 log 2𝑙𝑎0−1) + 𝑂(22𝑙𝑎0−1 log 22𝑙𝑎0−1)

+ 𝑂(23𝑙𝑎0−1 log 23𝑙𝑎0−1) + ⋯

+ 𝑂(2𝜔j𝑙𝑎0−1 log 2𝜔j𝑙𝑎0−1)

= ∑ 𝑂(2𝑧𝑙𝑎0−1 ∙ (𝑧𝑙𝑎0 − 1))
𝜔j
𝑧=1 = max

𝑧≤𝜔j∈ℕ
𝑂(𝑧𝑙𝑎0 ∙ 2

𝑧𝑙𝑎0).

Therefore, set 𝑙𝑎0 = 1. If the ith search in this search of the

jth block is the maximum computational load, the time

complexity is max
𝑧≤𝜔j∈ℕ

𝑂(𝑧 ∙ 2𝑧) = 𝑂(𝑖 ∙ 2𝑖) . Then, the

decryption load is dominated by the block with the maximum

exponent 𝑛 of the discrete logarithm. Generally, there is a risk

that the common key for block cipher with a fixed bit length

𝑙 will be decrypted by an exhaustive search of 2𝑙 [37].

However, a cipher using the inverse factorization can have

𝑧 ≤ 𝑙 such that 𝑧 ∙ 2𝑧 = 2𝑧+log 𝑧 ≥ 2𝑙 , so 𝑧 + log 𝑧 ≥ 𝑙. If
𝑧 = 𝑖 ≠ 𝜔j , the proposed cipher can decrypt without its

dominant step because the receiver has the decryption key

sequence. The bit length 𝑧 = 𝜔j of the ciphertext can be

generated from the plaintext with a smaller bit length.

If the BSGS algorithm after improvement or factoring is

used, the time complexity is

∑ 𝑂(2𝑧/2)
𝜔j
𝑧=1 = max

𝑧≤𝜔j∈ℕ
𝑂(2𝑧/2) by similar consideration.

Let the fixed bit length of the key of the conventional block

cipher be 𝑙𝑇, and the mean bit length of the ciphertext by the

inverse factorization be 𝑙𝐼. At least 𝑙𝐼 ≥ 2𝑙𝑇 to become more

secure than conventional block ciphers under an exhaustive

search is necessary for the inverse factorization cipher under

exhaustive factorization attack.

Encryption using the inverse factorization of Mersenne

numbers is expected to be useful for encrypting short

sentences because the bit length of plain text is extended.

Fig. 2. Flowchart for encryption using the inverse factorization of
Mersenne numbers.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

However, for a long sentence, an appropriate way to

determine the bit lengths of the plaintexts and the prefix and

suffix of the preprocessing such that the encryption

processing time is within the practical range is a subject for

future research.

VI. CONCLUSION

Because no theoretical solution is yet available for the

SFP and WPP, one must depend on a computational solution.

If the proposed inverse factorization obtains other Wieferich

primes, then the WPP is a step closer to being solved.

Moreover, if the exponent of the minimum Mersenne number

with any Wieferich prime factor is prime, the SFP is solved

as a counterexample.

Thus, inverse factorization of Mersenne numbers is a

hybrid approach of factorization and expansion. Although it

seems to be less efficient than the classical DLP algorithm

(the BSGS algorithm), the application of the proposed

algorithm to the WPP produces results similar to those of the

BSGS algorithm before the latter’s improvement in terms of

time complexity. Moreover, this inverse factorization

algorithm was generalized to repdigits, including Mersenne

numbers. Improving the efficiency of the proposed algorithm

is a potential research topic. Moreover, the question of

whether the factorization algorithm may be improved by

applying the inverse factorization computation in reverse

remains open.

Note that the practical applicability of the inverse

factorization of Mersenne numbers as an encryption

algorithm. As opposed to block ciphers, the proposed

algorithm allows the bit length to be expanded. The bit

lengths of plaintext require not be constant and do not serve

as encryption keys. Thus, the sender and receiver require to

not agree regarding the bit lengths of plaintext used as the

encryption keys. By changing the plaintext block length, we

can prevent the same plaintext from being encrypted into the

same ciphertext. Another feature is that the decryption key

cannot be used for other ciphertexts because it is prevented

by nonlinearity between plaintext and ciphertext via the

inverse factorization of Mersenne numbers. The block length

of the ciphertext is the decryption key, and block lengths less

than the decryption key have a block that maximizes the

computation load, because of which the security is improved.

However, to equate the security of conventional block ciphers

under an exhaustive search and our suggested cipher under an

exhaustive factorization attack, the mean bit length of the

ciphertext should be at least more than twice that of

conventional block ciphers. These features should allow the

cipher systems to be developed based on the inverse

factorization of Mersenne numbers. However, to maintain the

encryption processing time within a practical range, an

algorithm of balancing the bit length of the plaintext that has

been divided and preprocessed with the total number of

blocks, which will be a subject for future research. It will

be relevant to compare security with conventional

cryptography and investigate techniques to strengthen

encryption against other attacks. More secure encryption will

be expected with the inverse factorization of repdigits.

Finally, the cell space introduced in this study is an

operation based on multiplication. The computation rules of

the inverse factorization of Mersenne numbers are simple to

understand, and it should lower the barrier to entry for

beginners by allowing them to approach the topic without

prior knowledge of finite fields or group theory. The concrete

description of addition and investigations into the algebraic

structure of the cell space are both subjects for future work.

DATA AVAILABILITY

The Algorithm data used to support the results of this

research are included within the article. Furthermore, the

software data based on Algorithm 3.11 have been deposited

in the figshare repository

(https://doi.org/10.6084/m9.figshare.14495235.v4).

ACKNOWLEDGMENT

The authors are grateful to Masahiro Kumabe of the Open

University of Japan for commenting on this work and for

advice pertaining to this research. The authors would like to

thank Enago (www.enago.jp) for the English language review.

REFERENCES

[1] P. Pollack and V. Shevelev, “On perfect and near-perfect numbers,” J.
Number Theor., vol. 132, no. 12, pp3037–3046, 2012.

[2] T. Kleinjung, J. W. Bos and A. K. Lenstra, “Mersenne factorization

factory” in P. Sarkar and T. Iwata, Eds. Berlin: Springer, Dec. 2014
(eds.) International Conference on the Theory and Application of

Cryptology and Information Security, pp358–377.

[3] L. Debnath and K. Basu, “Some analytical and computational aspects
of prime numbers, prime number theorems and distribution of primes

with applications,” Int. J. Appl. Comput. Math., vol. 1, no. 1, pp3–32,
2015.

[4] K. R. Guy, “Prime numbers” in Unsolved Problems in Number Theory.

New York: Springer, Jul. 2004, pp3–69.

[5] J. Knauer and J. Richstein, “The continuing search for Wieferich
primes,” Math. Comput., vol. 74, no. 251, pp1559–1564, 2005.

[6] R. Crandall, K. Dilcher and C. Pomerance, “A search for Wieferich and

Wilson primes,” Math. Comput., vol. 66, no. 217, pp433–450, 1997.

[7] T. Dupuy and Weirich, “Bits of in binary, Wieferich primes and a

conjecture of Erdős,” J. Number Theor., vol. 158, pp268–280, 2016.

[8] W. Keller and J. Richstein, “Solutions of the congruence 𝑎𝑝−1 ≡
1 (mod 𝑝𝑟),” Math. Comput., vol. 74, no. 250, pp927–936, 2004.

[9] E. L. Roettger, H. C. Williams and R. K. Guy, “Some primality tests

that eluded Lucas,” Des. Codes Cryptogr., vol. 77, no. 2–3, pp515–539,
2015.

[10] S. Y. Yan and G. James, “Testing Mersenne primes with elliptic curves”

in Computer Algebra in Scientific Computing, V. G. Ganzha, E. W.
Mayr and E. V. Vorozhtsov, Eds. Berlin, Heidelberg: Springerpp, Sep.

2006, pp303–312.

[11] X. Wang, “Factorization of large numbers via factorization of small
numbers,” Glob. J. Pure Appl. Math., vol. 6, pp5157–5173, 2016.

[12] L. J. Warren and H. G. Bray, “On the square-freeness of Fermat and

Mersenne numbers,” Pac. J. Math., vol. 22, no. 3, pp563–564, 1967.
[13] S. Davis, “Arithmetical sequences for the exponents of composite

Mersenne numbers,” Notes Number Theor. Discrete Math., vol. 20,

pp19–26, 2014.
[14] N. N. Dong Quan and D. Quan, “Carlitz module analogues of Mersenne

primes, Wieferich primes, and certain prime elements in cyclotomic

function fields,” J. Number Theor., vol. 145, pp181–193, 2014.

[15] K. Broughan, S. G. Sanchez, and F. Luca, “Perfect repdigits,” Math.

Comput., vol. 82, no. 284, pp2439-2459, 2013.

[16] N. J. A. Sloane, “Wieferich numbers (1): n > 1 such that 2^A000010(n)
== 1 (mod n^2).,” The on-line encyclopedia of integer sequences.

Available: https://oeis.org/A077816/b077816.txt

[17] T. Agoh, K. Dilcher and L. Skula, “Fermat Quotients for Composite
Moduli,” J. Number Theor., vol. 66, no. 1, pp29-50, 1997.

[18] C. Esholtz, “A survey on additive and multiplicative decompositions of

sumsets and of shifted sets” in I Combinatorial Number Theory and
Additive Group Theory, 2009, Adv. Courses Math. C. R. M. Barcelona,

(Centre de Recerca Matemàtica). Base: Birkhäuser, pp213–231.
[19] A. Bonfietti and M. Lombardi, “The weighted average constraint” in.

Intl. Conf. on Princ. and Pract. of Constraint Program. Berlin,

Heidelberg, M. Milano, Ed. Springer, 2012, pp191–206.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

https://doi.org/10.6084/m9.figshare.14495235.v4
https://oeis.org/A077816/b077816.txt

[20] H. Riesel, “The recognition of primes” in Prime Numbers and

Computer Methods for Factorization.Birkhuser, J. Coates and S.
Helgason, Eds. Boston: Modern Birkhuser Classics, 2011, pp84–140.

[21] A. Slinko, “Integers” in Springer Undergrad. Math. S., Jun. 2015, pp1–

36.
[22] H. Graves and M. R. Ram Murty, “The abc conjecture and non-

Wieferich primes in arithmetic progressions,” J. Number Theor., vol.

133, no. 6, pp1809–1813, 2013.
[23] Y. G. Chen and Y. Ding, “Non-Wieferich primes in arithmetic

progressions,” Proc. Am. Math. Soc., vol. 145, no. 5, pp1833–1836,

2017.
[24] H. Riesel, “The number of primes below a given limit” in Prime

Numbers and Computer Methods for Factorization, J. Oesterlé and A.

Weinstein, Eds., 2011. B. Birkhuser, Modern Birkhuser Classics, pp1–
36.

[25] H. Riesel, “Classical method of factorization” in Prime Numbers and

Computer Methods for Factorization, J. Oesterlé and A. Weinstein,
Eds., 2011. B. Birkhuser, Modern Birkhuser Classics, pp141–172.

[26] B. Kacsmar et al., “Computing low-weight discrete logarithms” in Sel.

Areas Cryptogr., C. Adams and J. Camenisch, Eds. Springer, pp106–
126, 2017.

[27] J. H. Cheon and T. Kim, “A new approach to the discrete logarithm

problem with auxiliary Inputs,” LMS J. Comput. Math., vol. 19, no. 1,
pp1–15, 2016.

[28] P. A. Kameswari et al., “Shank’s baby-step giant-step attack extended

to discrete log with Lucas sequences,” IOSR-JM, vol. 12, pp9–16, 2016.
[29] S. Y. Yan, “Logarithm based cryptography” in Cybercryptography,

Applicable Cryptography for Cyberspace Security. Springer, 2019,

pp287–341.
[30] J. Ha, “On the least prime primitive root,” J. Number Theor., vol. 133,

no. 11, pp3645–3669, 2013.

[31] S. D. Cohen and T. Trudgian, “On the least square-free primitive root
modulo p,” J. Number Theor., vol. 170, pp10–16, 2017.

[32] G. Effinger, “On generalizing a corollary of Fermat’s little theorem,”

Math. Intelligencer, vol. 41, no. 4, pp10–12, 2019.
[33] E. Boag, “Lattice multiplication,” Hist. Math., vol. 22, no. 3, pp182–

184, 2007.

[34] C. Somboonpattanakit and N. Wisitpongphan, “Secure password
storing using prime decomposition,” IAENG Int. J. Comput. Sci., vol.

48, no. 1, pp52-160, 2021.
[35] E. B. Nababan, G. T. Simbolon, O. S. Sitompul, “Multi-LSB and

modified vernam cipher to enhance document file security,” IAENG Int.

J. Comput. Sci., vol. 47, no. 4, pp705-712, 2020.
[36] A. Krikun and A. Levina, “Parallelized Montgomery exponentiation in

GF(2k) for Diffie–Hellman Key Exchange Protocol,” Engineering

Letters, vol. 29, no. 2, pp645-649, 2021.
[37] L. R. Knudsen and M. J. B. Robshaw, “The block cipher companion”

in Inf. Sec. Cryptogr. Berlin, Heidelberg: Springer, Oct. 2011, pp1–12.

[38] L. R. Knudsenand and M. J. B. Robshaw, “Using block ciphers” in Inf.
Sec. Cryptogr. Berlin, Heidelberg: Springer, pp65–94, 2011.

[39] S. G. Singh, “A study of encryption algorithms (RSA, DES, 3DES and

AES) for information security,” Int. J. Comput. Appl., vol. 67, pp33–
38, 2013.

[40] T. Xiang et al., “A novel block cryptosystem based on iterating a

chaotic map,” Phys. Lett. A, vol. 349, no. 1–4, pp109–115, 2006.
[41] A. Biryukov and E. Kushilevitz, “From differential cryptanalysis to

ciphertext-only attacks” in Lect. Notes Comput. Sci, vol. 1462, H.

Krawczyk, Ed. Berlin, Heidelberg: Springer, 2017, pp72–88.
[42] P. C. van Oorschot and M. J. Wiener, “A known-plaintext attack on

two-key triple encryption” in Sci, Advances in Cryptology —

EUROCRYPT” 90, I. B. Damgård, Ed. Lect. Notes Comput. Berlin,
Heidelberg: Springer, 1990, pp318–325.

Harunori Nakayama completed his Bachelor of Engineering from

Department of Chemistry and Chemical Engineering, Faculty of Engineering,
Niigata University. He worked as a mechanical engineer at an extrusion plant

manufacturer for 18 years. Moreover, he pursued his masters degree in Arts

and Sciences at the School of Graduate Studies, the Open University of Japan.
Currently, he is a sole proprietor and runs a retail business. He is an

undergraduate student at Faculty of Liberal Arts, the Open University of

Japan.

Seiji Anbe completed his Bachelor of Science from Tokyo University of

Science Faculty of Science Division, Department of Mathematics. He was
engaged as a mathematics teacher at several high schools for 37 years.

Moreover, he completed Bachelor of Arts from Waseda University

Department of English Literature. He was a student at the School of Graduate
Studies, the Open University of Japan, for 5 years. He had supervised a cram

school after retirement: Learning Forest "English and Mathematics Seminar".

Currently, he is a President of the cram school.

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_28

Volume 49, Issue 3: September 2022

__

