
 

  

Abstract—Currently, the square-free and Wieferich prime 

problems of number theory can be solved only via 

computational means. Because an efficient Wieferich prime 

exploration algorithm involves the investigation of a squared 

factor of Mersenne numbers with a prime exponent, we propose 

an inverse factorization algorithm to obtain both the exponent 

and another factor of the minimum Mersenne number with a 

specified factor. If we specify any prime, we can detect whether 

it is a Wieferich prime. We demonstrated the procedure with 

suitable examples and discussed the application of the classical 

baby-step giant-step algorithm to this limitation. Moreover, the 

inverse factorization is generalized not only to Mersenne 

numbers but also to repunits and repdigits. Finally, we briefly 

discuss cipher applications by applying our algorithm to a 

concrete example of inverse factorization of Mersenne numbers. 

This encryption algorithm expands the bit length by the 

nonlinearity between plaintext and ciphertext. The block length 

of the ciphertext becomes the decryption key. Block lengths that 

are less than the decryption key include a computation load 

maximization block, which improves the security. 

 
Index Terms— block cipher, inverse factorization, repunits, 

Wieferich primes 

 

I. INTRODUCTION 

ersenne numbers, which are related to perfect 

numbers [1], [2], have been studied for a long time and 

can be expressed in the form 𝑀𝑛 = 2
𝑛 − 1 for some (𝑛 ∈ ℕ) 

[3]. However, it remains unclear whether all Mersenne 

numbers that have prime exponents have squared factors; this 

is known as the so-called square-free problem (SFP) [4]. In 

relation to the Mersenne numbers are the Wieferich primes, 

which are prime numbers 𝑝 that satisfy 2𝑝−1 ≡ 1 (mod 𝑝2). 
In 2005, it was reported that no Wieferich prime is less than 

1.25 ∙ 1015, except 1093 and 3511 [5], [6]; this situation is 

unchanged to date. The issue of whether an infinite number 

of Wieferich primes exist is known as the Wieferich prime 

problem (WPP). Observations based on computer 

experimentation [7] suggest that only a finite number of 

Wieferich primes exist. However, because there is no 

theoretical definitive algorithm to solve SFP and WPP, they 

are approached through computational means. The work of 

Keller and Richstein [8] may be referred for more generalized 

𝑎𝑝−1 ≡ 1 (mod 𝑝𝑟). 
 

SFP can be examined using the results of the Mersenne 
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prime search. If a prime 𝑝 is specified, 𝑀𝑝 = 2𝑝 − 1 can be 

computed. When 𝑀𝑝 is determined to be a composite number 

using the Lucas–Lehmer test [3] or a primality test [9] using 

an elliptic curve [10], it is possible to examine duplicate 

factors via factorization [2], [11]. However, the SFP is related 

to the WPP. As reported by Warren and Bray in 1967 [12], if 

a Fermat or Mersenne number is not square-free, for any 

prime factor 𝑝  whose square divides the given number, 

2𝑝−1 ≡ 1 (mod 𝑝2) . Thus, modulo 𝑝2  can be used to 

examine whether 2𝑝−1 ≡ 1 (mod 𝑝2) is satisfied for a prime 

factor 𝑝 [5], indicating that the Mersenne number 𝑀𝑝−1 =

2𝑝−1 − 1 has 𝑝2 as a factor. Therefore, the efficient strategy 

is to determine the Wieferich prime 𝑝 before approaching the 

SFP. Although 𝑝 is prime, 𝑝 − 1 is an even number when 𝑝 

≠ 2. When 2ℎ𝑛 = 𝑝 − 1 (ℎ ∈ ℕ), the prime exponent 𝑛 of 

the minimum Mersenne number with factor 𝑝2  may be 

determined such that 2𝑝−1 = 22ℎ𝑛 ≡ 2𝑛 ≡ 1 (mod 𝑝2) . 

Research on arithmetic sequences for the exponents of 

composite Mersenne numbers suggests the presence of 

infinitely multiple composite Mersenne numbers with a prime 

exponent [13]. Moreover, research of Carlitz module analogs 

of Mersenne primes demonstrates that infinitely many 

composite Mersenne numbers exist [14]. This includes the 

existence of composite Mersenne numbers with a prime 

exponent, which provides a counterexample to the SFP by 

WPP. Furthermore, the numerical factorization of Mersenne 

numbers with a specific exponent 𝑛 has been examined in 

certain approaches [2], [11]. However, few computational 

approaches are available to determine the exponent 𝑛 of a 

Mersenne number factored to have a specified factor 𝑝 . 

Therefore, identifying an approach to efficiently obtain a 

Mersenne number with a specified odd number 𝑝 as a factor 

without (numerical) factorization should be useful to provide 

a computational solution for both SFP and WPP. 

In this study, we develop an inverse factorization 

algorithm for obtaining another factor 𝑞 and exponent 𝑛 of a 

Mersenne number 𝑀𝑛 = 𝑝𝑞 with a specified odd 𝑝 and show 

how this procedure can be applied to SFP and WPP. By 

applying an expansion (the inverse of factorization), 𝑛 can be 

obtained if 𝑝 and 𝑞 are properly specified. When 𝑀𝑛 = 2
𝑛 −

1 = 𝑝𝑞, the factorization is denoted as 𝑓, expansion as 𝑓−1, 

and inverse factorization as 𝑓~1 . In particular, 
𝑓 ∶ 𝑛 → (𝑝, 𝑞) 
𝑓−1 ∶ (𝑝, 𝑞) → 𝑛 

𝑓~1 ∶ 𝑝 → (𝑛, 𝑞).                               (1) 
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We now discuss the structure of this study. To prepare the 

groundwork, we introduce the ordered pairs (cells) for 

handling a 1D real number in a 2D real-number space. Next, 

we demonstrate the facility of the inverse transform of the 

original 1D real number for such ordered pairs. We call the 

ordered pairs “cells” in this study. Next, the multiplication of 

a cell is defined, and an outer algorithm is introduced. The 

algebraic space comprising cells is known as a real cell space. 

We show that a number can be decomposed into two 

components using multiplication as the primary operation. 

The inverse factorization algorithm is developed by applying 

the binary representation [6] of Mersenne numbers based on 

common multiplication because Mersenne numbers are 

repunits [15]. In the “Methods” section, proposed algorithms 

for approaching the SFP and WPP are sequentially presented, 

including examples and pseudocodes. Using the exponent 𝑛I 
of the Mersenne number with a prime factor 𝑝, the exponent 

𝑛II  of the Mersenne number with a factor 𝑝2  is shown to 

usually be estimated by 𝑝𝑛I . In the “Results” section, 

focusing on known Wieferich primes, we applied the inverse 

factorization to all two known Wieferich and 20 non-

Wieferich primes and tabulate the results and confirmed that 

Wieferich and non-Wieferich primes can be distinct. 

Moreover, there is a public table [16] that listed up 104 

Wieferich numbers based on Agoh, Dilcher, and Skula’s 

definition [17]. Using this data, certain detection results of the 

Wieferich composites are presented. A primality test is 

required to distinguish between Wieferich primes and 

composites. In the “Discussion” section, we consider the time 

complexity of the proposed algorithm with similar known 

algorithms and present certain future challenges. Furthermore, 

the inverse factorization algorithm of Mersenne numbers is 

generalized to repunits and repdigits [15]. Finally, we discuss 

cipher applications by applying the inverse factorization 

algorithm to a concrete example of inverse factorization of 

Mersenne numbers. 

II. PRELIMINARIES 

We then introduce the conversion of 1D numbers to 2D 

numbers and vice versa, following which we provide an 

algebraic structure to 2D numbers. 

A. Introduction of ordered pairs (cells) 

Given a number 𝑠, an exponent 𝑘 can be generated as the 

logarithm of 𝑠 with base 𝑚. The relationship between 𝑠 and 

𝑘 is as follows: 

𝑠 ∈ 𝑆0, 𝑘, 𝑥, 𝑦 ∈ 𝑆1, 𝛾 ∈ 𝑆2, 𝛼 ∈ 𝑆3, 𝑚 ∈ ℝ+ − {1}, 
where 

𝑠 = 𝑚𝑘 = 𝑚𝑥+𝑦.        (2) 

𝑆0  is the zeroth-number space; 𝑥 and 𝑦 are elements of the 

first number space 𝑆1; 𝛾 lies in the second number space 𝑆2, 

𝑆2 ⊆ 𝑆1; 𝛼 is a parameter of the distribution ratio, which is an 

element of the third number space 𝑆3; and ℝ+ ∪ {0} is the 

nonnegative real-number space. 

We then apply an additive decomposition [18] to 𝑠 using 

the following two properties of additive decompositions: 

Additive decomposition using a weighted average [19]: 

Let 𝑢, 𝑣 be the weights of the weighted average. 

For 𝑘 ∈ 𝑆1, 𝑢, 𝑣 ∈ 𝑆2, and 𝑢 + 𝑣 ≠ 0, because 

𝛼 = 𝑢  (𝑢 + 𝑣)⁄ and 1 − 𝛼= 𝑣  (𝑢 + 𝑣)⁄ , then 

  𝑘 = 𝛼𝑘 + (1 − 𝛼)𝑘 =
𝑢

𝑢+𝑣
𝑘 +

𝑣

𝑢+𝑣
𝑘.    (3) 

Additive decomposition of the zeroth element: 

For 𝛾 ∈ 𝑆2, 

 0 = (+ 𝛾) + (− 𝛾).         (4) 

Any real number 𝑘  can be expressed using the additive 

operation as follows: 

 𝑘 = [ 𝑘 ] + [ 0 ] = [ 𝛼𝑘 + (1 − 𝛼)𝑘 ] + [ (+ 𝛾) +
(− 𝛾) ] 

 = [ 𝛼𝑘 +  𝛾 ] + [ (1 − 𝛼)𝑘 + (− 𝛾) ].    (5) 

This additive decomposition defines the ordered pair of 

cells (𝑥, 𝑦) ∈ 𝑆1
2 as follows: 

 (𝑥, 𝑦) ∶= [𝛼𝑘, (1 − 𝛼)𝑘 ] × ( 𝛾, − 𝛾 ) =  [𝛼𝑘 + 𝛾, (1 −
𝛼)𝑘 – 𝛾], 

 𝑘 = 𝑥 + 𝑦, 𝛾 = (1 − 𝛼)𝑥 − 𝛼𝑦    (6). 

B. Inverse cell conversion 

2D cells can then be reverted to their original 1D form 

using 

 |(𝑥, 𝑦)| ∶= 𝑚𝑥+𝑦        (7), 

which is known as the “value” of the cell (x, y). 

C. Definition of multiplication 

The multiplicative operation ×  in a cell is defined as 

natural multiplication. For 𝑆0 = ℝ
+,  with ℝ  as the real-

number space, 𝑆1, 𝑆2 = ℝ, if 𝑥1, 𝑥2, 𝑦1 , 𝑦2 ∈ 𝑆1 and the set of 

the cells 𝐹 = ℝ2 . Multiplication is then  provided by the 

mapping ×∶ 𝐹 ×  𝐹 ⟶ 𝐹, and the algebraic system (𝐹,×) of 

the binary relation (𝑐1, 𝑐2) ∈ 𝐹 ×  𝐹 is defined as follows: 

 𝑐1 × 𝑐2 = (𝑥1, 𝑦1) × (𝑥2, 𝑦2): = (𝑥1 + 𝑥2 , 𝑦1 + 𝑦2)  

(8). 

Multiplication is associative and commutative; therefore, 

if j =  1, 2, 3, 𝑥j, 𝑦j ∈ 𝑆1, 𝑛 ∈ ℝ
+ − {1},  𝑐j ∈ 𝐹, 𝛼 > 0, 1 −

𝛼 > 0, and 𝑐j = (𝑥j, 𝑦j), then 

𝑐1 × (𝑐2 × 𝑐3)  =  (𝑐1 × 𝑐2) × 𝑐3,     (9) 

 𝑐1 × 𝑐2 = 𝑐2 × 𝑐1.       (10) 

D. Definitions of binary operations like a vector space 

In the real cell space (𝐹,+,×) , we define the binary 

operation on the field 𝐾 by considering it as the real space ℝ; 

i.e., using the mapping ∘ : 𝐾 ×  𝐹 ⟶  𝐾 ×  𝐹, we define the 

algebraic system (𝐹, +,×,∘ )  of the binary relation (𝑟, 𝑐) ∈
𝐾 ×  𝐹 and the additive inverse using the ring structure of the 

field 𝐾. 

Let 𝑆0 =  𝑆1 =  𝑆2 =  𝑆3 = ℝ , 𝑟 ∈ ℝ, 𝑥, 𝑦 ∈ 𝑆1, 𝑚 ∈
ℝ+ − {1} , 𝑐 ∈ 𝐹 = ℝ2 , the operation +1 ∘ (𝑥, 𝑦)  is 

shortened as +1, and the cell relationship is defined as +1 ∘
(𝑥, 𝑦): = (𝑥, 𝑦) (i.e., 1 ∘  𝑐 =  𝑐). 

For certain cell value 𝑠 , the definition is extended as 

follows: 

 |𝑐|: = 𝑟𝑠 = 𝑟|(𝑥, 𝑦)| = 𝑟𝑚𝑥+𝑦 ∈ ℝ.    (11) 

For 𝛾 ∈ 𝑆2, 𝛼 ∈ 𝑆3, 𝛼 > 0, and 1 − 𝛼 > 0, one has 

 𝑐 = 𝑟 ∘ (𝑥, 𝑦) : = 𝑟𝑚𝑥+𝑦 ∘ (𝛾, −𝛾) = |𝑐| ∘ (𝛾, −𝛾). 
 (12) 

For j = 1, 2, 𝑟, 𝑟 j ∈ ℝ, 𝑥, 𝑦, 𝑥j, 𝑦j ∈ 𝑆1, 𝑐, 𝑐j ∈ 𝐹, 𝛼 > 0, 

and 1 − 𝛼 > 0, the following holds: 

 (𝑟1 + 𝑟2) ∘ 𝑐 = 𝑟1 ∘ 𝑐 + 𝑟2 ∘ 𝑐,      (13) 

 𝑟1(𝑟2 ∘ 𝑐) =  (𝑟1𝑟2) ∘ 𝑐,      (14) 

 𝑟 ∘ (𝑐1 × 𝑐2) =  (𝑟 ∘ 𝑐1) × 𝑐2.     (15) 

When 𝑟 > 0, we have 

 𝑐 = 𝑟 ∘ (𝑥, 𝑦) = (𝛼 log𝑚 𝑟 + 𝑥, (1 − 𝛼) log𝑚 𝑟 + 𝑦)  
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 (16). 

III. METHODS 

A. Inverse factorization of Mersenne numbers 

Because 𝑚 ∈ ℕ, any natural number 𝑠 can be expressed 

using a series expansion [20] of l terms, as shown in Equation 

17 (i.e., as a sum of cell values), namely, 

  𝑠 =∑𝑟j𝑚
j

𝑙−1

j=0

 

= 𝑟0𝑚
0 + 𝑟1𝑚

1 + 𝑟2𝑚
2 +⋯+ 𝑟𝑙−1𝑚

𝑙−1 

= 𝑟0|𝑐0| + 𝑟1|𝑐1| + 𝑟2|𝑐2| + ⋯+ 𝑟𝑙−1|𝑐𝑙−1| 

= ∑ 𝑟j|𝑐j|
𝑙−1
j=0 ,    (17) 

where 𝑟j are included in ℕ ∪ {0}. 

 

Remark 3.1. If 𝑠 is a Mersenne number, all coefficients 𝑟𝑗 

are 1, and base 𝑚 = 2 is assumed. 

Example 3.2. If 𝑚 = 3  and 𝑠 =23 in Equation 17, the 

series expansion of the cell values that contain only the 

second component is 

23 = 2 ∙ 30 + 1 ∙ 31 + 2 ∙ 32   
= 2 ∙ |(0,0)| + 1 ∙ |(0,1)| + 2 ∙ |(0,2)|. 

Theorem 3.3. Let 𝑝𝑦 , 𝑞𝑥 ∈ ℕ ∪ {0} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ ℕ ∪

{0},𝑚 ∈ ℕ − {1} 𝑎𝑛𝑑 𝑑𝑒𝑛𝑜𝑡𝑒 𝑝 = ∑ 𝑝𝑦𝑚
𝑦𝑙𝑏−1

𝑦=0  and 𝑞 =

∑ 𝑞𝑥𝑚
𝑥𝑙𝑎−1

𝑥=0 . Then, we have 

𝑝𝑞 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

 

  

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

, 

(18) 

where  𝑥 + 𝑦 = 𝑘 ∈ ℕ ∪ {0} , 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1  (Fig. 1 for 

details). 

Proof. Given 𝑝 = ∑ 𝑝𝑦𝑚
𝑦𝑙𝑏−1

𝑦=0 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0  and 

𝑞 = ∑ 𝑞𝑥𝑚
𝑥𝑙𝑎−1

𝑥=0 = ∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 , 

𝑝𝑞 = ∑ 𝑝𝑦|(0, 𝑦)|

 𝑙𝑏−1

𝑦=0

∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1

𝑥=0

  

 

 = ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑎−1

𝑘−𝑦=0

 𝑙𝑏−1

𝑦=0

 

 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

, 

where 𝑥 + 𝑦 = 𝑘 ∈ ℕ ∪ {0}, 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1. □ 

Remark 3.4. If 𝑚 = 2 in Equation 18, 𝑝𝑙𝑏−1 = 𝑞𝑙𝑎−1 =

1 . Moreover, both 𝑝𝑦  and 𝑞𝑥  can only consider the 

values 0 and 1. In particular, if 𝑝𝑞 is odd, 𝑝0 = 𝑞0 = 1. 

Here, 𝑘 ≥ 0, and 𝑚𝑘 corresponds to the place of 𝑝𝑞, 𝑥 +
𝑦 = 𝑘, 𝑘 = 0, 1, 2, … , 𝑙𝑎 − 1,… , 𝑙𝑎 + 𝑙𝑏 − 2 . 

Furthermore,  𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1.  However, 𝑙𝑎  and 𝑛  remain 

unknown if only 𝑝 is specified. 

Example 3.5. Consider a case of a Mersenne number 

with an odd prime exponent. If 𝑚 = 3, 𝑝 = 23, 𝑎𝑛𝑑 𝑞 =
89  in Equation 18, 𝑝𝑞 = 2047 = 𝑀11 , as is shown 

below: 

𝑝𝑞 = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 2

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=0

3

𝑘=3

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=𝑘−4

6

𝑘=4

, 

𝑝0𝑞0 = 4, 𝑝0𝑞1 = 4, 𝑝1𝑞0 = 2, 𝑝0𝑞2 = 0, 𝑝1𝑞1 = 2, 𝑝2𝑞0
= 4, 

𝑝0𝑞3 = 0, 𝑝1𝑞2 = 0, 𝑝2𝑞1 = 4, 
𝑝0𝑞4 = 2, 𝑝1𝑞3 = 0, 𝑝2𝑞2 = 0, 𝑝1𝑞4 = 1, 𝑝2𝑞3 =

0, 𝑝2𝑞4 = 2. 

 

We use the representations of 𝑝: 

𝑝 = 23 = 2 ∙ |(0,0)| + 1 ∙ |(0,1)| + 2 ∙ |(0,2)| 

=∑𝑝𝑦|(0, 𝑦)|

 2

𝑦=0

, 

where 𝑝0 = 2, 𝑝1 =1, 𝑝2 = 2, 𝑙𝑏 − 1 = 2, and 

𝑞 = 89 = 2 ∙ |(0,0)| + 2 ∙ |(1,0)| + 0 ∙ |(2,0)| + 0 ∙ |(3,0)| 

+1 ∙ |(4,0)| = ∑𝑞𝑥|(𝑥, 0)|

 4

𝑥=0

, 

where 𝑞0 = 2, 𝑞1 = 2, 𝑞2 = 0, 𝑝3 = 0, 𝑞4 = 1, 𝑙𝑎 − 1 = 4, 
 𝑛 − 1 = 6. 

Consequently, 

𝑝𝑞 = ∑𝑝𝑦|(0, 𝑦)|

 2

𝑦=0

∑𝑞𝑥|(𝑥, 0)|

 4

𝑥=0

=∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑘−𝑦=0

 2

𝑦=0

 

 
Fig. 1.  View of three-region decomposition using multiplication in cell space 

(each square represents one cell)   

 𝑝𝑞 = ①+②+③ 
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  = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 2

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=0

3

𝑘=3

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 2

𝑦=𝑘−4

6

𝑘=4

 

  = 𝑝0𝑞0|(0, 0)| +∑𝑝𝑦𝑞1−𝑦|(1 − 𝑦, 𝑦)|

 1

𝑦=0

+∑𝑝𝑦𝑞2−𝑦|(2 − 𝑦, 𝑦)|

 2

𝑦=0

 

  +∑𝑝𝑦𝑞3−𝑦|(3 − 𝑦, 𝑦)|

 2

𝑦=0

 

  +∑𝑝𝑦𝑞4−𝑦|(4 − 𝑦, 𝑦)|

 2

𝑦=0

+∑𝑝𝑦𝑞5−𝑦|(5 − 𝑦, 𝑦)|

 2

𝑦=1

+∑𝑝𝑦𝑞6−𝑦|(6 − 𝑦, 𝑦)|

 2

𝑦=2

 

= 𝑝0𝑞0|(0, 0)| 
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|) 
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|) 
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|) 
+(𝑝0𝑞4|(4, 0)| + 𝑝1𝑞3|(3, 1)| + 𝑝2𝑞2|(2, 2)|) 
+(𝑝1𝑞4|(4, 1)| + 𝑝2𝑞3|(3, 2)|) 
+𝑝2𝑞4|(4, 2)| 

In this example, the sum of coefficients of each digit 𝑘, 

which is 

 𝜎𝑘: =

{
 

  ∑ 𝑝𝑦𝑞𝑘−𝑦
𝑘
𝑦=0   (𝑘 ≤ 𝑙𝑏 − 1)   

  ∑ 𝑝𝑦𝑞𝑘−𝑦
 𝑙𝑏−1
𝑦=0   (𝑙𝑏 ≤ 𝑘 ≤ 𝑙𝑎 − 2)   

  ∑ 𝑝𝑦𝑞𝑘−𝑦
 𝑙𝑏−1

𝑦=𝑘−( 𝑙𝑎−1)
  (𝑙𝑎 − 1 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2)

   (19) 

can be determined as follows: 

𝜎0 = 𝑝0𝑞0 = 4 

 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 4 + 2 = 6 

𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 = 0 + 2 + 4 = 6 

𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 = 0 + 0 + 4 = 4 

 𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2  = 2 + 0 + 0 = 2 

𝜎5 = 𝑝1𝑞4 + 𝑝2𝑞3 = 1 + 0 = 1, 𝜎6 = 𝑝2𝑞4 = 2 

When 𝜎𝑘 ≥ 𝑚, a carry-up is required. The carry-up is the 

operation of adding ⌊𝜎𝑘 𝑚⁄ ⌋  to the next digit 𝜎𝑘+1  and 

executing 𝜎𝑘 − ⌊𝜎𝑘 𝑚⁄ ⌋. 
Example 3.6. We then use a binary representation 

because of the nature of Mersenne numbers and show the 

application of Equation 19. If 𝑚 = 2, 𝑝 = 23, 𝑞 = 89 in 

Equation 18, 𝑝𝑞 = 2047 = 𝑀11, we have 

𝑝 = 23 = 1 ∙ |(0,0)| + 1 ∙ |(0,1)| + 1 ∙ |(0,2)| + 0 ∙ |(0,3)| 

 +1 ∙ |(0,4)| = ∑𝑝𝑦|(0, 𝑦)|,

 4

𝑦=0

 

where 𝑝0 = 1, 𝑝1 = 1, 𝑝2 = 1, 𝑝3 = 0, 𝑝4 = 1, 𝑙𝑏 − 1 = 4, 
and 

𝑞 = 89 = 1 ∙ |(0,0)| + 0 ∙ |(1,0)| + 0 ∙ |(2,0)| + 1 ∙ |(3,0)| 
+1 ∙ |(4,0)| + 0 ∙ |(5,0)| + 1 ∙ |(6,0)| 

 = ∑𝑞𝑥|(𝑥, 0)|

 6

𝑥=0

, 

where 𝑞0 = 1, 𝑞1 = 0, 𝑞2 = 0, 𝑝3 = 1, 𝑞4 = 1, 𝑞5 = 0, 

𝑞6 = 1, 𝑙𝑎 − 1 = 6, 𝑛 − 1 = 10. 

Consequently, 

 

𝑝𝑞 = ∑𝑝𝑦|(0, 𝑦)|

 4

𝑦=0

∑𝑞𝑥|(𝑥, 0)|

 6

𝑥=0

 

  = ∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

4

𝑘=0

+∑∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑦=0

5

𝑘=5

+∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 4

𝑦=𝑘−6

10

𝑘=6

 

= 𝑝0𝑞0|(0, 0)| 
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|) 
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|) 
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|+𝑝3𝑞0|(0, 3)|) 
+(𝑝0𝑞4|(4, 0)| + 𝑝1𝑞3|(3, 1)| + 𝑝2𝑞2|(2, 2)| 

 + 𝑝3𝑞1|(1, 3)|+𝑝4𝑞0|(0, 4)|) 
+(𝑝0𝑞5|(5, 0)| + 𝑝1𝑞4|(4, 1)| + 𝑝2𝑞3|(3, 2)| 

 + 𝑝3𝑞2|(2, 3)|+𝑝4𝑞1|(1, 4)|) 
+(𝑝0𝑞6|(6, 0)| + 𝑝1𝑞5|(5, 1)| + 𝑝2𝑞4|(4, 2)| 

 + 𝑝3𝑞3|(3, 3)|+𝑝4𝑞2|(2, 4)|) 
+(𝑝1𝑞6|(6, 1)| + 𝑝2𝑞5|(5, 2)| + 𝑝3𝑞4|(4, 3)|+𝑝4𝑞3|(3, 4)|) 
+(𝑝2𝑞6|(6, 2)| + 𝑝3𝑞5|(5, 3)| + 𝑝4𝑞4|(4, 4)|) 
+(𝑝3𝑞6|(6, 3)| + 𝑝4𝑞5|(5, 4)|) 
+𝑝4𝑞6|(6, 4)|. 

The coefficients of each digit sum are as follows: 

 

𝜎0 = 𝑝0𝑞0 = 1, 
𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 + 1 = 1, 
𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 = 0 + 0 + 1 = 1, 
𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 + 𝑝3𝑞0 = 1 + 0 + 0 + 0 = 1, 
𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2 + 𝑝3𝑞1 + 𝑝4𝑞0

= 1 + 1 + 0 + 0 + 1 = 3, 
𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 + 𝑝3𝑞2 + 𝑝4𝑞1

= 0 + 1 + 1 + 0 + 0 = 2, 
𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 + 𝑝3𝑞3 + 𝑝4𝑞2

= 1 + 0 + 1 + 0 + 0 = 2, 
𝜎7 = 𝑝1𝑞6 + 𝑝2𝑞5 + 𝑝3𝑞4 + 𝑝4𝑞3 = 1 + 0 + 0 + 1 = 2, 
𝜎8 = 𝑝2𝑞6 + 𝑝3𝑞5 + 𝑝4𝑞4 = 1 + 0 + 1 = 2, 
𝜎9 = 𝑝3𝑞6 + 𝑝4𝑞5 = 0 + 0 = 0, 
𝜎10 = 𝑝4𝑞6 = 1. 

 

Then, let 𝑅𝑘 ∈ ℕ ∪ {0}  be the carry-up from digit 𝑘  to 

digit 𝑘 + 1 and let 𝑇𝑘 ∈ ℕ ∪ {0} be the sum of the total cell 

values of digit 𝑘 and 𝑅𝑘−1 . However, for convenience, we 

then set 𝑅−1: = 0, which yields the following: 

 𝑇𝑘 = 𝑅𝑘−1 + 𝜎𝑘.        (20) 

Furthermore, let 𝑉𝑘 ∈ ℕ ∪ {0} be the difference between 

𝑇𝑘 and the carry-up 𝑅𝑘; i.e., 

 𝑉𝑘 = 𝑇𝑘 −𝑚𝑅𝑘.        (21) 

Because 𝑝, 𝑝𝑦 ,  and 𝑙𝑏  are known, 𝑞𝑘−𝑦  and 𝑛  are 

determined based on the property that all coefficients of 

Mersenne numbers are unity for the base 𝑚 = 2. Thus, all 

𝑉𝑘 = 1, and the initial values are 𝑅0 = 0,  𝑉0 = 1, and 𝑇0 = 1. 

𝑅𝑘,  𝑇𝑘 , and 𝑉𝑘 , are sequentially calculated. If 𝑞𝑘  is 

determined such that 𝑉𝑘 = 1 for 𝑘, 𝑉𝑘+1 to 𝑉𝑘+𝑙𝑏−1 are unity, 

𝑅𝑘+𝑙𝑏−1 = 0, and the calculation is finished. 

Note that 𝑘 is maximal when the calculation ends, which is 

when k = 𝑛 − 1. Usually, 𝑀𝑛, in which we are interested, is 
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the positional system [21] of 𝑉𝑘 in binary. 

Because 𝑝0 = 1 , we have 𝑞𝑘 = 0  or 1 , and 𝑇𝑘 ≡ 𝑉𝑘 ≡
1 (mod 2). Subsequently, we can determine that 

 𝑅𝑘 = ⌊𝑇𝑘 𝑚⁄ ⌋.                (22) 

Thus, the Mersenne numbers 𝑀𝑛 are calculated as follows: 

 𝑀𝑛 = 𝑝𝑞 = 𝑝∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 .         (23) 

Moreover, this algorithm can calculate the Mersenne 

number with 𝑝2 rather than the specified prime factor 𝑝. Even 

if 𝑝  is an odd number that is not a prime, the inverse 

factorization of the Mersenne numbers is possible. If the 

specified 𝑝 is prime and 𝑙𝑎 = 1, 𝑝 is a Mersenne prime. 

 

Proposition 3.7. Let 𝑝𝑦 , 𝑞𝑥  ∈ ℕ ∪ {0} for all 𝑥, 𝑦 ∈ ℕ ∪

{0}, 𝑝 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 , and 𝑞 = ∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1
𝑥=0  for 

a base 𝑚 ∈ ℕ− {1} , and let 𝑝𝑞 =

∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 ∑ 𝑞𝑥|(𝑥, 0)|

 𝑙𝑎−1
𝑥=0 . 

𝑅𝑙𝑎+𝑙𝑏−2 𝑖𝑠 𝑡ℎ𝑒𝑛 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑚 − 1. 

 

Proof. Because 𝑅𝑙𝑎+𝑙𝑏−2 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 when 𝑝𝑦 , 𝑞𝑥 =

𝑚 − 1, each coefficient in Equation 18 is (𝑚 − 1)2. 

When 𝑘 = 0, 𝜎0 = 𝑇0 = (𝑚 − 1)2 and 𝑅0 = 𝑚 − 2, 𝑉0 =
1. 

When 1 ≤ 𝑘 ≤ 𝑙𝑏 − 1, 

𝜎𝑘 = (𝑘 + 1)(𝑚 − 1)2, 

𝑇𝑘 = (𝑘 + 1)𝑚2 − (𝑘 + 2)𝑚, 

𝑅𝑘 = (𝑘 + 1)𝑚 − (𝑘 + 2), 
𝑉𝑘 = 0. 

When 𝑙𝑏 ≤ 𝑘 ≤ 𝑙𝑎 − 1, 

𝜎𝑘 = 𝑙𝑏(𝑚 − 1)2 

𝑇𝑘 = 𝑙𝑏𝑚
2 − 𝑙𝑏𝑚 − 1, 

𝑅𝑘 = 𝑙𝑏𝑚 − (𝑙𝑏 + 1), 
𝑉𝑘 = 𝑚 − 1. 

When 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2, 

𝜎𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)(𝑚 − 1)2, 

𝑇𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)𝑚
2 − (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)𝑚 − 𝑉𝑘, 

𝑅𝑘 = (𝑙𝑏 − 𝑘 + 𝑙𝑎 − 1)(𝑚 − 1), 

 𝑉𝑘 = {
𝑚 − 2 (𝑘 = 𝑙𝑎)  

 𝑚 − 1 ( 𝑙𝑎 + 1 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2).
 

Therefore, 𝑅𝑙𝑎+𝑙𝑏−2 ≤ 𝑚 − 1. □ 

Corollary 3.8. Let 𝑘𝑎 ∈ ℕ ∪ {0}, 0 ≤ 𝑘𝑎 ≤ 𝑙𝑎 − 1. If all 

𝑉𝑘 = 𝑞𝑘  are determined for 𝑘 ≤ 𝑘𝑎 , 𝑞(2) =

𝑉𝑘𝑎𝑉𝑘𝑎−1⋯𝑉1𝑉0 , and 𝑝𝑞(2) =

𝑅𝑘𝑎+𝑙𝑏−1𝑉𝑘𝑎+𝑙𝑏−1𝑉𝑘𝑎+𝑙𝑏−2⋯𝑉1𝑉0, and then 𝑅𝑘𝑎+𝑙𝑏−1 ≤

𝑚 − 1 for 𝑞𝑘𝑎 ≠ 0. 

 

Example 3.9. If 𝑚 = 2 , 𝑝 = 23, 𝑞 = 89 , and 𝑝𝑞 =
2047 = 𝑀11, we apply the carry-up technique below. 

Using the results of Example 4, one has 

𝑇0 = 𝑅−1 + 𝜎0 = 0 + 1 = 1, 𝑅0 = ⌊𝑇0 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉0
= 𝑇0 − 2𝑅0 = 1 − 0 = 1, 

𝑇1 = 𝑅0 + 𝜎1 = 0 + 1 = 1, 𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉1
= 𝑇1 − 2𝑅1 = 1 − 0 = 1, 

𝑇2 = 𝑅1 + 𝜎2 = 0 + 1 = 1, 𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉2
= 𝑇2 − 2𝑅2 = 1 − 0 = 1, 

𝑇3 = 𝑅2 + 𝜎3 = 0 + 1 = 1, 𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉3
= 𝑇3 − 2𝑅3 = 1 − 0 = 1, 

𝑇4 = 𝑅3 + 𝜎4 = 0 + 3 = 3, 𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉4
= 𝑇4 − 2𝑅4 = 3 − 2 = 1, 

𝑇5 = 𝑅4 + 𝜎5 = 1 + 2 = 3, 𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉5
= 𝑇5 − 2𝑅5 = 3 − 2 = 1, 

𝑇6 = 𝑅5 + 𝜎6 = 1 + 2 = 3, 𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉6
= 𝑇6 − 2𝑅6 = 3 − 2 = 1, 

𝑇7 = 𝑅6 + 𝜎7 = 1 + 2 = 3, 𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉7
= 𝑇7 − 2𝑅7 = 3 − 2 = 1, 

𝑇8 = 𝑅7 + 𝜎8 = 1 + 2 = 3, 𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 𝑉8
= 𝑇8 − 2𝑅8 = 3 − 2 = 1, 

𝑇9 = 𝑅8 + 𝜎9 = 1 + 0 = 1, 𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 𝑉9
= 𝑇9 − 2𝑅9 = 1 − 0 = 1, 

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, 𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋

= 0, 𝑉10 = 𝑇10 − 2𝑅10 = 1 − 0 = 1. 
Therefore, using the binary positional system, 𝑝𝑞(2) =

𝑉10𝑉9𝑉8𝑉7𝑉6𝑉5𝑉4𝑉3𝑉2𝑉1𝑉0 = 11111111111(2) = 2
11 − 1. 

Then, the framework of Theorem 3.3 is restrained to 

𝑝𝑙𝑏−1𝑞𝑙𝑎−1 ≠ 0 and 0 ≤ 𝑝𝑦 , 𝑞𝑥 ≤ 𝑚 − 1 for all 𝑥, 𝑦 ∈ ℕ ∪

{0}. 
Theorem 3.10. When p and q are odd, consider the 

composite Mersenne number 𝑀𝑛 = 2
𝑛 − 1 = 𝑝𝑞 . The 

exponent 𝑛 of the minimum Mersenne number that has 

the specified factor p and another factor 𝑞  can be 

uniquely determined. 

Proof. Because 𝑚 = 2, we obtain for the specified factor 

𝑝 

𝑝𝑞 = ∑ ∑𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑘

𝑦=0

 𝑙𝑏−1

𝑘=0

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=0

𝑙𝑎−2

𝑘=𝑙𝑏

 

+ ∑ ∑ 𝑝𝑦𝑞𝑘−𝑦|(𝑘 − 𝑦, 𝑦)|

 𝑙𝑏−1

𝑦=𝑘−(𝑙𝑎−1)

𝑛−1

𝑘=𝑙𝑎−1

. 

 

= 𝑝0𝑞0|(0, 0)| 
+(𝑝0𝑞1|(1, 0)| + 𝑝1𝑞0|(0, 1)|) 
+(𝑝0𝑞2|(2, 0)| + 𝑝1𝑞1|(1, 1)| + 𝑝2𝑞0|(0, 2)|) 
+(𝑝0𝑞3|(3, 0)| + 𝑝1𝑞2|(2, 1)| + 𝑝2𝑞1|(1, 2)|

+ 𝑝3𝑞0|(0, 3)|) 
⋮ 

+(𝑝0𝑞𝑙𝑏−1|(𝑙𝑏 − 1, 0)| + 𝑝1𝑞𝑙𝑏−2|(𝑙𝑏 − 2, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞1|(1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞0|(0, 𝑙𝑏 − 1)|) 

+(𝑝0𝑞𝑙𝑏|(𝑙𝑏 , 0)| + 𝑝1𝑞𝑙𝑏−1|(𝑙𝑏 − 1, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞2|(2, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞1|(1, 𝑙𝑏 − 1)|) 

+(𝑝0𝑞𝑙𝑏+1|(𝑙𝑏 + 1, 0)| + 𝑝1𝑞𝑙𝑏|(𝑙𝑏 , 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞3|(3, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞2|(2, 𝑙𝑏 − 1)|) 

⋮ 

+(𝑝0𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 0)| + 𝑝1𝑞𝑙𝑎−4|(𝑙𝑎 − 4, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏−1|(𝑙𝑎 − 𝑙𝑏 − 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−2|(𝑙𝑎 − 𝑙𝑏 − 2, 𝑙𝑏 − 1)|) 

+(𝑝0𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 0)| + 𝑝1𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 1)| + ⋯

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏|(𝑙𝑎 − 𝑙𝑏 , 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−1|(𝑙𝑎 − 𝑙𝑏 − 1, 𝑙𝑏 − 1)|) 
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+(𝑝0𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 0)| + 𝑝1𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 1)|

+ ⋯+𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏+1|(𝑙𝑎 − 𝑙𝑏 + 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏|(𝑙𝑎 − 𝑙𝑏 , 𝑙𝑏 − 1)|) 

⋮ 

+(𝑝𝑙𝑏−3𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 3)|

+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−3|(𝑙𝑎 − 3, 𝑙𝑏 − 1)|) 

+(𝑝𝑙𝑏−2𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 2)|

+ 𝑝𝑙𝑏−1𝑞𝑙𝑎−2|(𝑙𝑎 − 2, 𝑙𝑏 − 1)|) 

+𝑝𝑙𝑏−1𝑞𝑙𝑎−1|(𝑙𝑎 − 1, 𝑙𝑏 − 1)|. 

 

Moreover,  

𝜎0 = 𝑝0𝑞0, 
𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0, 
𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0, 
𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 + 𝑝3𝑞0, 

  ⋮ 
𝜎𝑙𝑏−1 = 𝑝0𝑞𝑙𝑏−1 + 𝑝1𝑞𝑙𝑏−2 +⋯+ 𝑝𝑙𝑏−2𝑞1 + 𝑝𝑙𝑏−1𝑞0, 

𝜎𝑙𝑏 = 𝑝0𝑞𝑙𝑏 + 𝑝1𝑞𝑙𝑏−1 +⋯+ 𝑝𝑙𝑏−2𝑞2 + 𝑝𝑙𝑏−1𝑞1, 

𝜎𝑙𝑏+1 = 𝑝0𝑞𝑙𝑏+1 + 𝑝1𝑞𝑙𝑏 +⋯+ 𝑝𝑙𝑏−2𝑞3 + 𝑝𝑙𝑏−1𝑞2, 

  ⋮ 
𝜎𝑙𝑎−3 = 𝑝0𝑞𝑙𝑎−3 + 𝑝1𝑞𝑙𝑎−4 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏−1 

  +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−2, 

𝜎𝑙𝑎−2 = 𝑝0𝑞𝑙𝑎−2 + 𝑝1𝑞𝑙𝑎−3 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏  

  +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏−1, 

𝜎𝑙𝑎−1 = 𝑝0𝑞𝑙𝑎−1 + 𝑝1𝑞𝑙𝑎−2 +⋯+ 𝑝𝑙𝑏−2𝑞𝑙𝑎−𝑙𝑏+1 

  +𝑝𝑙𝑏−1𝑞𝑙𝑎−𝑙𝑏  

  ⋮ 
𝜎𝑙𝑎+𝑙𝑏−4 = 𝑝𝑙𝑏−3𝑞𝑙𝑎−1 + 𝑝𝑙𝑏−2𝑞𝑙𝑎−2 + 𝑝𝑙𝑏−1𝑞𝑙𝑎−3 

𝜎𝑙𝑎+𝑙𝑏−3 = 𝑝𝑙𝑏−2𝑞𝑙𝑎−1 + 𝑝𝑙𝑏−1𝑞𝑙𝑎−2 

𝜎𝑙𝑎+𝑙𝑏−2 = 𝑝𝑙𝑏−1𝑞𝑙𝑎−1, 

and 

𝑇0 = 𝜎0 = 1, 𝑅0 = ⌊𝑇0 2⁄ ⌋ = 0, 𝑉0 = 𝑇0 − 2𝑅0 = 1, 
𝑇1 = 𝑅0 + 𝜎1, 𝑅1 = ⌊𝑇1 2⁄ ⌋, 𝑉1 = 𝑇1 − 2𝑅1 = 1, 
𝑇2 = 𝑅1 + 𝜎2, 𝑅2 = ⌊𝑇2 2⁄ ⌋, 𝑉2 = 𝑇2 − 2𝑅2 = 1, 
𝑇3 = 𝑅2 + 𝜎3, 𝑅3 = ⌊𝑇3 2⁄ ⌋, 𝑉3 = 𝑇3 − 2𝑅3 = 1, 
  ⋮ 
𝑇𝑙𝑏−1 = 𝑅𝑙𝑏−2 + 𝜎𝑙𝑏−1, 

  𝑅𝑙𝑏−1 = ⌊𝑇𝑙𝑏−1 2⁄ ⌋, 𝑉𝑙𝑏−1 = 𝑇𝑙𝑏−1 − 2𝑅𝑙𝑏−1 = 1, 

𝑇𝑙𝑏 = 𝑅𝑙𝑏−1 + 𝜎𝑙𝑏 , 

  𝑅𝑙𝑏 = ⌊𝑇𝑙𝑏 2⁄ ⌋, 𝑉𝑙𝑏 = 𝑇𝑙𝑏 − 2𝑅𝑙𝑏 = 1, 

𝑇𝑙𝑏+1 = 𝑅𝑙𝑏 + 𝜎𝑙𝑏+1, 

  𝑅𝑙𝑏+1 = ⌊𝑇𝑙𝑏+1 2⁄ ⌋, 𝑉𝑙𝑏+1 = 𝑇𝑙𝑏+1 − 2𝑅𝑙𝑏+1 = 1, 

  ⋮ 
𝑇𝑙𝑎−3 = 𝑅𝑙𝑎−4 + 𝜎𝑙𝑎−3, 

  𝑅𝑙𝑎−3 = ⌊𝑇𝑙𝑎−3 2⁄ ⌋, 𝑉𝑙𝑎−3 = 𝑇𝑙𝑎−3 − 2𝑅𝑙𝑎−3 = 1, 

𝑇𝑙𝑎−2 = 𝑅𝑙𝑎−3 + 𝜎𝑙𝑎−2, 

  𝑅𝑙𝑎−2 = ⌊𝑇𝑙𝑎−2 2⁄ ⌋, 𝑉𝑙𝑎−2 = 𝑇𝑙𝑎−2 − 2𝑅𝑙𝑎−2 = 1, 

𝑇𝑙𝑎−1 = 𝑅𝑙𝑎−2 + 𝜎𝑙𝑎−1, 

  𝑅𝑙𝑎−1 = ⌊𝑇𝑙𝑎−1 2⁄ ⌋, 𝑉𝑙𝑎−1 = 𝑇𝑙𝑎−1 − 2𝑅𝑙𝑎−1 = 1, 

  ⋮ 
𝑇𝑙𝑎+𝑙𝑏−4 = 𝑅𝑙𝑎+𝑙𝑏−5 + 𝜎𝑙𝑎+𝑙𝑏−4, 

  𝑅𝑙𝑎+𝑙𝑏−4 = ⌊𝑇𝑙𝑎+𝑙𝑏−4 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−4 = 𝑇𝑙𝑎+𝑙𝑏−4 − 2𝑅𝑙𝑎+𝑙𝑏−4
= 1, 

𝑇𝑙𝑎+𝑙𝑏−3 = 𝑅𝑙𝑎+𝑙𝑏−4 + 𝜎𝑙𝑎+𝑙𝑏−3, 

  𝑅𝑙𝑎+𝑙𝑏−3 = ⌊𝑇𝑙𝑎+𝑙𝑏−3 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−3 = 𝑇𝑙𝑎+𝑙𝑏−3 − 2𝑅𝑙𝑎+𝑙𝑏−3
= 1, 

𝑇𝑙𝑎+𝑙𝑏−2 = 𝑅𝑙𝑎+𝑙𝑏−3 + 𝜎𝑙𝑎+𝑙𝑏−2, 

  𝑅𝑙𝑎+𝑙𝑏−2 = ⌊𝑇𝑙𝑎+𝑙𝑏−2 2⁄ ⌋, 𝑉𝑙𝑎+𝑙𝑏−2 = 𝑇𝑙𝑎+𝑙𝑏−2 − 2𝑅𝑙𝑎+𝑙𝑏−2
= 1. 

First, because 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑙𝑏−1 are known and 𝑝0, 𝑞0 =

1 , it is evident that 𝑉0 = 1 . Next, the unknown values 

𝑞1 and 𝑇1  are either 0 or 1; however, these are uniquely 

determined because 𝑉1 = 1 is required. Assuming that 𝑞1 =
0, we can obtain that 𝑞1 = 0 or 1 if 𝑇1 is odd or even. Next, 

based on the determined 𝑞1, 𝑇1 is calculated again, and so 𝑅1 

and 𝑉1  are calculated. We then repeat the procedure from 

𝑞2 , 𝑇2  to 𝑞𝑙𝑎−1 , 𝑇𝑙𝑎−1 , which can be similarly determined. 

Consequently, although 𝑙𝑎 − 1  is unknown, we can 

determine 𝑇𝑙𝑎−1 , 𝑅𝑙𝑎−1 , and 𝑉𝑙𝑎−1  when 𝑘 = 𝑙𝑎 − 1 . 

Furthermore, using Corollary 3.8, we can determine all 𝑇𝑘, 

𝑅𝑘,  and 𝑉𝑘  for 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 + 𝑙𝑏 − 2 . The multiplication 

operation is complete when all 𝑉𝑘 = 1  for 𝑙𝑎 ≤ 𝑘 ≤ 𝑙𝑎 +
𝑙𝑏 − 2  and 𝑅𝑙𝑎+𝑙𝑏−2 = 0 . The exponent of the minimum 

Mersenne number with the specified 𝑝 as a factor is 𝑛 = 𝑙𝑎 +
𝑙𝑏 − 1. Using the binary positional system, we obtain another 

factor 𝑞(2) as 𝑞𝑙𝑎−1𝑞𝑙𝑎−2⋯𝑞1𝑞0 = 𝑉𝑙𝑎−1𝑉𝑙𝑎−2…𝑉1𝑉0. □ 

Theorem 3.10 shows that the inverse factorization of 

Mersenne numbers is possible; the corresponding algorithm 

is provided in Algorithm 3.11. 

 

Algorithm 3.11: Inverse factorization of Mersenne numbers 

INPUT: Specify an odd number 𝑝 that is a factor of the 

given Mersenne number. 

OUTPUT: The decimal exponent 𝑛  of the Mersenne 

number with the decimal factor 𝑝 and another 

binary factor 𝑞. 

1: Specify the divisor 𝑝(10) in decimals. 

2: Express 𝑝 in a binary expansion, i.e., a series expansion 

with the term number 𝑙𝑏: 

𝑝(10) = ∑ 𝑝y ∙ 2
𝑦 = 𝑝𝑙𝑏−1 𝑝𝑙𝑏−2⋯  𝑝0 (2)

𝑙𝑏−1
𝑦=0 . 

3: Assign each digit of 𝑝 in the binary positional system to 

the cell 𝑝y𝑞0 ∘ (0, 𝑦). 

For 𝑦 = 0 to 𝑙𝑏 − 1; 𝑙𝑏 − 1 = ⌊log2 𝑝(10)⌋ 

 𝑝y ← 𝑝y; initial condition 

Next y 

4: Let 𝑅−1 = 0, 𝜎0 = 0, and 𝑇0 = 0. Let 𝑉𝑐 = null. 
5: For 𝑘 = 0 to 𝑝 − 1 

6: Determine 𝑞𝑘 under the condition 𝑉𝑘 = 1. 

Note that any coefficient of a digit with 𝑘 greater than 

𝑘 = 𝑘𝑎 in the calculation is set to zero. 

If 𝑇𝑘 is odd, then 

For 𝑦 = 0 to 𝑙𝑏 − 1 

 𝑞𝑘 ←  0; thus 𝑝y𝑞𝑘 ←  0 

Next y 

Else if 𝑇𝑘 is even, then 

For 𝑦 = 0 to 𝑙𝑏 − 1 

𝑞𝑘 ← 1; thus 𝑝y𝑞𝑘 ← 𝑝𝑦 

Next y 

End if 

7:   Calculate 𝜎𝑘, 𝑇𝑘 , and 𝑅𝑘. Let 𝑉𝑐 = 1. 

For 𝑦 = 0 to 𝑙𝑏 − 1, 
𝜎𝑘+𝑦 ← 𝜎𝑘+𝑦 + 𝑝y𝑞𝑘 , 
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𝑇𝑘+𝑦 ← 𝑅𝑘+𝑦−1 + 𝜎𝑘+𝑦 , 

𝑅𝑘+𝑦 ← ⌊𝑇𝑘+𝑦 2⁄ ⌋, 

𝑉𝑘+𝑦 ← 𝑇𝑘+𝑦 − 2 𝑅𝑘+𝑦 , 

𝑉𝑐 ← 𝑉𝑐 ∗ 𝑉𝑘+𝑦 . This step is the preparation to 

examine the completion of the 

calculation using Corollary 3.8. 

Next y 

8:   Obtain a string of divisors 𝑞(2)  and let arr(𝑘)  be a 

string 

variable. 

arr(𝑘) ← 𝑞𝑘& arr(𝑘) , where “&” is the string 

concatenation operator. 

9:  Use Corollary 3.8 to examine the completion of the 

calculation. 

If 𝑉𝑐 = 1, and 𝑅𝑘+𝑙𝑏−1 = 0, then go to 11 

10: Next 𝑘 

11: Output 𝑛 = 𝑘 + 𝑙𝑏  

12: Output arr(𝑘)  as 𝑞(2) , which is a positional system in 

binary representation in the order of decreasing exponent. 

Or convert 𝑞(2) to a decimal using the binary expansion 

and output 𝑞(10). 

13: End 

 

Corollary 3.12. For the base 𝑚 = 2 , let 𝑝𝑦 , 𝑞𝑥  for 

all  𝑥, 𝑦 ∈ ℕ ∪ {0}, 𝑝 = ∑ 𝑝𝑦|(0, 𝑦)|
 𝑙𝑏−1
𝑦=0 , and 𝑞 =

∑ 𝑞𝑥|(𝑥, 0)|
 𝑙𝑎−1
𝑥=0 . When the minimum Mersenne number 

𝑝𝑞 = 2𝑛 − 1 𝑎𝑛𝑑 𝑛 = 𝑙𝑎 + 𝑙𝑏 − 1  with the specified 

factor 𝑝 is known, all 𝑞𝑘𝑎  such that 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 −

2 are zero. Therefore, 𝑞𝑙𝑎 , 𝑞𝑙𝑎+1, …, 𝑞𝑙𝑎+𝑙𝑏−2 are zero. 

Proof. From Theorem 3.10, the specified 𝑝  with the 

highest order 𝑙𝑏 − 1 yields another factor 𝑞 such that all 

𝑉𝑘𝑎 = 1 for 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 − 2. The highest order of 

𝑞  is 𝑙𝑎 − 1, and 𝑝𝑞 = 2𝑙𝑎+𝑙𝑏−1 − 1. Therefore, all 𝑞𝑘𝑎  

such that 𝑙𝑎 ≤ 𝑘𝑎 ≤ 𝑙𝑎 + 𝑙𝑏 − 2 are zero. □ 

In Example 3.13, applying Corollary 3.8 to a Mersenne 

number and confirming the completion of the calculation 

complicates the explanation, we apply Corollary 3.12 instead. 

Example 3.13. Let us use inverse factorization to 

determine the exponent 𝑛  of the minimum Mersenne 

number with 𝑝 = 23 as a factor and another divisor 𝑞. 

We have 

𝑝 = 23 = 10111(2), 

𝑙𝑏 − 1 = 4, 

𝑝0|(0,0)| = 1 ∙ |(0,0)|, 𝑝1|(0,1)| = 1 ∙ |(0,1)|, 𝑝2|(0,2)|

= 1 ∙ |(0,2)|, 𝑝3|(0,3)|

= 0 ∙ |(0,3)|, 𝑝4|(0,4)| = 1 ∙ |(0,4)|. 
Thus, 𝑝0 = 1, 𝑝1 = 1, 𝑝2 = 1, 𝑝3 = 0, 𝑝4 = 1. 
 

We then consider each of these values in turn. 

When 𝑘 = 0, 𝑞0 = 0, then 𝜎0 = 𝑝0𝑞0 = 0, 
𝑇0 = 𝑅−1 + 𝜎0 = 0 + 0 = 0, which is even. 

Therefore, 𝑞0 = 1 is determined, 𝑎𝑛𝑑 so 𝑝0𝑞0 = 1, 𝑇0 =
1, and 

𝑅0 = ⌊𝑇0 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0. 
Thus, 𝜎0 = 1, 𝑇0 = 1, 𝑅0 = 0, 𝑉0 = 1. 
 

When 𝑘 = 1 , if 𝑞1 = 0,  then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 +
1 = 1, 

𝑇1 = 𝑅0 + 𝜎1 = 0 + 1 = 1, which is odd. 

Consequently, 𝑞1 = 0 is determined, so 𝑝0𝑞1 = 𝑝1𝑞1 =
 𝑝2𝑞1 = 𝑝3𝑞1 = 𝑝4𝑞1 = 0, 𝑇1 = 1, and 

𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0. 
Hence, 

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1. 
 

Remark 3.14. Consider the case where 𝑞𝑘 is assumed to 

be 1 rather than 0. If 𝑞𝑘 = 1, we obtain 𝑉𝑘 = 1 when 𝑇𝑘 

is odd, so 𝑞𝑘 = 1. If 𝑞𝑘 = 1, we obtain 𝑉𝑘 = 0 when 𝑇𝑘 

is even, so 𝑞𝑘 = 0. 

When 𝑘 = 1 , if 𝑞1 = 1,  then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 1 +
1 = 2, 

𝑇1 = 𝑅0 + 𝜎1 = 0 + 2 = 2, which is even. 

Thus, 𝑞1 = 0 is determined, 𝑝0𝑞1 = 𝑝1𝑞1 = 𝑝2𝑞1 =
𝑝3𝑞1 = 𝑝4𝑞1 = 0, 𝑇1 = 1, 
𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1. 
 

When 𝑘 = 2  and 𝑞2 = 0,  one has 𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 +
𝑝2𝑞0 = 0 + 0 + 1 = 1, followed by 

𝑇2 = 𝑅1 + 𝜎2 = 0 + 1 = 1, which is again an odd number. 

Thus, 𝑞2 = 0 is determined, 𝑝0𝑞2 = 𝑝1𝑞2 = 𝑝2𝑞2 =
𝑝3𝑞2 = 𝑝4𝑞2 = 0, 𝑇2 = 1, 

𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 
𝜎2 = 1, 𝑇2 = 1, 𝑅2 = 0, 𝑉2 = 1. 

 

When 𝑘 = 3 , if 𝑞3 = 0,  𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 +
𝑝3𝑞0 = 0 + 0 + 0 + 0 = 0, 
𝑇3 = 𝑅2 + 𝜎3 = 0 + 0 = 0, which is even. 

Thus, 𝑞3 = 1, 𝑝0𝑞3 = 1, 𝑝1𝑞3 = 1, 𝑝2𝑞3 = 1, 𝑝3𝑞3 =
0, 𝑝4𝑞3 = 1, 𝑇3 = 1, 
𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎3 = 1, 𝑇3 = 1, 𝑅3 = 0, 𝑉3 = 1. 

 

Finally, when 𝑘 = 4 and 𝑞4 = 0, we obtain 𝜎4 = 𝑝0𝑞4 +
𝑝1𝑞3 + 𝑝2𝑞2 + 𝑝3𝑞1 + 𝑝4𝑞0 = 0 + 1 + 0 + 0 + 1 = 2 , 

followed by 

𝑇4 = 𝑅3 + 𝜎4 = 0 + 2 = 2, which is even. 

Thus, 𝑞4 = 1, 𝑝0𝑞4 = 1,  𝑝1𝑞4 = 1, 𝑝2𝑞4 = 1,  𝑝3𝑞4 =
0, 𝑝4𝑞4 = 1, 𝑇4 = 3, 
𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 

𝜎4 = 3, 𝑇4 = 3, 𝑅4 = 1, 𝑉4 = 1. 
 

When 𝑘 = 5  and 𝑞5 = 0,  𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 +
𝑝3𝑞2 + 𝑝4𝑞1 = 0 + 1 + 1 + 0 + 0 = 2, and 

𝑇5 = 𝑅4 + 𝜎5 = 1 + 2 = 3, which is odd. 

Thus, 𝑞5 = 0, 𝑝0𝑞5 = 𝑝1𝑞5 = 𝑝2𝑞5 = 𝑝3𝑞5 = 𝑝4𝑞5 = 0, 
𝑇5 = 3, 
𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 

𝜎5 = 2, 𝑇5 = 3, 𝑅5 = 1, 𝑉5 = 1. 

 

When 𝑘 = 6  and 𝑞6 = 0,  𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 +
𝑝3𝑞3 + 𝑝4𝑞2 = 0 + 0 + 1 + 0 + 0 = 1, and 

𝑇6 = 𝑅5 + 𝜎6 = 1 + 1 = 2, which is even. 

Thus, 𝑞6 = 1, 𝑝0𝑞6 = 1, 𝑝1𝑞6 = 1, 𝑝2𝑞6 = 1, 𝑝3𝑞6 = 0, 𝑝4𝑞6
= 1, 𝑇6 

= 3, 
𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 

𝜎6 = 2, 𝑇6 = 3, 𝑅6 = 1, 𝑉6 = 1. 
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When 𝑘 = 7  and 𝑞7 = 0,  then 𝜎7 = 𝑝0𝑞7 + 𝑝1𝑞6 +
𝑝2𝑞5 + 𝑝3𝑞4 + 𝑝4𝑞3 = 0 + 1 + 0 + 0 + 1 = 2, and 

𝑇7 = 𝑅6 + 𝜎7 = 1 + 2 = 3, which is odd. 

Thus, 𝑞7 = 0, 𝑝0𝑞7 = 𝑝1𝑞7 = 𝑝2𝑞7 = 𝑝3𝑞7 = 𝑝4𝑞7 = 0, 
𝑇7 = 3, 
𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 

𝜎7 = 2, 𝑇7 = 3, 𝑅7 = 1, 𝑉7 = 1. 

 

When 𝑘 = 8  and 𝑞8 = 0,  then 𝜎8 = 𝑝0𝑞8 + 𝑝1𝑞7 +
𝑝2𝑞6 + 𝑝3𝑞5 + 𝑝4𝑞4 = 0 + 0 + 1 + 0 + 1 = 2, and 

𝑇8 = 𝑅7 + 𝜎8 = 1 + 2 = 3, which is odd. 

Thus, 𝑞8 = 0, 𝑝0𝑞8 = 𝑝1𝑞8 = 𝑝2𝑞8 = 𝑝3𝑞8 = 𝑝4𝑞8 = 0, 𝑇8
= 3, 

𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊3 2⁄ ⌋ = 1, 

𝜎8 = 2, 𝑇8 = 3, 𝑅8 = 1, 𝑉8 = 1. 
 

When 𝑘 = 9  and 𝑞9 = 0,  then 𝜎9 = 𝑝0𝑞9 + 𝑝1𝑞8 +
𝑝2𝑞7 + 𝑝3𝑞6 + 𝑝4𝑞5 = 0 + 0 + 0 + 0 + 0 = 0, and 

𝑇9 = 𝑅8 + 𝜎9 = 1 + 0 = 1, which is odd. 

Thus, 𝑞9 = 0, 𝑝0𝑞9 = 𝑝1𝑞9 = 𝑝2𝑞9 = 𝑝3𝑞9 = 𝑝4𝑞9 = 0, 𝑇9
= 1, 

𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎9 = 0, 𝑇9 = 1, 𝑅9 = 0, 𝑉9 = 1. 
 

When 𝑘 = 10 and 𝑞10 = 0, then 

𝜎10 = 𝑝0𝑞10 + 𝑝1𝑞9 + 𝑝2𝑞8 + 𝑝3𝑞7 + 𝑝4𝑞6 = 0 + 0 +
0 + 0 + 1 = 1, and 

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, which is odd. 

Thus, 𝑞10 = 0, 𝑝0𝑞10 = 𝑝1𝑞10 = 𝑝2𝑞10 = 𝑝3𝑞10 =
𝑝4𝑞10 = 0, 𝑇10 = 1, 
𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎10 = 1, 𝑇10 = 1, 𝑅10 = 0, 𝑉10 = 1. 

 

Because 𝑞6 ≠ 0  and 𝑞7 = 𝑞8 = 𝑞9 = 𝑞10 = 0 , then 𝑙𝑎 −
1 = 6  and 𝑙𝑏 − 1 = 4 , where all 𝑞𝑘𝑎  for which 𝑙𝑎 ≤ 𝑘𝑎 ≤

𝑙𝑎 + 𝑙𝑏 − 2  are 0. Therefore, based on Corollary 3.12, the 

multiplication calculation is complete and 𝑛 = 11. Using the 

binary positional system, another factor is 

𝑞 = 𝑞6𝑞5𝑞4𝑞3𝑞2𝑞1𝑞0 = 1011001(2) 

 = 1 ∙ 26 + 0 ∙ 25 + 1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙
20 = 89. 

Similar to Example 3.13, the exponent of the Mersenne 

number with 𝑝2 = 232 = 529 as a factor becomes 𝑛 = 253. 

B. Adapting the algorithm for Wieferich primes 

Using inverse factorization, we can determine the exponent 

𝑛 of the minimum Mersenne number with a factor of 𝑝2, 𝑝 is 

odd. However, there are innumerable Mersenne numbers with 

a factor of 𝑝2 , including Wieferich primes. There are two 

algorithms to determine only the Wieferich primes. 

 

In the first method, specifying a prime factor 𝑝 , after 

determining the exponent 𝑛I  of the minimum Mersenne 

number with 𝑝2  as a specified factor using inverse 

factorization, we determine the exponent 𝑛II of the minimum 

Mersenne number with 𝑝2  as a factor. If 𝑝  is a Wieferich 

prime, then 𝑛II = 𝑛I . If it is not a Wieferich prime, the 

calculation can be ended when the calculation of 𝑛II reaches 

𝑛I. 

Proposition 3.15. By the inverse factorization of 

Mersenne numbers, let the exponent 𝑛𝐼  be from the 

specified prime factor 𝑝 and let exponent 𝑛𝐼𝐼 be from the 

factor 𝑝2. If 𝑛𝐼 = 𝑛𝐼𝐼, 𝑝 is a Wieferich prime. 

 

Proof. Let the exponent of the Mersenne number with a 

prime factor 𝑝 be 𝑛𝐼 and the other factor be 𝑞𝐼. Let the 

exponent of the Mersenne number with a factor of 𝑝2 be 

𝑛𝐼𝐼 and the other factor be 𝑞𝐼𝐼. Then, 

  𝑀𝑛I = 2𝑛I − 1 = 𝑝𝑞I,        (24) 

 𝑀𝑛II = 2
𝑛II − 1 = 𝑝2𝑞II.      (25) 

Moreover, using proportional coefficients ℎI ∈ ℕ, 

 𝑝 = ℎI𝑛I + 1        (26) 

if 𝑛I = 𝑛II , then 2𝑛I − 1 = 𝑝𝑞I = 𝑝
2𝑞II . Thus, 2𝑛I ≡

1 (mod 𝑝2).  Using Equation 26, 2(𝑝−1) ℎI⁄ ≡ 2𝑝−1 ≡

1 (mod 𝑝2). Therefore, 𝑝 is a Wieferich prime. □ 

 

Next, we confirm that the inverse factorization of non-

Wieferich primes can be applied in another means. In the past, 

research into non-Wieferich primes assumed the abc 

conjecture [22], [23]; however, we handle the scenario that 

holds regardless of the abc conjecture. 

 

Proposition 3.16. Consider a non-Wieferich prime 𝑝 , 

𝑛𝐼 ∈ ℕ − {1}.  If 2
𝑛𝐼 ≡ 1 (𝑚𝑜𝑑 𝑝)  with the minimum 

exponent 𝑛𝐼 , 2𝑝𝑛𝐼 ≡ 1 (𝑚𝑜𝑑 𝑝2)  with the minimum 

exponent 𝑝𝑛𝐼. 
 

Proof. Because 𝑝 is a non-Wieferich prime, Equation 24 

gives 𝑞𝐼 ≢ 0 (𝑚𝑜𝑑 𝑝) . We can then obtain (2𝑛𝐼)ℎ =
(𝑝𝑞𝐼 + 1)

ℎ ; herein, ℎ ∈ ℕ − {1} . Using binomial 

coefficients, we have 

(𝑝𝑞I + 1)
ℎ = (ℎ

0
)(𝑝𝑞I)

ℎ + ( ℎ
ℎ−1

)(𝑝𝑞I)
ℎ−1 +

 ( ℎ
ℎ−2

)(𝑝𝑞I)
ℎ−2 +⋯+ ( ℎ

ℎ−1
)(𝑝𝑞I)

1 + (ℎ
ℎ
)(𝑝𝑞I)

0. 

Thus, 

(2𝑛I)ℎ − 1 = (𝑝𝑞I + 1)
ℎ − 1 = (ℎ

0
)(𝑝𝑞I)

ℎ +

 ( ℎ
ℎ−1

)(𝑝𝑞I)
ℎ−1 + ( ℎ

ℎ−2
)(𝑝𝑞I)

ℎ−2 +⋯+ ( ℎ
ℎ−1

)(𝑝𝑞I)
1. 

When more than two terms have exponents (𝑝𝑞I), they 

have 𝑝2 as a factor. Moreover, all binomial coefficients are 

natural numbers. Consequently, we have at least ( ℎ
ℎ−1

) ≡

0 (mod 𝑝) for (2𝑛I)ℎ − 1 = (𝑝𝑞I + 1)
ℎ − 1 ≡ 0 (mod 𝑝2). 

Therefore, ( ℎ
ℎ−1

) = ℎ ≡ 0 (mod 𝑝).When ℎ = 𝑝 , 2𝑝𝑛I ≡

1 (mod 𝑝2) with the minimum exponent 𝑝𝑛I. □ 

It is self-evident that Proposition 3.16 can be applied to odd 

numbers except for Wieferich primes. This is a convenient 

algorithm for obtaining from the specified prime factor 𝑝 

except for Wieferich primes and through inverse factorization, 

the 𝑛II  exponent of the Mersenne number that has 𝑝2  as a 

factor. 
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Another algorithm for determining only the Wieferich 

primes uses Corollary 3.17 after determining the exponent 𝑛II 
of the minimum Mersenne number with the squared specified 

prime factor 𝑝, p2, using inverse factorization. 

 

Corollary 3.17. If 𝑝  is a non-Wieferich prime with 

minimum exponent 𝑛𝐼  and 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1 , then 

𝑛𝐼𝐼 − 𝑝 > 0. If 𝑝 is a Wieferich prime, then 𝑛𝐼𝐼 − 𝑝 < 0. 

 

Proof. Proposition 3.16 gives 𝑛𝐼𝐼 − 𝑝 = 𝑝(𝑛𝐼 − 1) > 0. 

However, if 𝑝 is a Wieferich prime, then 𝑛II = 𝑛I so 

that 𝑛II − 𝑝 = 𝑛I − 𝑝 < 0  because ℎI − 1 ≥ 0  and 𝑝 −
𝑛I = (ℎI − 1)𝑛I + 1 > 0 from Equation 26. □ 

 

Proposition 3.18. If 𝑝  is a non-Wieferich prime with 

minimum exponent 𝑛𝐼 and 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1, 

 1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I ≡ 0 (mod 𝑝) (27). 

Proof. Because 𝑛𝐼𝐼 = 𝑝𝑛𝐼 ≠ 𝑝 − 1  and 2𝑝𝑛𝐼 ≡
1 (𝑚𝑜𝑑 𝑝2), 
𝑀𝑝𝑛I = 2

𝑝𝑛I − 1 

 = (2𝑛I − 1)(1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I) 

  ≡ 0 (mod 𝑝2). 
From Equation 24, 2𝑛I − 1 has only one 𝑝 as a factor 

such 

that it must be 1 + 2𝑛I + 22𝑛I +⋯+ 2(𝑝−1)𝑛I 
≡ 0 (mod 𝑝). □ 

C. An algorithm for the square-freeness decision on 

Mersenne numbers with prime exponents 

First, we use the method discussed in Section B to 

determine the Wieferich prime and the value of 𝑛  of the 

associated Mersenne number. We use the trial division [24] 

to determine whether the exponent 𝑛 is prime. If 𝑛 is prime, 

a counterexample of the SFP is reported; hence, the problem 

is solved. Algorithm 3.19 is one possible trial division 

algorithm [25]. 

 

Algorithm 3.19: Trial division algorithm 

INPUT: The exponent 𝑛 of the Wieferich prime 𝑝 

obtained from the inverse factorization of 

Algorithm 3.11. 

OUTPUT: Exponent 𝑛, either prime or composite. 

1: Check if 𝑛 is even. 

𝑛0 ⟵ 𝑛 2⁄ − ⌊𝑛 2⁄ ⌋ 
If 𝑛0 = 0 then goto 3 

2: Check if 𝑛 is divisible by an odd number less than or equal 

to ⌊√𝑛⌋. 

For 𝑑 = 3 to ⌊√𝑛⌋ step 2 

 𝑛0 ⟵ 𝑛 𝑑⁄ − ⌊𝑛 𝑑⁄ ⌋ 
 If 𝑛0 = 0, then goto 3 

Next 𝑑 

3: Output “prime” or “composite” 

If 𝑛0 = 0, then 

Output “composite” 

Else if 𝑛0 ≠ 0, then 

Output “prime” 

End if 

4: End 

 

D. Computer implementation 

We implemented Algorithm 3.11 for the inverse 

factorization of Mersenne numbers in a computer running 

Windows 10 Home, version 1909, with 8.00 GB (7.39 GB 

available) of RAM and using an AMD E2-9000 RADEON 

R2, 4 COMPUTE CORE 2C+2G 1.80-GHz microprocessor. 

We then calculated the corresponding values using MS Excel 

from Microsoft Office Personal Premium and Algorithm 3.11 

coded in Visual Basic for Applications (VBA). 

VBA requires the a priori declaration of variables for the 

Mersenne number 𝑀𝑛 = 𝑝𝑞, and (𝑝 − 1)⌈log2 𝑝⌉ pcs as cells 

and log2 𝑝  pcs as the number of digits of 𝑝  in binary. 

Moreover, 𝑝 − 1 pcs each of 𝜎𝑘, 𝑇𝑘, 𝑅𝑘, and 𝑉𝑘 are declared 

in advance. Furthermore, 𝑝 − 1  pcs array variables arr(𝑥) 
are declared for outputting 𝑞 as a string. 

Moreover, a prime factor 𝑝 or its square was required in 

Algorithm 3.11 and was determined using Algorithm 3.19. 

IV. RESULTS 

Tables I and II present the detection results using inverse 

factorization for the two known Wieferich primes, 1093 and 

3511, and ten samples before and after them. The inverse 

factorizations were run via Algorithm 3.11 based on Theorem 

3.10. These tables show the Mersenne number exponent 𝑛I 
with the prime factor 𝑝 and the Mersenne number exponent 

𝑛II  with the factor 𝑝2 . Moreover, 𝑛II − 𝑝  is given. These 

results show that the two known Wieferich primes can be 

detected based on both Proposition 3.15 and Corollary 3.17. 

Moreover, the example that follows shows an accurate 

sequential calculation. 

TABLE I 

DETECTION OF WIEFERICH PRIME 1093  

𝑝 𝑛I 𝑝2 𝑛II 𝑛II − 𝑝 

1061 1060 1125721 1124660 1123599 

1063 531 1129969 564453 563390 

1069 356 1142761 380564 379495 

1087 543 1181569 590241 589154 

1091 1090 1190281 1189190 1188099 

1093 364 1194649 364 −729 

1097 274 1203409 300578 299481 

1103 29 1216609 31987 30884 

1109 1108 1229881 1228772 1227663 

1117 1116 1247689 1246572 1245455 

1123 1122 1261129 1260006 1258883 

 

 
TABLE II 

DETECTION OF WIEFERICH PRIME 3511 

𝑝 𝑛I 𝑝2 𝑛II 𝑛II − 𝑝 

3463 577 11992369 1998151 1994688 

3467 3466 12020089 12016622 12013155 

3469 3468 12033961 12030492 12027023 
3491 3490 12187081 12183590 12180099 

3499 3498 12243001 12239502 12236003 

3511 1755 12327121 1755 −1756 

3517 3516 12369289 12365772 12362255 

3527 1763 12439729 6218101 6214574 

3529 882 12453841 3112578 3109049 
3533 3532 12482089 12478556 12475023 

3539 3538 12524521 12520982 12517443 

 

 

 TABLE III 

 PRIMALITY JUDGMENT FOR 𝑛II OF WIEFERICH PRIMES 

Wieferich prime 

𝑝 
𝑛II Judgment for 𝑛II 

1093 364 = 22 ∙ 7 ∙ 13 composite  

3511 1755 = 33 ∙ 5 ∙ 13 composite  
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Table III shows an investigation of SFP using the results of 

detected Wieferich primes. These exponents 𝑛II  are both 

composites, not counterexamples, and agree with the known 

facts. 

Table IV shows the detection results with the inverse 

factorization using certain Wieferich numbers from the public 

table [16]. This shows that even if 𝑛I = 𝑛II , it is not 

necessarily Wieferich primes. We can see that Wieferich 

composite numbers take 𝑛II − 𝑝 < 0 , indicating that a 

primality test is necessary for the specified 𝑝 to distinguish 

between a Wieferich prime and Wieferich composite. 

However, if 𝑛I = 𝑛II  or 𝑛II − 𝑝 < 0  with a specified odd 

number 𝑝, it indicates either Wieferich prime or Wieferich 

composite; therefore, we can detect a Wieferich number. 

 

Example 4.1. Given 𝒑 = 𝟐𝟑, 𝒏𝑰 = 𝟏𝟏, 𝒒𝑰 =

𝟏𝟎𝟏𝟏𝟎𝟎𝟏(𝟐) = 𝟖𝟗, 𝒑
𝟐 = 𝟓𝟐𝟗, we use Proposition 3.15 

to determine whether 𝒑 is a Wieferich prime number. 

𝑝2 = 529 = 1000010001(2), 

𝑙𝑏 − 1 = 9, 

𝑝0 = 1, 𝑝1 = 0, 𝑝2 = 0, 𝑝3 = 0, 𝑝4 = 1, 𝑝5 = 0, 𝑝6 =
0, 𝑝7 = 0, 𝑝8 = 0, 𝑝9 = 1. 

Assume 

𝑘 = 0, 𝜎0 = 1, 𝑝0𝑞0 = 1, 𝑇0 = 1, 𝑅0 = 0, 𝑉0 = 1. 

When 𝑘 = 1 , if 𝑞1 = 0,  then 𝜎1 = 𝑝0𝑞1 + 𝑝1𝑞0 = 0 +
0 = 0, and 

𝑇1 = 𝑅0 + 𝜎1 = 0 + 0 = 0, which is even. 

Thus, 𝑞1 = 1, 𝑝0𝑞1 = 1, 𝑝1𝑞1 = 0, 𝑝2𝑞1 = 0, 𝑝3𝑞1 =
0, 𝑝4𝑞1 = 1, 𝑝5𝑞1 = 0, 𝑝6𝑞1 = 0, 𝑝7𝑞1 = 0,  𝑝8𝑞1 =
0, 𝑝9𝑞1 = 1, 𝑇1 = 1, 
𝑅1 = ⌊𝑇1 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎1 = 1, 𝑇1 = 1, 𝑅1 = 0, 𝑉1 = 1. 

When 𝑘 = 2, if 𝑞2 = 0, then 𝜎2 = 𝑝0𝑞2 + 𝑝1𝑞1 + 𝑝2𝑞0 =
0 + 0 + 0 = 0, and 

𝑇2 = 𝑅1 + 𝜎2 = 0 + 0 = 0, which is even. 

Thus, 𝑞2 = 1, 𝑝0𝑞2 = 1, 𝑝1𝑞2 = 0, 𝑝2𝑞2 = 0, 𝑝3𝑞2 =
0, 𝑝4𝑞2 = 1, 𝑝5𝑞2 = 0, 𝑝6𝑞2 = 0, 𝑝7𝑞2 = 0, 𝑝8𝑞2 =
0, 𝑝9𝑞2 = 1, 𝑇2 = 1, 
𝑅2 = ⌊𝑇2 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎2 = 1, 𝑇2 = 1, 𝑅2 = 0, 𝑉2 = 1. 

 

When 𝑘 = 3, if 𝑞3 = 0, then 𝜎3 = 𝑝0𝑞3 + 𝑝1𝑞2 + 𝑝2𝑞1 +
𝑝3𝑞0 = 0 + 0 + 0 + 0 = 0, and 

𝑇3 = 𝑅2 + 𝜎3 = 0 + 0 = 0, which is even. 

Thus, 𝑞3 = 1, 𝑝0𝑞3 = 1, 𝑝1𝑞3 = 0, 𝑝2𝑞3 = 0, 𝑝3𝑞3 =
0, 𝑝4𝑞3 = 1, 𝑝5𝑞3 = 0, 𝑝6𝑞3 = 0, 𝑝7𝑞3 = 0, 𝑝8𝑞3 =
0, 𝑝9𝑞3 = 1, 𝑇3 = 1, 
𝑅3 = ⌊𝑇3 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎3 = 1, 𝑇3 = 1, 𝑅3 = 0, 𝑉3 = 1. 

 

When 𝑘 = 4, if 𝑞4 = 0, then 𝜎4 = 𝑝0𝑞4 + 𝑝1𝑞3 + 𝑝2𝑞2 +
𝑝3𝑞1 + 𝑝4𝑞0 = 0 + 0 + 0 + 0 + 1 = 1, and 

𝑇4 = 𝑅3 + 𝜎4 = 0 + 1 = 1, which is odd. 

Thus, 𝑞4 = 0, 𝑝0𝑞4 = 𝑝1𝑞4 = 𝑝2𝑞4 = 𝑝3𝑞4 = 𝑝4𝑞4 =
𝑝5𝑞4 = 𝑝6𝑞4 = 𝑝7𝑞4 = 0, 𝑝8𝑞4 = 𝑝9𝑞4 = 0, 𝑇4 = 1, 
𝑅4 = ⌊𝑇4 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎4 = 1, 𝑇4 = 1, 𝑅4 = 0, 𝑉4 = 1. 

 

When 𝑘 = 5, if 𝑞5 = 0, then 𝜎5 = 𝑝0𝑞5 + 𝑝1𝑞4 + 𝑝2𝑞3 +
𝑝3𝑞2 + 𝑝4𝑞1 + 𝑝5𝑞0 = 0 + 0 + 0 + 0 + 1 + 0 = 1, and 

𝑇5 = 𝑅4 + 𝜎5 = 0 + 1 = 1, which is odd. 

Thus, 𝑞5 = 0, 𝑝0𝑞5 = 𝑝1𝑞5 = 𝑝2𝑞5 = 𝑝3𝑞5 = 𝑝4𝑞5 =
𝑝5𝑞5 = 𝑝6𝑞5 = 𝑝7𝑞5 = 0, 𝑝8𝑞5 = 𝑝9𝑞5 = 0, 𝑇5 = 1, 
𝑅5 = ⌊𝑇5 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎5 = 1, 𝑇5 = 1, 𝑅5 = 0, 𝑉5 = 1. 

 

When 𝑘 = 6, if 𝑞6 = 0, then 𝜎6 = 𝑝0𝑞6 + 𝑝1𝑞5 + 𝑝2𝑞4 +
𝑝3𝑞3 + 𝑝4𝑞2 + 𝑝5𝑞1 + 𝑝6𝑞0 = 0 + 0 + 0 + 0 + 1 + 0 +
0 = 1, and 

𝑇6 = 𝑅5 + 𝜎6 = 0 + 1 = 1, which is odd. 

Thus, 𝑞6 = 0, 𝑝0𝑞6 = 𝑝1𝑞6 = 𝑝2𝑞6 = 𝑝3𝑞6 = 𝑝4𝑞6 =
𝑝5𝑞6 = 𝑝6𝑞6 = 𝑝7𝑞6 =0,𝑝8𝑞6 = 𝑝9𝑞6 = 0, 𝑇6 = 1, 
𝑅6 = ⌊𝑇6 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎6 = 1, 𝑇6 = 1, 𝑅6 = 0, 𝑉6 = 1. 

 

When 𝑘 = 7, if 𝑞7 = 0, then 𝜎7 = 𝑝0𝑞7 + 𝑝1𝑞6 + 𝑝2𝑞5 +
𝑝3𝑞4 + 𝑝4𝑞3 + 𝑝5𝑞2 + 𝑝6𝑞1 + 𝑝7𝑞0 = 0 + 0 + 0 + 0 + 1 +
0 + 0 + 0 = 1, and 

𝑇7 = 𝑅6 + 𝜎7 = 0 + 1 = 1, which is odd. 

Thus, 𝑞7 = 0, 𝑝0𝑞7 = 𝑝1𝑞7 = 𝑝2𝑞7 = 𝑝3𝑞7 = 𝑝4𝑞7 =
𝑝5𝑞7 = 𝑝6𝑞7 = 𝑝7𝑞7 =0, 𝑝8𝑞7 = 𝑝9𝑞7 = 0, 𝑇7 = 1, 
𝑅7 = ⌊𝑇7 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎7 = 1, 𝑇7 = 1, 𝑅7 = 0, 𝑉7 = 1. 

 

When 𝑘 = 8, if 𝑞8 = 0, then 𝜎8 = 𝑝0𝑞8 + 𝑝1𝑞7 + 𝑝2𝑞6 +
𝑝3𝑞5 + 𝑝4𝑞4 + 𝑝5𝑞3 + 𝑝6𝑞2 + 𝑝7𝑞1 + 𝑝8𝑞0 = 0 + 0 + 0 +
0 + 0 + 0 + 0 + 0 + 0 = 0, and 

𝑇8 = 𝑅7 + 𝜎8 = 0 + 0 = 0, which is even. 

Thus, 𝑞8 = 1, 𝑝0𝑞8 = 1, 𝑝1𝑞8 = 0, 𝑝2𝑞8 = 0, 𝑝3𝑞8 =
0, 𝑝4𝑞8 = 1, 𝑝5𝑞8 = 0, 𝑝6𝑞8 = 0, 𝑝7𝑞8 = 0, 𝑝8𝑞8 =
0, 𝑝9𝑞8 = 1, 𝑇8 = 1, 
𝑅8 = ⌊𝑇8 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎8 = 1, 𝑇8 = 1, 𝑅8 = 0, 𝑉8 = 1. 

 

When 𝑘 = 9, if 𝑞9 = 0, then 

𝜎9 = 𝑝0𝑞9 + 𝑝1𝑞8 + 𝑝2𝑞7 + 𝑝3𝑞6 + 𝑝4𝑞5 + 𝑝5𝑞4 + 𝑝6𝑞3
+ 𝑝7𝑞2 

 +𝑝8𝑞1 + 𝑝9𝑞0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
1 = 1, and 

𝑇9 = 𝑅8 + 𝜎9 = 0 + 1 = 1, which is odd. 

Thus, 𝑞9 = 0, 𝑝0𝑞9 = 𝑝1𝑞9 = 𝑝2𝑞9 = 𝑝3𝑞9 = 𝑝4𝑞9 =
𝑝5𝑞9 = 𝑝6𝑞9 = 𝑝7𝑞9 = 0, 𝑝8𝑞9 = 𝑝9𝑞9 = 0, 𝑇9 = 1, 
𝑅9 = ⌊𝑇9 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, and 

𝜎9 = 1, 𝑇9 = 1, 𝑅9 = 0, 𝑉9 = 1. 

 

When 𝑘 = 10 , if 𝑞10 = 0,  then 𝜎10 = 𝑝0𝑞10 + 𝑝1𝑞9 +
𝑝2𝑞8 + 𝑝3𝑞7 + 𝑝4𝑞6 + 𝑝5𝑞5 + 𝑝6𝑞4 + 𝑝7𝑞3 + 𝑝8𝑞2 +
𝑝9𝑞1 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1, and 

𝑇10 = 𝑅9 + 𝜎10 = 0 + 1 = 1, which is odd. 

Thus, 𝑞10 = 0, 𝑝0𝑞10 = 𝑝1𝑞10 = 𝑝2𝑞10 = 𝑝3𝑞10 =
𝑝4𝑞10 = 𝑝5𝑞10 = 𝑝6𝑞10 = 𝑝7𝑞10 = 0 ,  𝑝8𝑞10 = 𝑝9𝑞10 =
0, 𝑇10 = 1, 
𝑅10 = ⌊𝑇10 2⁄ ⌋ = ⌊1 2⁄ ⌋ = 0, 

𝜎10 = 1, 𝑇10 = 1, 𝑅10 = 0, 𝑉10 = 1. 

 

Because 𝑞8 = 1 , all coefficients of 𝑙𝑏 − 1 = 9  in 

Corollary 3.12 are nonzero. The tentative exponent is 𝑛II =
11; however, the inverse factorization calculation cannot be 

completed. Therefore, because 𝑛I ≠ 𝑛II, 𝑝 is not a Wieferich 

prime. 
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Example 4.2. When 𝒑 = 𝟐𝟑, 𝒏𝑰 = 𝟏𝟏, 𝒒𝑰 =

𝟏𝟎𝟏𝟏𝟎𝟎𝟏(𝟐) = 𝟖𝟗, 𝒂𝒏𝒅 𝒑
𝟐 = 𝟓𝟐𝟗,  we use Corollary 

3.17 to determine whether 𝒑 is a Wieferich prime. We 

skip the calculations, which are available in the 

software of Algorithm 3.11. 

When inverse factorization is performed with the specified 

factor 𝑝2 = 529 , the exponent is 𝑛II = 253 . Therefore, 

because 𝑛II − 𝑝 = 253 − 23 = 230 > 0 , 𝑝  is a not a 

Wieferich prime. 

Example 4.3. When 𝒑 = 𝟏𝟎𝟗𝟑 =
𝟏𝟎𝟎𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏(𝟐), 𝒘𝒆 use Proposition 3.15 to 

determine whether 𝒑 is a Wieferich prime. 

 

The pairs of quantities 𝑛I, 𝑞I and 𝑛II, 𝑞II are calculated by a 

computer that implements Algorithm 3.11 (Subsection 3.4). 

For 𝑛I = 364, one has 

𝑞I = 1110111111 0101101100 0111000101 0111001000 

0100000110 0101001011 1010011011 1111110100 

1100000111 1011101010 1010111110 1010011100 

1110110100 0001110100 0010110000 0010000110 

1110100011 0011111111 1100010000 0010100100 

1110001110 1010001101 1110111110 0110101101 

0001011001 0000000010 1100111110 0001000101 

0101010000 0101011000 1100010010 1111100010 

1111010011 1111011110 0100010111 0011 (2). 

𝑛II = 364 and 

𝑞II = 1110000010 1100101011 1011111011 0000011111 

0010100000 1000001000 1001001100 0101100000 

1111100100 1001001110 1101111100 1000001101 

1000001111 1001000010 0011010111 1001101010 

0011111111 1111111111 1100011111 0100110101 

0001000001 0011111000 0011010111 1101111101 

1101101100 1110100111 1100000110 1101101100 

0100100000 1101111100 1001111100 0001101111 

0111001010 0001100101 0111 (2). 

Because 𝑛I = 𝑛II , we conclude that 𝑝 = 1093  is a 

Wieferich prime. This confirms the known result in terms of 

this number. 

 

Example 4.3 uses Proposition 3.15 to confirm whether 𝑝 is 

a Wieferich prime by obtaining each exponent 𝑛I and 𝑛II of 

the minimum Mersenne number with the specified 𝑝 and 𝑝2. 

Example 4.4 uses Corollary 3.17 to confirm whether 𝑝 is a 

Wieferich prime and not by determining the minimum 

Mersenne number for a specified 𝑝 but by determining the 

exponent 𝑛II of the minimum Mersenne number with 𝑝2 as a 

factor. 

Example 4.4. When 𝒑 = 𝟏𝟎𝟗𝟑, we use Corollary 3.17 

to determine whether 𝒑 is a Wieferich prime. 

When 𝑝2 = 1194649 = 100100011101010011001(2), 

we have 𝑛II = 364 . Therefore, because 𝑛II − 𝑝 = 364 −
1093 = −729 < 0, we conclude that 𝑝 is a Wieferich prime. 

Moreover, 𝑛II = 364  is a composite number and not a 

counterexample of the SFP. 

 

V. DISCUSSION 

A. Evaluation and expansion of the algorithm  

The proposed algorithm of inverse factorization of 

Mersenne numbers produces correct results for both SFP and 

WPP. When examining the SFP without going through the 

WPP, the exponent must pass the primality test; however, the 

result of the test is much less than the result of the primality 

test applied to the Mersenne numbers itself. Nevertheless, the 

SFP or WPP only requires to determine the power of the 

Mersenne number of the specified factor, and not the other 

factors. Therefore, the SFP and WPP can be investigated 

using existing algorithms for solving the discrete logarithm 

problem (DLP) [26], [27]. This can be accomplished, e.g., 

using classical algorithms, such as the baby-step giant-step 

(BSGS) algorithm [28], [29], developed by Shanks in 1969. 

In general, the DLP is 𝑚𝑛 ≡ 𝑎 (mod 𝑝) and delivers 𝑛 for a 

given 𝑚, 𝑎, and 𝑝. 

Herein, we consider our algorithm and BSGS algorithm in 

terms of time complexity. Using a hash table, the BSGS 

algorithm was improved from 𝑂(√𝑝 log 𝑝) to 𝑂(√𝑝) . 

However, the time complexity of our algorithm is 𝑂(𝑝 log 𝑝), 
which is less efficient than the BSGS algorithm. Nevertheless, 

for the WPP, the BSGS algorithm converges at a rate of 

𝑂(√𝑝2) = 𝑂(𝑝), which is an improvement over the previous 

convergence rate of 𝑂(√𝑝2 log 𝑝2) = 𝑂(𝑝 log 𝑝) . With 

Proposition 3.15, the inverse factorization for the WPP 

converges at a rate of 𝑂(𝑝 log 𝑝) + 𝑂(𝑝 log 𝑝) = 𝑂(𝑝 log 𝑝), 
whereas with Corollary 3.17, we achieve even 

𝑂(𝑝2 log 𝑝2) + 𝑂(1) = 𝑂(𝑝2 log 𝑝) . Therefore, the 

proposed algorithm based on Proposition 3.15 performs 

similar to the BSGS algorithm before improvement. 

Because gcd(2, 𝑝) = 1 , we can consider 2𝑛I ≡ 2𝑝−1 ≡
1 (mod 𝑝) a reduced residue class group (ℤ 𝑝ℤ⁄ )×. The order 

of the group is 𝑝 − 1. We can factorize 𝑝 − 1 with the known 

(numerical) factorization algorithm. Let 𝑝j  be prime, for 

Equation 26, we will be able to gain 𝑝 − 1 = ℎI𝑛I = 2ℎ1 ∙

3ℎ2 ∙ 5ℎ3 ∙ 7ℎ4 ∙ ⋯ ∙ 𝑝j
ℎj ≡ 𝑛I , ℎj ∈ ℕ ∪ {0} . Then, we can 

obtain 2𝑛I ≡ 1 (mod 𝑝) from a proper combination of these 

factors. First, the time complexity of factorizing the order of 

TABLE IV 
DETECTION OF WIEFERICH PRIME AND COMPOSITE NUMBERS   

Wieferich 

number 𝑝 

𝑛I 𝑛II 𝑛II − 𝑝 

1093 (prime) 364 364 −729 

3279 364 1092 −2187 

3511 (prime) 1755 1755 −1756 

7651 1092 1092 −6559 

10533 3510 3510 −7023 

14209 1092 1092 −13117 

17555 7020 7020 −10535 

22953 1092 1092 −21861 

31599 3510 3510 −28089 

42627 1092 1092 −41535 

45643 7020 7020 −38623 

52665 7020 7020 −45645 
68859 1092 9828 −59031 
94797 3510 31590 −63207 
99463 1092 1092 −98371 
127881 1092 9828 −118053 
136929 7020 7020 −129909 
157995 7020 7020 −150975 
228215 7020 7020 −221195 
298389 1092 1092 −297297 
410787 7020 7020 −403767 
473985 7020 63180 −410805 
684645 7020 7020 −677625 
895167 1092 9828 −885339 
1232361 7020 63180 −1169181 
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the group is 𝑂(√𝑝) for instance using trial division. Next, 

we consider the time complexity for search to obtain the 

exponent of the minimum Mersenne number. The maximum 

search amount is the case when all excluding ℎ1 are zero, 𝑝 =

2ℎ1 + 1 . Consequently, we can use binary search, 

𝑂(log ℎ1) = 𝑂(log log 𝑝) . To summarize, the worst time 

complexity is 𝑂(√𝑝) + 𝑂(log log 𝑝) = 𝑂(√𝑝) . This is a 

similar result to the BSGS algorithm after improvement, 

𝑂(𝑝) for the WPP. Moreover, to obtain the other factor, 𝑞 

requires to use division. Note that this procedure is different 

from our aim without (numerical) factorization. Table V 

summarizes the time complexity and output. 

Next, we discuss algorithms to improve the efficiency of 

the inverse factorization algorithm. For 2𝑛 − 1 ≡ 0 (mod 𝑝), 
assume a composite number such as 𝑛 = ℎ𝑛3 is on the same 

base 𝑚 = 2 , ℎ, 𝑛3 ∈ ℕ − {1} , with 2𝑛 = (2ℎ)𝑛3 ≡
1 (mod 𝑝). When inverse factorization is applied in the cell 

space with 𝑚 = 2ℎ as the base, the minimum exponent is 𝑛3, 

which is expected to be ℎ times more efficient. Thus, if 𝑚 =

2ℎ, as per its positional system, the Mersenne numbers are 

(2ℎ − 1)(2ℎ − 1)⋯ (2ℎ − 1). In general, in base 𝑚 , each 

digit of 𝑞  is obtained from {0, 1, … ,𝑚 − 1} , and the 

condition that satisfies all 𝑉𝑘 = 𝑚 − 1  is uniquely 

determined. When 𝑝 = 23,𝑚 = 2 is not a primitive root [30], 

[31] of 𝑝. For example, the results of inverse factorization 

with 𝑝 = 23 for bases 𝑚 = 2,3,4,5,6,7,8,9 are as follows: 

211 − 1 = 10111(2) × 1011001(2), 

311 − 1 = 212(3) × 101120021(3), 

411 − 1 = 113(4) × 230201121(4), 

522 − 1 = 43(5) × 102041332143424031123(5), 

611 − 1 = 35(6) × 1322030441(6), 

722 − 1 = 32(7) × 206251134364604155323(7), 

811 − 1 = 27(8) × 2620544131(8), 

911 − 1 = 25(9) × 3462311507(9), 

where 𝑝 = 23(10) = 10111(2) = 212(3) = 113(4) =

43(5) = 35(6) = 32(7) = 27(8) = 25(9), 

211 ≡ 311 ≡ 411 ≡ 522 ≡ 611 ≡ 722 ≡ 811 ≡ 911 ≡
1 (mod 23). However, when 𝑝 = 13, 𝑚 = 2 is a primitive 

root of 𝑝. For example, the results of the inverse factorization 

with 𝑝 = 13 for base 𝑚 = 2,3,4,5,6,7,8,9 are as follows: 

212 − 1 = 1101(2) × 100111011(2), 

33 − 1 = 111(3) × 2(3), 

46 − 1 = 31(4) × 10323(4), 

54 − 1 = 23(5) × 143(5), 

612 − 1 = 21(6) × 24340531215(6), 

712 − 1 = 16(7) × 35245631421(7), 

84 − 1 = 15(8) × 473(8), 

93 − 1 = 14(9) × 62(9), 

where 𝑝 = 13(10) = 1101(2) = 111(3) = 31(4) = 23(5) =

21(6) = 16(7) = 15(8) = 14(9) , 212 ≡ 33 ≡ 46 ≡ 54 ≡

612 ≡ 712 ≡ 84 ≡ 93 ≡ 1 (mod 13). These results indicate 

that multiple relationships exist between exponents obtained 

by inverse factorization for different bases 𝑚. For example, 

if 𝑚 = 2 is a primitive root of the specified factor 𝑝, 𝑝 − 1 

would be implied by Fermat’s little theorem [32]. If we do 

not know whether a number is a primitive root and if we can 

determine the proportionality coefficient of the exponent of 

𝑚 = 2, the efficiency should improve because reducing the 

number of cells reduces the number of sums required to 

calculate 𝜎𝑘. The base with 1 < ℎ ∈ ℕ and 𝑚 = 2ℎ performs 

the inverse factorization of the specified 𝑝  to obtain its 

exponent 𝑛3 . Excluding the instance when 𝑚 = 2 is not a 

primitive root and (𝑝 − 1) 𝑛3⁄ = ℎ, if (𝑝 − 1) 𝑛3⁄ = ℎ, 2𝑛 −

1 = 2ℎ𝑛3 − 1. If (𝑝 − 1) 𝑛3⁄ ≠ ℎ, we conjecture 2𝑛 − 1 =
2𝑛3 − 1. For example, in the case of 𝑝 = 23,𝑚 = 4, it fails. 

However, the larger the 𝑝  and the more bases 𝑚 = 2ℎ  we 

can select, the lower the probability of failure. Moreover, the 

generalization of the inverse factorization to any base, 𝑚 ∈
ℕ,𝑚 ≠ 1, is applied to repunits 𝑅𝑛 ∶= (𝑚

𝑛 − 1) (𝑚 − 1)⁄ =
𝑝𝑞 . Moreover, we can use repunits as repdigits 𝑔𝑅𝑛 =
𝑝(𝑔𝑞),𝑚 − 1 ≥ 𝑔 ∈ ℕ , where the Mersenne numbers are 

𝑚 = 2  and 𝑔 = 1 . The inverse factorization of repdigits 

expanded based on Algorithm 3.11 is shown to Algorithm 5.1. 

 

Algorithm 5.1: Inverse factorization of repdigits 

INPUT: Specify Base 𝑚  and an odd number 𝑝  that is a 

factor of the given repdigit, the coefficient 𝑔. 

OUTPUT: The decimal exponent 𝑛 of the repdigit with the 

decimal factor 𝑝, and another factor 𝑞 in base 
𝑚. 

1: Specify the divisor 𝑝(10) in decimal, and 𝑚,𝑔. 

2: Express 𝑝 in a 𝑚-adic expansion; i.e., a series expansion 

with term number 𝑙𝑏: 

𝑝(𝑚) = ∑ 𝑝y ∙ 𝑚
𝑦 = 𝑝𝑙𝑏−1 𝑝𝑙𝑏−2⋯  𝑝0 (𝑚)

𝑙𝑏−1
𝑦=0 . 

3: Assign each digit of 𝑝 in the base 𝑚 positional system to 

cell 𝑝y𝑞0 ∘ (0, 𝑦). 

For 𝑦 = 0 to 𝑙𝑏 − 1; 𝑙𝑏 − 1 = ⌊log𝑚 𝑝(10)⌋ 

 𝑝y ← 𝑝y; initial condition 

Next y 

4: Let 𝑅−1 = 0, 𝜎0 = 0, and 𝑇0 = 0. Let 𝑉𝑐 = null. 
5: For 𝑘 = 0 to 𝑝 − 1 

6: Determine 𝑞𝑘 under the condition 𝑉𝑘 = 𝑔; 

Note that any coefficient of a digit with 𝑘 greater 

than 𝑘𝑎 in the calculation is set to zero. 

  𝑇𝑘 ← 𝑅𝑘−1 + 𝜎𝑘 

For 𝑞𝑘 = 0 to 𝑚 − 1 

 If 𝑇𝑘 + 𝑝0𝑞𝑘 ≡ 𝑔 (𝑚𝑜𝑑 𝑚)  then, goto 7: 

Determine 𝑞𝑘. 

Next 𝑞𝑘 

7: Calculate 𝜎𝑘, 𝑇𝑘 , and 𝑅𝑘. Let 𝑉𝑐 = 1. 

For 𝑦 = 0 to 𝑙𝑏 − 1, 
Calculate 𝑝y𝑞𝑘. 

𝜎𝑘+𝑦 ← 𝜎𝑘+𝑦 + 𝑝y𝑞𝑘 , 

𝑇𝑘+𝑦 ← 𝑅𝑘+𝑦−1 + 𝜎𝑘+𝑦 , 

TABLE V 

 TIME COMPLEXITY AND OUTPUT 

 

Time 

Complexity 

Time 

Complexity 
for WPP 

Output 

Proposition 3.15 𝑂(𝑝 log 𝑝) 𝑂(𝑝 log 𝑝) 𝑛, 𝑞(2)  

Corollary 3.17 𝑂(𝑝 log 𝑝) 𝑂(𝑝2 log𝑝) 𝑛, 𝑞(2)  

BSGS after 
(hash table) 

𝑂(√𝑝) 𝑂(𝑝) 𝑛 

BSGS before 

(no hash table) 
𝑂(√𝑝 log 𝑝) 𝑂(𝑝 log 𝑝) 𝑛 

Trial division 

for 𝑝 − 1 
𝑂(√𝑝) 𝑂(𝑝) 𝑛 
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𝑅𝑘+𝑦 ← ⌊𝑇𝑘+𝑦 𝑚⁄ ⌋, 

𝑉𝑘+𝑦 ← 𝑇𝑘+𝑦 −𝑚 𝑅𝑘+𝑦 , 

8: This step is the preparation to examine the 

completion of the calculation using Corollary 

 3.8. 

If 𝑉𝑘+𝑦 = 𝑔 then 

𝑉𝑐 ← 𝑉𝑐 ∗ 𝑉𝑘+𝑦 𝑔⁄ . 

Else if 𝑉𝑘+𝑦 ≠ 𝑔 then 

  𝑉𝑐 ← 0 

End if 

Next y 

9: Get a string of divisors 𝑞(𝑚) and let arr(𝑘) be a string 

  variable. 

  If 𝐿𝑒𝑛(𝑞𝑘) = 1, then 

arr(𝑘) ← 𝑞𝑘& arr(𝑘), where “&” is the string 

concatenation operator. 

Else if 𝐿𝑒𝑛(𝑞𝑘) > 1, then: This function gets the 

length of the string. 

arr(𝑘) ← "("&𝑞𝑘& ")"& arr(𝑘): Notation 

by the positional system in 𝑚 > 10. 

End if 

10: Use Corollary 3.8 to examine the completion of the 

calculation. 

If 𝑉𝑐 = 1, and 𝑅𝑘+𝑙𝑏−1 = 0, then goto 12 

11: Next 𝑘 

12: Output 𝑛 = 𝑘 + 𝑙𝑏  

13: Output arr(𝑘) as 𝑞(𝑚), which is a positional system in 

base 𝑚 representation in order of decreasing exponent. 

Or convert 𝑞(𝑚) to decimal by using the binary expansion 

and output 𝑞(10). 

14: End 

 

Note that another factor 𝑞  in the inverse factorization 

generally differs for different bases. Let ℎ, ℎ′ ∈ ℕ and ℎ ≠ ℎ′. 
When the base 𝑚 = 2  is a primitive root of the specified 

factor 𝑝 , for any two bases 2ℎ  and 2ℎ
′
, the other factors 

obtained by the inverse factorization with a specified factor 𝑝 

are equal, i.e., 𝑞(2ℎ) = 𝑞(2ℎ′). Nevertheless, the relationship 

between 𝑞(2ℎ) and 𝑞(2ℎ′) is not equal in other cases. This is 

an improvement considering that the DLP does not require 

the identification of another factor 𝑞. Moreover, the ability to 

determine another factor that the DLP does not require 

indicates that there is a possibility of the application to the 

algorithm for factoring Mersenne numbers. However, another 

factor obtained using inverse factorization is binary, which 

we must be converted to decimal if necessary, as performed 

in Example 3.13. Depending on the size of 𝑞, this process 

increases computation time and creates overflow issues; 

therefore, it should be improved. Furthermore, depending on 

the computing environment, the BSGS algorithm can cause 

exponent calculation overflow, but not in the inverse 

factorization. 

The basic theory of inverse factorization is simpler than the 

BSGS algorithm, which requires advanced mathematical 

knowledge such as finite fields [28], [29] and group theory 

[28], [29]. Precisely, lattice multiplication [33] can be 

considered as an alternative to cell algebra. However, the 

proposed approach should reduce the barriers to entry and 

allow beginners to research the SFP and WPP. 

 

B. Application to encryption 

Recently, information security has become increasingly 

relevant; research has been conducted on the secure storage 

of passwords [34], the complex Vernam cipher [35], and the 

efficient key exchange protocol [36]. Note that inverse 

factorization of Mersenne numbers constitutes an encryption 

algorithm. In conventional block encryption, the plaintext is 

divided into multiple blocks with the same bit length and 

converted into ciphertext of the same bit length [37]–[40]. 

Moreover, encryption may be used multiple times to 

strengthen security. Furthermore, security may be 

strengthened by converting plaintext blocked to the same bit 

length into ciphertext of a different bit length, even if the text 

is encrypted only once. 

We now study whether this approach works for the inverse 

factorization of Mersenne numbers, which encrypts odd 𝑝 of 

plaintext to the other factor 𝑞. Moreover, the bit length of 

each block of the ciphertext is not the same, and so the bit 

length is increased to exceed that of the plaintext (Table V). 

When ciphertexts divided into blocks are concatenated, the 

bit length of each block is unknown, thereby making 

decryption difficult. Thus, the sequence of bit lengths of the 

ciphertexts is the decryption key. Therefore, we strengthen 

security against ciphertext-only attacks [41] because the 

attacker requires to divide each concatenated ciphertext to 

determine each bit length to decrypt. 

Note that this composite key has limited reusability and 

each plaintext block length is not a key. Information 

regarding the block lengths that divide the plaintext is 

unnecessary for decryption, and the block lengths can be 

changed. The decryption key sequence for the decryption is 

generated. This approach strengthens security against known-

plaintext attacks [42]. 

Moreover, we must ensure encryption. For example, we 

preprocess by adding 𝑤𝑝 =1 to the prefix and 𝑤𝑠 =1101(2) to 

the suffix of each divided plaintext. The former is a measure 

against digit loss, so 0100 is recognized as 100, and the latter 

is a measure against even numbers and the types of Mersenne 

and Fermat numbers, such as 1010101(2), 1001001(2), and 

110011(2). These cannot be decoded. When 𝑝  = 0100, the 

preprocessing to enable inverse factorization is 

𝑤𝑝&𝑝&𝑤𝑠 = 1&0100&1101 = 101001101(2). 

(𝑤𝑝, 𝑤𝑠) is the common key. 

Conventionally, Σ is the alphabet, the encryption function 

is Σ𝑙 → Σ𝑙 , 𝑙 ∈ ℕ  [31], but the inverse factorization of 

Mersenne numbers has the property Σ𝑙𝑏 → Σ𝑙𝑎 , 𝑙𝑎 , 𝑙𝑏 ∈ ℕ . 

Cases exist where 𝑙𝑎 ≤ 𝑙𝑏 , but cases where 𝑙𝑎 > 𝑙𝑏  are more 

prevalent in Table VI. 

Moreover, the post processing replaces one character of the 

first and last of the ciphertext with its equivalent of the 

plaintext. For instance, the inverse factorization of 

101001101(2)  is 1100010011001110000001111011(2) , 

which is replaced by 

0100010011001110000001111010(2) because the prefix 

and suffix of the plaintext 𝑝 are both 0. We simply write this 

postprocessing as 𝑤𝑐 =

[first character 𝑤𝑓 , last character 𝑤𝑙] , this case is 𝑤𝑐 =
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[0,0]. 
Figure 2 shows the flowchart for encryption using inverse 

factorization, which is detailed in Algorithm 5.3. Moreover, 

Example 5.2 is a simple example of enciphering. 

Example 5.2. The plaintext 𝒑(𝟐) =

𝟎𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟎 is divided into 3 bits to show the 

ciphertext 𝒒  by inverse factorization of Mersenne 

numbers, 𝒇~𝟏. Let prefix 𝒘𝒑 =1 and suffix 𝒘𝒔 =1101. 

Because 𝑝(2) = 010&011&101&111&001&0 , dividing 

each element block 𝑝j for j ∈ ℕ gives 

𝑝1 = 1&010&1101 = 10101101 = 173(10), 

𝑝2 = 1&011&1101 = 10111101 = 189(10), 

𝑝3 = 1&101&1101 = 11011101 = 221(10), 

𝑝4 = 1&111&1101 = 11111101 = 253(10), 

𝑝5 = 1&001&1101 = 10011101 = 157(10), 

𝑝6 = 1&0&1101 = 101101 = 45(10). 

Moreover, the postprocessings are 

𝑤𝑐1 = [0,0], 𝑤𝑐2 = [0,1], 𝑤𝑐3 = [1,1], 𝑤𝑐4 = [1,1], 𝑤𝑐5 =
[0,1], 𝑤𝑐6 = [0,0]. 

To encrypt, make 𝑝j and 𝑙𝑏j correspond to 𝑝 and 𝑙𝑏. As per 

Line 3 of Algorithm 3.11 for the inverse factorization of 

Mersenne numbers, we have 𝑞j, 𝑛j, and 𝑙𝑎j. Thus, 

𝑞1 = 101111010110100100010000010001110000011101

100110000110101010001011000110010010011111110100

001010010110111011111011100011111000100110011110

010101011101001110011011011, 𝑛1 = 172, 𝑙𝑎1 = 165, 

𝑞2 =10101101011, 𝑛2 = 18, 𝑙𝑎2 = 11, 

𝑞3 =10010100010001011, 𝑛3 = 24, 𝑙𝑎3 = 17, 

𝑞4 = 100000011000010010001101101010001111101011

110000110100100111011101100110001100101001011111

0001110101011, 𝑛4 = 110, 𝑙𝑎4 = 103, 

𝑞5 = 110100001011011010011111110010111101001001

011, 𝑛5 = 52, 𝑙𝑎5 = 45, 

𝑞6 =1011011, 𝑛6 = 12, 𝑙𝑎6 = 7. 

Therefore, the ciphertext is 

𝑤𝑐(𝑞(2))

= 𝑤𝑐1(𝑞1)&𝑤𝑐2(𝑞2)&𝑤𝑐3(𝑞3)&𝑤𝑐4(𝑞4)&𝑤𝑐5(𝑞5)&𝑤𝑐6(𝑞6)

= 

0011110101101001000100000100011100000111011001

100001101010100010110001100100100111111101000010

100101101110111110111000111110001001100111100101

010111010011100110110100010110101110010100010001

011100000011000010010001101101010001111101011110

000110100100111011101100110001100101001011111000

111010101101010000101101101001111111001011110100

10010110011010, 

and the decryption key sequence is 

𝑙𝑎1, 𝑙𝑎2, 𝑙𝑎3, 𝑙𝑎4, 𝑙𝑎5, 𝑙𝑎6 = 165, 11, 17, 103, 45, 7 . Thus, this 

example of 16 bits of plaintext produces an expanded 

ciphertext of 348 bits. 

 

Algorithm 5.3: Encryption using the inverse 

factorization of Mersenne numbers 

INPUT: A plaintext as a number 𝑝(2), its divided bits 𝑙, 

and common keys (𝑤𝑝, 𝑤𝑠). 

OUTPUT: The ciphertext 𝑞(2) and the decryption key 

sequence 𝐾𝑑 = 𝑙𝑎1, … , 𝑙𝑎𝜔 , where 𝜔  is the 

number of encryption blocks. 

1: Let j ∈ ℕ ∪ {0} be a count number, set initial value j =
0. 

2: Do 

3: Plaintext 𝑝(2) is divided into blocks of 𝑙 bits from the 

beginning and assigned to array variables 𝑝(j) in order. 

𝑝(2) = 𝑝1&𝑝2&⋯&𝑝j&⋯&𝑝𝜔 

𝑙𝑠 = j ∙ 𝑙 + 1 

𝑝(j) ⟵ Mid(𝑝(2), 𝑙𝑠 , 𝑙)  : A function that yields 𝑙 

pieces of character as a base 

point the 𝑙𝑠
th character from 

the left end of the string 𝑝(2). 

4: As the preprocessing, concatenate the prefix 𝑤𝑝  and 

the suffix 𝑤𝑠 into each plaintext 𝑝(j) block and 

assign it to 𝑝(j). 
  𝑝(j) ⟵ 𝑤𝑝&𝑝(j)&𝑤𝑠 

5: The bit length 𝑙𝑏 of 𝑝(j), 
𝑙𝑏j = ⌊log10 𝑝(j)⌋ + 1. 

6: Read the first and last characters of each plaintext for 

post processing: 𝑤𝑐j ∶= [𝑤𝑓(j), 𝑤𝑙(j)]. 

𝑤𝑓(j) ⟵ Left(𝑝j, 1) : Get one character from the left 

side of the 𝑝j string. 

  𝑤𝑙(j) ⟵ Right(𝑝j, 1) : Get one character from the 

 right side of the 𝑝j string. 

7: To encrypt, make 𝑝(j) and 𝑙𝑏j correspond to 𝑝 and 𝑙𝑏, 

to be taken from Line 3 of the Algorithm 3.11 for the 

inverse factorization of Mersenne numbers. 

(𝑛j, 𝑞j) = 𝑓
~1(𝑝j). 

8: Get element 𝑙aj of the encryption key sequence, 

 𝑙aj = 𝑛j − 𝑙𝑏j + 1 

9: j ⟵ j + 1 

10: Loop until 𝑝(j) = null: Iterates from Line 2 to Line 9 and 

exits the loop when 𝑝(j) is null. 

11:  𝜔 ⟵ j − 1 

12: Using the obtained ( 𝑙𝑎j, 𝑞j) , compound the ciphertext 

𝑞(2)  and the decryption key sequence 𝐾𝑑 =

𝑙𝑎1, 𝑙𝑎2, ⋯ , 𝑙𝑎𝜔. 

Let 𝐾𝑑 = null initially. 

For j = 1 to 𝜔 

𝑞j ← 𝑤𝑓(j) & Mid(𝑞j, 2, 𝑙𝑎j − 1) & 𝑤𝑙(j) ∶  𝑤𝑐j(𝑞j) 

 𝑞(2) ⟵ 𝑞(2)&𝑞j 

 𝐾𝑑 ⟵𝐾𝑑&", "&𝑙𝑎j 

 

TABLE VI 
BIT LENGTH OF CIPHERTEXT CORRESPONDING TO PLAINTEXT OF BIT LENGTH 6 

𝑝(2) 𝑞(2) 𝑙𝑎 

100001 11111 5 

100011 1110101 7 

100101 1101110101100111110010001010011 31 

100111 1101001 7 

101001 110001111100111 15 

101011 101111101 9 

101101 1011011 7 

101111 101011100100110001 18 

110001 1010011100101111 16 

110011 101 3 

110101 10011010100100001110011111011001010110111100011 47 

110111 100101001111001 15 

111001 1000111110111 13 

111011 10001010110110001111001011111011101010010011100001101 53 

111101 1000011001001011100010100111110111100110110100011101011 55 

111111 1 1 
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  Next j 
13: Output 𝑞(2) 

14: Output 𝐾𝑑 = 𝑙𝑎1, 𝑙𝑎2, ⋯ , 𝑙𝑎𝜔 . 

15: End 

 

The decryption is executed using the reverse process. First, 

using the decryption key, we can divide each element block 

of the ciphertext corresponding to the bit length. Next, read 

the first and last characters of each ciphertext; if any of these 

characters are 0, and replace them with 1. Then, executing as 

per Line 3 of Algorithm 3.11 for the inverse factorization of 

Mersenne numbers for each element block, we can obtain the 

plaintexts divided into blocks. Remove the prefix 𝑤𝑝  and 

suffix 𝑤𝑠  from the plaintext of each block. Finally, 

concatenating the block plaintexts in order, we can obtain the 

original plaintext. 

Considering the computational complexity of inverse 

factorization and that blocks of ciphertext are not sorted by 

bit length, we assume that decoding is attempted in the 

ascending order of bit length. Let the ciphertext be 𝑙𝑎  bits 

long. From the beginning of the block, the inverse 

factorization is performed bit by bit until the decipher 

succeeds, and then the inverse factorization is repeated. Next, 

we perform the same from the beginning of the next block. 

Let 𝑙𝑎0  be a unit bit and 𝑚𝑙𝑎0−1  be the ciphertext 

corresponding to the unit bit (herein, it is 

𝑚 = 2). If the 𝜔𝑗
th search can decrypt the jth block search, 

with 𝑧 ≤ 𝜔j ∈ ℕ being a parameter, the time complexity is 

𝑂(2𝑙𝑎0−1 log 2𝑙𝑎0−1) + 𝑂(22𝑙𝑎0−1 log 22𝑙𝑎0−1)

+ 𝑂(23𝑙𝑎0−1 log 23𝑙𝑎0−1) + ⋯

+ 𝑂(2𝜔j𝑙𝑎0−1 log 2𝜔j𝑙𝑎0−1) 

= ∑ 𝑂(2𝑧𝑙𝑎0−1 ∙ (𝑧𝑙𝑎0 − 1))
𝜔j
𝑧=1 = max

𝑧≤𝜔j∈ℕ
𝑂(𝑧𝑙𝑎0 ∙ 2

𝑧𝑙𝑎0). 

Therefore, set 𝑙𝑎0 = 1. If the ith search in this search of the 

jth block is the maximum computational load, the time 

complexity is max
𝑧≤𝜔j∈ℕ

𝑂(𝑧 ∙ 2𝑧) = 𝑂(𝑖 ∙ 2𝑖) . Then, the 

decryption load is dominated by the block with the maximum 

exponent 𝑛 of the discrete logarithm. Generally, there is a risk 

that the common key for block cipher with a fixed bit length 

𝑙  will be decrypted by an exhaustive search of 2𝑙  [37]. 

However, a cipher using the inverse factorization can have 

𝑧 ≤ 𝑙  such that 𝑧 ∙ 2𝑧 = 2𝑧+log 𝑧 ≥ 2𝑙 , so 𝑧 + log 𝑧 ≥ 𝑙.  If 
𝑧 = 𝑖 ≠ 𝜔j , the proposed cipher can decrypt without its 

dominant step because the receiver has the decryption key 

sequence. The bit length 𝑧 = 𝜔j  of the ciphertext can be 

generated from the plaintext with a smaller bit length. 

If the BSGS algorithm after improvement or factoring is 

used, the time complexity is 

∑ 𝑂(2𝑧/2)
𝜔j
𝑧=1 = max

𝑧≤𝜔j∈ℕ
𝑂(2𝑧/2) by similar consideration. 

Let the fixed bit length of the key of the conventional block 

cipher be 𝑙𝑇, and the mean bit length of the ciphertext by the 

inverse factorization be 𝑙𝐼. At least 𝑙𝐼 ≥ 2𝑙𝑇  to become more 

secure than conventional block ciphers under an exhaustive 

search is necessary for the inverse factorization cipher under 

exhaustive factorization attack. 

Encryption using the inverse factorization of Mersenne 

numbers is expected to be useful for encrypting short 

sentences because the bit length of plain text is extended. 

         
Fig. 2.  Flowchart for encryption using the inverse factorization of 
Mersenne numbers. 
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However, for a long sentence, an appropriate way to 

determine the bit lengths of the plaintexts and the prefix and 

suffix of the preprocessing such that the encryption 

processing time is within the practical range is a subject for 

future research. 

 

VI. CONCLUSION 

Because no theoretical solution is yet available for the 

SFP and WPP, one must depend on a computational solution. 

If the proposed inverse factorization obtains other Wieferich 

primes, then the WPP is a step closer to being solved. 

Moreover, if the exponent of the minimum Mersenne number 

with any Wieferich prime factor is prime, the SFP is solved 

as a counterexample. 

Thus, inverse factorization of Mersenne numbers is a 

hybrid approach of factorization and expansion. Although it 

seems to be less efficient than the classical DLP algorithm 

(the BSGS algorithm), the application of the proposed 

algorithm to the WPP produces results similar to those of the 

BSGS algorithm before the latter’s improvement in terms of 

time complexity. Moreover, this inverse factorization 

algorithm was generalized to repdigits, including Mersenne 

numbers. Improving the efficiency of the proposed algorithm 

is a potential research topic. Moreover, the question of 

whether the factorization algorithm may be improved by 

applying the inverse factorization computation in reverse 

remains open. 

Note that the practical applicability of the inverse 

factorization of Mersenne numbers as an encryption 

algorithm. As opposed to block ciphers, the proposed 

algorithm allows the bit length to be expanded. The bit 

lengths of plaintext require not be constant and do not serve 

as encryption keys. Thus, the sender and receiver require to 

not agree regarding the bit lengths of plaintext used as the 

encryption keys. By changing the plaintext block length, we 

can prevent the same plaintext from being encrypted into the 

same ciphertext. Another feature is that the decryption key 

cannot be used for other ciphertexts because it is prevented 

by nonlinearity between plaintext and ciphertext via the 

inverse factorization of Mersenne numbers. The block length 

of the ciphertext is the decryption key, and block lengths less 

than the decryption key have a block that maximizes the 

computation load, because of which the security is improved. 

However, to equate the security of conventional block ciphers 

under an exhaustive search and our suggested cipher under an 

exhaustive factorization attack, the mean bit length of the 

ciphertext should be at least more than twice that of 

conventional block ciphers. These features should allow the 

cipher systems to be developed based on the inverse 

factorization of Mersenne numbers. However, to maintain the 

encryption processing time within a practical range, an 

algorithm of balancing the bit length of the plaintext that has 

been divided and preprocessed with the total number of 

blocks, which will be a subject for future research.  It will 

be relevant to compare security with conventional 

cryptography and investigate techniques to strengthen 

encryption against other attacks. More secure encryption will 

be expected with the inverse factorization of repdigits. 

Finally, the cell space introduced in this study is an 

operation based on multiplication. The computation rules of 

the inverse factorization of Mersenne numbers are simple to 

understand, and it should lower the barrier to entry for 

beginners by allowing them to approach the topic without 

prior knowledge of finite fields or group theory. The concrete 

description of addition and investigations into the algebraic 

structure of the cell space are both subjects for future work. 
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