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Abstract—New market environments require warehouses to
shorten order response time and improve operational efficiency.
In this study, we combine the problems of layout optimization,
storage location assignment and picker routing to optimize or-
der picking systems. First, we propose an optimal detailed three-
dimensional (3D) design of a fishbone layout for a brownfield
warehouse project and ensure the minimum average distance
between all storage locations to the pick-up and deposit (P&D)
point. Then, according to the turnover-based and correlation
storage policies, we establish storage location assignment models
and apply the traveling salesman problem (TSP) to plan picker
routing. Third, we design a cooperative optimization algorithm
(COA) to solve multiple order picking planning problems,
which can improve the average optimal travel distance by 9%
with good reliability. In addition, the proposed COA has good
adaptability when solving practical issues. Finally, we find that
the fishbone layout can shorten the picking distance by 10-15%
without considering aisle congestion.

Index Terms—Fishbone layout, joint optimization, picker
routing, storage location assignment.

I. INTRODUCTION

CURRENTLY, the typical warehouse retains a traditional
layout, in which aisles and shelves are parallel or

vertical. However, the fishbone warehouse is also an im-
portant branch of warehouse research that scholars continue
to evaluate. Gue and Meller proposed the fishbone layout
with a single P&D point in 2009, which can be divided into
four zones (zone 1, 2, 3 and 4 in Fig. 1) according to the
location of the diagonal cross aisles, horizontal cross aisles
and vertical cross aisles [1]. They also found that when a
fishbone layout was used in a single-instruction unit loading
warehouse, the expected travel distance was reduced by 20%
compared with the traditional layout.

After the fishbone layout was proposed, scholars continued
to study it. Research in this field was focused on the
following three key areas:

(1) Verification of fishbone layout improving warehouse
operation efficiency under different conditions.

(2) Improvement of fishbone layout.
(3) Industrial application of the fishbone layout.
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Fig. 1. Definitions of zones of a fishbone layout

Although the research focuses are different, the core
purpose of most research is to improve warehouse operation
efficiency, specifically the minimization of order response
time, picking travel distance, picking time or other indicators.
The picking process takes up more than half of the total
operation time in a manual warehouse. Picking efficiency is
affected by warehouse layout, storage location assignment
and order batching, but there is still a lack of systematic
research on layout optimization, storage location assignment
and picker routing of fishbone layout warehouses.

In this paper, we present a combinatorial optimization
model that jointly optimizes fishbone layouts, storage lo-
cation assignment, and picker routes. We also design an
optimization algorithm to solve the models, including a
detailed design algorithm for a fishbone layout (DDA FL),
storage location assignment algorithm and picker routing
algorithm. We can input the warehouse size to obtain an
optimal design of fishbone layouts using DDA FL. We
compare the results of particle swarm optimization (PSO)
and gravitational search algorithm (GSA) in solving storage
location assignment and picker routing problems. Then, we
also design a combinatorial optimization algorithm (COA) to
solve the multiobjective optimization model proposed in this
research.

The remainder of this paper is organized as follows:
Section II reviews the literature on the research progress
of fishbone layout, warehouse storage problems and multi-
problem combinations in order picking systems. Section III
shows the combinatorial optimization model for the fishbone
layout, storage location assignment and picker routing. Sec-
tion IV describes the detailed design of the COA. Section
V analyses the advantages of the fishbone layout compared
with traditional layouts and algorithm performance through
a numerical example. Conclusions and future research are
then proposed in section VI.

II. LITERATURE REVIEW

After the fishbone layout was first proposed, many scholars
studied whether it could improve warehouse operation effi-
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ciency with different storage and operation policies. Com-
pared with traditional layouts, Pohl et al. found that the
fishbone layout can reduce 10-15% of the expected travel
distance under unit load warehouses with dual command
operations [2]. Pohl et al. also found that the fishbone layout
has similar improvements in warehouses with random or
turnover-based storage policies [3]. Çelk et al. also found that
improvement is affected by the uneven degree of demand and
the order size. They also indicated that the fishbone layout
might increase the expected travel distance by approximately
30% as the order size increases [4].

Scholars have proposed improvements to the fishbone
layout to improve efficiency, including the warehouse size,
the slope of the diagonal cross aisle, and aisle design. Gue
and Meller described the design principle of the fishbone
layout, in which the warehouse’s width (i.e., where the P&D
point is located) is twice its length, and the diagonal cross
aisles end at the corner of the warehouse [1]. Pohl et al.
also identified these design principles in a warehouse with
random and turnover-based storage policies [2], [3]. Cardona
et al. divided fishbone warehouses into greenfield ware-
house projects and brownfield warehouse projects [5]. The
greenfield warehouse project is built according to preferred
specifications, and the brownfield warehouse project has
already been built, but its best layout has to be determined.
Cardona et al. also built a nonlinear optimization model that
aimed to find the optimal slope of the diagonal cross aisle
to minimize costs. They found these design principles highly
effective in the greenfield warehouse project and proposed a
common method to calculate the best slope of the brownfield
warehouse project. Their experimental results showed that
the operational costs would not increase markedly, even if
the tilt angle deviated from the optimal value [5].

Due to the complex combination of aisles and shelves,
picker routing in the fishbone warehouse layout is a research
focus. Çelk et al. designed an exact algorithm for the picker
routing problem of fishbone warehouse layout [4]. Kumar
et al. found that mobile robots have more feasible paths in
the fishbone layout warehouse than the traditional layouts,
which means that the fishbone layout can reduce collisions
in an order picking system [6]. To reduce the total travel
distance, Öztürkoğlu et al. proposed three improved fishbone
layout schemes (Chevron, Leaf and Butterfly) for a fishbone
warehouse [7].

To promote the application of the fishbone layout in
the industry, Cardona et al. proposed a three-dimensional
detailed design method of the fishbone layout based on the
warehouse cost in different regions [8]. However, this method
is only applicable to greenfield warehouse projects. Because
there are many brownfield warehouse projects, we provide
another detailed layout as a supplement, which can generate
an optimal design of fishbone layouts in given warehouse
sizes.

The primary tasks of storage location assignment are deter-
mining the inventory strategy and storage location of items
according to the warehouse characteristics. Van Gils et al.
proposed that the decision of the order picking system can be
divided into strategic, tactical, and operational decisions, and
the decisions of storage location assignment influenced tacti-
cal decisions, such as batch decision, classification and picker
routing [9]. Researchers must use appropriate principles and

methods to locate items appropriately to improve picking
efficiency when assigning storage locations. Turnover-based
policy means that items with high turnover rates are allocated
closer to the P&D point, which can improve the operational
efficiency of warehouses [10], [11].

In recent years, with the development of e-commerce, the
responsiveness of order picking has been increasing. The
correlation storage policy has an important influence on the
picking operation by shortening the picking travel distance
by storing items with high correlation nearby [12]. The focus
of the correlation storage policy is on how to measure the
correlation values between items. There are two mainstream
methods to determine the correlation: (1) measuring the
correlation between items by the item occurrence in the same
order [13]–[15]; and (2) using a data mining algorithm to
analyze the demand association rules between items [16]–
[19]. Therefore, we present a model for the storage location
assignment according to the correlation storage policy and
turnover-based policy.

The new market environment requires the warehouse to
shorten order response time systematically. Van Gils et al.
found that the order picking operation can be effectively
managed by combining multiple order picking plan problems
[9]. According to the current research results, combinations
with better performances include storage location assignment
and order batching [20]–[22], storage location assignment
and picker routing [23]–[25], and order batching and picker
routing [26]–[28]. In this study, we combine the problems of
layout optimization, storage location assignment and picker
routing to optimize the order picking systems. We design
a novel COA with the elite retention strategy (Deb et al.
[29]), and then the results of sequential and combinatorial
optimization are compared.

III. MODEL DEVELOPMENT

This section describes three models that can be used to
solve the problems of optimal design of fishbone layouts,
storage location assignment and picker routing. We assume
a brownfield project of a warehouse that operates under the
following conditions:

(1) Only one order is picked in each picking operation;
thus, order batching problems are not considered in this
study.

(2) The storage location represents where items can be
stored.

(3) One-to-one correspondence between storage location
and items; thus, the same items can only be stored in one
storage location, and only one type of item can be stored in
one storage location.

(4) All storage locations have the same sizes, and all aisles
have the same width ap.

(5) Order pickers can pass through the aisles in both
directions, and aisle congestion is not considered.

(6) Vertical movements are not considered as they are out
of scope in this study.

The nomenclature used in this research is shown in Table
I.

A. Design of the fishbone layouts
We develop a nonlinear model to obtain the optimal

detailed 3D design of the fishbone layouts. This section
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TABLE I
PARAMETERS AND VARIABLES

Symbol Parameter description

Indices and sets:

s ∈ S = {1, 2, · · · , N} Storage location index

p ∈ P = {1, 2, · · · ,M} Items index

l ∈ L = {1, 2, · · · , L} Order index

Ol, l ∈ L Item set for order l

Parameters:

N Total number of storage locations in a fishbone layout

C Required storage capacity

Douts Distance from picking point s to P&D point, calculation method is shown in Appendix A

Ds1s2 , s1 ∈ S, s2 ∈ S Distance from picking point s1 to s2, calculation method is shown in Appendix A

CorLp1p2
, p1 ∈ P, p2 ∈ P Correlation of Item p1 and p2, when CorLp1p2

= 1, there is a high level of correlation value between Item p1 and Item p2, otherwise CorLp1p2
= 0

Qp, p ∈ P Turnover rate of Item p

s0 P&D point

Decision variables:

m Slope of diagonal cross aisle

Xps, p ∈ P, s ∈ S WhenXps = 1, Item p is stored in storage location s, otherwise Xps = 0

Yl,p1p2 , l ∈ L, p1, p2 ∈ {s0, Ol} When Yl,p1p2 = 1, picker picks Item p1 at first and then picks Item p2, otherwise Yl,p1p2 = 0

will also introduce the definition, calculation and output of
parameters.
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Fig. 2. Standard geometry of fishbone layouts

1) Definition of parameters: Cardona et al. [8] have
defined a standard geometry for the fishbone layout, and
we use their definition in this study. Parameters of the
fishbone layout are shown in Fig. 2, including the sizes of
the warehouse A, B, the width of all aisles ap, the angle
of diagonal cross aisles θ, the sizes of the storage locations
(length, width and height: el, ew, eh), the number of shelf
layers τ and the sizes of each zone α → (α1, α2, α3, α4),
β → (β1, β2, β3, β4).

2) Calculation of parameters: Determining the right angle
for the diagonal cross aisles is an important issue in com-
pleting the design of a fishbone layout. Fig. 3 shows that
different angles have different fishbone layouts, which can
influence operation efficiency. According to the relationship
between θ and (α1, β1, α2, β2), we calculate α1, β1 under
the condition of m ≤ B/α1 and m > B/α1, and α2, β2

under the condition of m ≤ β2/A and m > β2/A. Methods
for calculating these parameters of the model are described
as follows.

Step1: Considering that each area must contain a certain
number of storage locations, we calculate the slope of the

diagonal crossing channel and define its domain as:

m = tan(θ),m ∈
{
m

∣∣∣(A− ap
2m

√
1 +m2 − el

)
m ≥ ew

∧
(
B − ap

2

√
1 +m2 − el

) 1

m
≥ ew

}
(1)

Step2: The sizes of each zone,α→ (α1, α2, α3, α4), β →
(β1, β2, β3, β4)are as follows:

α1 = A− ap
2m

√
1 +m2, β1 =


mα1,m ≤

B

α1

B,
B

α1
< m

α2 =


A,m ≤ β2

A
β2

m
,
β2

A
< m

, β2 = B − ap
2

√
1 +m2

α3 = α2, β3 = β2

α4 = α1, β4 = β1

(2)

α1

β1

A

β2

α2

B

β2

α2

α1

β1

Zone 1 Zone 1
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Fig. 3. Different angles of diagonal cross aisles for the fishbone layouts

Step3: The number of lines (columns) in each zone (i =
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1, 2, 3, 4), ni is as follows:

ni=


max

q
(qew+

q − 1

2
ap≤βi), i=1∨ i=4, in zone 1 or 4

max
q

(qew+
q − 1

2
ap≤αi), i=2∨ i=3, in zone 2 or 3

(3)
Step4: The number of storage locations per line j =

1, 2, · · · , ni in each zone, ωij is as follows:

ωij =

{
ω1j , i = 1 ∨ i = 4, in zone 1 or 4
ω2j , i = 2 ∨ i = 3, in zone 2 or 3

(4)


ω1j =

⌊
1

mel

[
α1m− jew −

ap
4
(2j − 3− (−1)j

]⌋
ω2j =

⌊
m

el

[
β2

m
− jew −

ap
4
(2j − 3− (−1)j

]⌋ (5)

Step5: Storage locations Oijkt(xijkt, yijkt, zijkt) and
picking points Opijkt(xpijkt, ypijkt, zpijkt) are shown in
Fig. 4, and i ∈ {1, 2, 3, 4}, 0 ≤ j ≤ ni, 0 ≤ k ≤ ωij ,
0 ≤ t ≤ τ , j, k, t ∈ N∗,

x1jkt = −x4jkt, y1jkt = y4jkt,

xp1jkt = −xp4jkt, yp1jkt = yp4jkt,

x2jkt = −x3jkt, y2jkt = y3jkt,

xp2jkt = −xp3jkt, yp2jkt = yp3jkt, (6)



x1jkt = A− (k − 1

2
)el +

ap
2
, xp1jkt = x1jkt

y1jkt = (j − 1

2
)ew + [2j − 1− (−1)j ]ap

4
yp1jkt = y1jkt + (−1)j(ew

2
+

ap
4
)

x2jkt = (j − 1

2
)ew + [2j − 1− (−1)j ]ap

4
xp2jkt = x2jkt + (−1)j(ew

2
+

ap
4
)

y2jkt = B − (k − 1

2
)el +

ap
2
, yp2jkt = y2jkt

zijkt = e0 + eh(t− 1), zpijkt = 0

(7)

ap/2

P&D
k=1k=2

j=1

j=2

x

y

Fig. 4. Coordinate system of fishbone layouts

3) Model building: Based on the definition and parame-
ters, we establish a layout optimization model that minimizes
the average distance between all storage locations and P&D
points:

• Objective function:

min f1 =
1

N

∑
s∈S

Douts (8)

• s.t.:
N − C ≥ 0 (9)

N = τ
4∑

i=1

ni∑
j=1

ωij (10)

The objective function (8) minimizes the average distance
from storage locations to the P&D point. Constraint (9)
ensures that the total number of storage locations in the
fishbone warehouse exceeds the desired storage capacity.
Constraint (10) calculates the fishbone warehouse’s total
number of storage locations.

B. Optimization model for storage location assignment

Based on the turnover-based policy and correlation storage
policy, we formulate the following mathematical model for
storage location assignment:

• Objective function:

min f2 = β1

∑
p∈P

∑
s∈S

XpsDpQp + β2y1 − β3y2,

β1 + β2 + β3 = 1 (11)

• s.t.:

CorLp1p2
Xp1s1Xp2s2Ds1s2 ≤ y1

∀p1, p2 ∈ P,∀s1, s2 ∈ S (12)

(1− CorLp1p2
)
2Xp1s1Xp2s2Ds1s2

Qp1 +Qp2

≥ y2

∀p1, p2 ∈ P,∀s1, s2 ∈ S (13)∑
s∈S

Xps = 1,∀p ∈ P (14)

∑
p∈P

Xps ≤ 1,∀s ∈ S (15)

Xps ∈ {0, 1} ,∀p ∈ P,∀s ∈ S (16)

The objective function (11) consists of three parts: the
first part ensures that items with a higher turnover rate are
stored in the storage locations closer to the P&D point
according to turnover-based policy. The second part makes
items with higher correlation values store closer according
to the correlation storage policy. To reduce aisle congestion,
the third part is to make items with low correlations but
high turnover rates far away from each other. Constraint (12)
calculates the farthest distance between any two items whose
level of correlation is 1. Constraint (13) makes items with
zero correlations and high turnover rates to be far away to
reduce aisle congestion. Constraint (14) ensures that only one
item can be stored in one storage location. Constraint (15)
ensures that a storage location stores only one item at most.
Constraint (16) defines the domains of the decision variables.

C. Optimization model for picker routing

In this section, we formulate a mathematical model for
the picker routing problem based on the traveling salesman
problem (TSP):
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• Objective function:

minf3=
∑
l∈L

∑
p1∈{s0,Ol}

∑
p2∈{s0,Ol}

Yl,p1p2Xp1s1Xp2s2Ds1s2

(17)
• s.t.: ∑

p1∈{s0,Ol},p1 ̸=p2

Yl,p1p2
= 1,∀l ∈ L, p2 ∈ {s0, Ol}

(18)∑
p2∈{s0,Ol},p1 ̸=p2

Yl,p1p2 = 1,∀l ∈ L, p1 ∈ {s0, Ol}

(19)

up1
− up2

+ |Ol|Yl,p1p2
≤ |Ol| − 1

∀l ∈ L, p1 ̸= p2, p1, p2 ∈ Ol (20)

Yl,p1p2
∈ {0, 1},∀l ∈ L, p1, p2 ∈ {s0, Ol} (21)

The objective function (17) minimizes the expected travel
distance to finish order picking. Constraints (18) and (19)
ensure that the order pickers pick every item only once in an
assignment. Constraint (20) eliminates subloops in a route
by adopting methods proposed by Miller et al. and the up

are arbitrary real numbers [30]–[33]. Constraint (21) defines
the domains of the decision variables.

IV. HEURISTIC ALGORITHM DESIGN

To solve the three optimization models presented in Sec-
tion III, three algorithms have been designed under the
framework of gravitational search algorithm (GSA), includ-
ing a detailed design algorithm of fishbone layout, storage
location assignment algorithm and picker routing algorithm,
which can operate independently. Then, we combine the
three algorithms to obtain a COA using the cooperative
optimization idea and the elite retention strategy.

According to Newton’s law of motion and gravity, GSA is
a heuristic search algorithm designed by Rashedi et al. [34].
GSA constructs an independent system that obeys Newton’s
law of motion and gravity. Every agent has its mass in the
system, and they can attract each other through attraction.
Therefore, all the agents travel near the heaviest agent, which
uses the exploration and optimization portions of the algo-
rithm during the iterative process. Khan et al. [35] indicate
that GSA is adept at optimal global search, but its search
speed decreases in the later stage of iteration. GSA can also
solve a wide range of problems with a fixed small population,
which can markedly reduce computational complexity [34].
This section introduces the proposed algorithms, including
three that can run separately and a cooperative optimization
algorithm.

A. Detailed design algorithm of fishbone layouts

First, we design Algorithm 1 to solve the optimization
model proposed in Section III-A, which generates an optimal
design of the fishbone layout. The input parameters are
presented in Section III-A, and the output parameters include
the number of lines per zone ni, the number of storage
locations per row (column) per zone ωij , the coordinates
of all storage locations Oijkt and picking points Opijkt, the

distance matrices between picking points D and the distance
matrices from the picking point to the P&D point Dout.

Algorithm 1 Detailed design of the fishbone layout
Input: θ,A,B, ap, el, ew, eh, e0, τ

Output: m,α, β, ni, ωij , [Oijkt, Opijkt] , [Dout, D]

1: procedure DETAILED DESIGN(θ,A,B,ap,el,ew,eh,e0,τ )
2: m← CalculateAngle(A,B, ap, el, ew, θ)

▷ Eq. (1)
3: (α, β)← CalculateSize(A,B,m, ap) ▷ Eq. (2)
4: ni ← CalculateNi(α, β, ap, ew) ▷ Eq. (3)
5: ωij ← CalculateLocations(m,A,B, α, β, ap, ni,

ew, el)

▷ Eq. (4)(5)
6: [Oijkt(xijkt,yijkt,zijkt), Opijkt(xpijkt,ypijkt,zpijkt)]

← CalculateCoordinate(ni, ωij , A,B, ap, el, ew,

eh, e0, τ)

▷ Eq. (6)(7)
7: [Dout, D]← CalculateDistance(ni, ωij , A,B, α,

β, ap, el, ew, eh, e0, τ, Oijkt, Opijkt)

▷ Appendix A
8: end procedure

Second, the optimization model presented in Section III-
A is nonlinear, and the decision variable is a continuous
random variable. We propose a GSA to solve the detailed
design of the fishbone layout (DDA FL GSA). All agents
have position and velocity parameters in DDA FL GSA.
The custom part of the proposed algorithm focuses on the
initialization and updating of parameters.

The initialization procedure uses a random strategy to
generate agents from the solution domain, but agents cre-
ated in this way may not meet the constraint of Eq. (9).
Similarly, the problem also exists when agents are updated.
We design Algorithm 2 to check agents that do not meet the
constraint and replace them to solve the problem. For further
information on GSA, refer to Rashedi et al. [34].

Algorithm 2 Check procedure
Input: Pk ▷ Pk : position and parameters
Output: Pk

1: function CHECK(Pk)
2: for k ← 1,K do ▷ Iterate over all the agents
3: S←DetailedDesign(Pk,A,B,ap,el,ew,eh,τ)

▷ Calculate S

4: while S < C do
5: Pk = Pk + σ ▷ Replacement
6: S←DetailedDesign(Pk,A,B,ap,el,ew,eh,τ)

7: end while
8: end for
9: return Pk

10: end function
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Fig. 5. Evolutionary process of the best solution. (a) Scenario 1 with 106 items in the warehouse. (b) Scenario 2 with 156 items in the warehouse. (c)
Scenario 3 with 19 items in one order. (d) Scenario 4 with 73 items in one order

B. Storage location assignment and picker routing algo-
rithms

The storage location assignment problem (SLAP) and
picker routing problems (PRP) are NP-hard due to changes
caused by item quantity and warehouse characteristics [36].
Therefore, we first use the PSO and GSA [35], [37] to solve
the SLAP and PRP. The experimental results are shown in
Fig. 5. For each instance in Fig. 5 (a, b), the objective
function of SLAP computed by GSA is superior to that
based on PSO at the same stage, and there is a large
gap between the objective function computed by GSA and
PSO. In addition, the GSA converges to the best solution
within a few iterations. The experimental results in Fig. 5
(c, d) show that GSA has many advantages in finding better
solutions and speeding up convergence compared with PSO
as the scale of the problem grows. Therefore, we design
the storage location assignment algorithm (SLAA GSA) and
picker routing algorithm (PRA GSA) in the framework of
GSA, and the flowcharts of SLAA GSA and PRA GSA are
shown in Fig. 6.

The process of SLAA GSA is explained as follows: we
set the parameters, input a design of the fishbone layout,
and initialize population position and speed parameters first.
Decoding is completed using the roulette method, and the
fitness values of the agents are calculated according to Eq.
(11). SLAA GSA can search for the best global and local
agents based on the fitness values in the population and

update the parameters and population according to GSA. The
optimal scheme for storage location assignment is output
when the termination criterion is met. SLAA GSA and
PRA GSA are similar. Some of the differences between
SLAA GSA and PRA GSA are as follows:

(1) In PRA GSA, we must input the optimal scheme for
storage location assignment generated by SLAA GSA.

(2) We use the roulette method to obtain a feasible scheme
for picker routing.

(3) The fitness values of the agents are calculated accord-
ing to Eq. (17).

(4) The output of PRA GSA is the optimal scheme for
picker routing.

C. Cooperative Optimization Algorithm

In this section, we present a novel COA based on the com-
bination of three algorithms (DDA FL GSA, SLAA GSA
and PRA GSA). We found that the solution time of
PRA GSA increases markedly with increasing order size.
Therefore, if the above three algorithms are combined se-
quentially or side by side, the computational complexity will
exponentially increase exponentially during evolution. We
screen out the best global solution during evolution using the
elite retention strategy to reduce computational complexity.
After obtaining the optimal design of the fishbone layout
and the best local scheme for storage location assignment,
we calculate the expected travel distance of the local optimal
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Fig. 6. Flowcharts of SLAA GSA and PRA GSA

scheme for picker routing as the local optimal expected travel
distance by COA (Fig. 7). The proposed elite retention strat-
egy retains the scheme for storage location assignment with
the minimum expected travel distance. Then, the scheme for
storage location assignment retained is inserted into an agent
in the initial population of SLAA GSA by a random strategy
as a parameter. The process is repeated until termination
criteria are met.

V. NUMERICAL EXAMPLE AND DISCUSSION

In this study, the numerical examples focus on a retail
warehouse. The numerical example includes five datasets
((40-106), (60-126), (80-132), (100-146) and (120-156)) that
include the number of orders and items in the warehouse. The
analysis of the optimal slope of diagonal cross aisles for the
fishbone layout is presented in Section V-A. We set the width
(i.e., where the P&D point is located) of the warehouse to
twice its length and the diagonal cross aisles end at the top
corner of the warehouse. We performed these experiments
on a computer with an Intel(R) Core (TM) I5-8300H CPU
@2.30.

A. Analysis of the optimal slope in the fishbone layout

The most important characteristic of the fishbone layout is
that it has two diagonal cross aisles compared with traditional
layouts; thus, determining the optimal slope is key to achiev-
ing an optimal fishbone layout design. We can divide the

layout design into two types, greenfield warehouse projects
and brownfield warehouse projects, which are introduced in
Section II. In brownfield warehouse projects, we use discrete
representations to build a model that can find the optimal
slope to supplement the literature [3], [5], [8].

As shown in Table II, we simulated 30 warehouses with
different storage capacities to verify the reliability of the
proposed method, and these warehouses met the condition
of A = B.

We also executed GA, GSA and PSO to find the optimal
value of m, and the results are shown in Fig. 8 (a, b). The
optimal values of m are approximately 1 in most warehouses
obtained by the three algorithms. The deviation is less than
0.041375 in more than 90% of cases and primarily appears
in small scenarios. In Fig. 8 (c, d), the deviation between
the optimal value of m obtained by the three algorithms and
m = 1 on the average distance f1 is less than 0.454%. These
results indicate that the model proposed in this study is easier
to solve and has good stability.

In addition to the warehouse with A = B, there are
different types of warehouses with different B/A. We sim-
ulated 200 warehouses (0 < B/A < 2) with different
storage capacities (in each B/A, there are ten warehouses
with storage capacity from 1000 to 40000) and then com-
pared the result with the optimal slope by Cardona et al.
[5] in Fig. 9 (a). The gap between the optimal slope by
DDA FL GSA that has a marginal advantage in solving
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the optimal slope, and the method of Cardona et al. [5]
is small when B/A approaches 1, but the gap becomes
larger as the B/A increases or decreases. The reason for this
difference is due to the difference in spatial representation,
considered factors and model solving method. Cardona et al.
[5] established an optimization model with continuous spatial
expression, in which the influence of aisles was ignored.
However, we developed an optimization model with discrete
spatial expression while considering the effects of the aisles.
Simulation results show some differences in the optimal

slope even in the same B/A with different warehouse sizes.
As shown in Fig. 9 (b), the optimal slope solved by the
proposed method can shorten the average distance between
all storage locations and the P&D point. These results show
that it is not necessary to calculate the optimal slope for
different B/A. The proposed optimal model can be used to
make specific decisions regarding the fishbone warehouse
layout.
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Fig. 7. Flowchart of the cooperative optimization algorithm

TABLE II
STORAGE CAPACITY OF 30 WAREHOUSES

1 2 3 4 5 6 7 8 9 10

Small scenarios 1620 2088 2604 3168 3816 4500 5232 6048 6900 7824

Medium scenarios 8796 9828 10920 12060 13260 14520 15852 17208 18648 20148

Large scenarios 21672 23280 24948 26664 28428 30276 32160 34092 36108 38160
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Fig. 9. Comparison of the optimal slopes and the average distance f1 between all storage locations and the P&D point

B. Algorithm performance

This section analyzes the performance of the COA from
two perspectives. First, we analyze the advantages of COA
by observing the evolutionary process. Then, we compare
the COA with the traditional algorithm.

We compare the evolution process of the optimal objective
function value calculated by COA GSA and COA PSO (Fig.
10). COA GSA and COA PSO are combinatorial optimiza-

tion algorithms based on the GSA and PSO frameworks,
respectively. As shown in Fig. 10 (a), for each numerical
example, COA GSA has better global search capabilities
than COA PSO, particularly in the optimal objective func-
tion value of the storage location assignment. The fluctuation
of the optimal objective function of COA GSA means it has
a wider space to search for a better solution than the current
optimal solution. In addition, COA GSA converges to the

IAENG International Journal of Computer Science, 49:3, IJCS_49_3_33

Volume 49, Issue 3: September 2022

 
______________________________________________________________________________________ 



0 50 100 150 200 250 300 350 400 450 500
7.5

8.0

8.5

9.0

9.5

10.0
 COA_PSO
 COA_GSA

Iterations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
of

 S
LA

P
(a)

0 50 100 150 200 250 300 350 400 450 500
4200

4400

4600

4800

5000

5200

Iterations

Tr
av

el
 D

is
ta

nc
e 

of
 P

R
P  COA_PSO

 COA_GSA

(b)

Fig. 10. Evolutionary process of the algorithms. (a) Contemporary optimal value of the objective function f2 of storage allocation. (b) Evolutionary
process of picking the optimal value of the travel distance f3

optimal solution within a smaller number of iterations than
COA PSO. In total, the the experimental results show that
COA GSA has advantages in finding better solutions and
speeding up convergence.

We also compared the results of COA GSA with
the sequential optimization algorithm (SOA GSA), whose
flowchart is shown in Fig. 11. Table III and Table IV report
comparisons of the optimal objective function value of Eq.
(11) and the optimal expected travel distance calculated
by Eq. (17). Better results are marked in bold. PE(%) is
calculated by Eq. (22) [38], which is used to evaluate the
robustness of COA GSA and SOA GSA. impro(%) is used
to evaluate the performance of COA GSA and SOA GSA,
which is calculated by Eq. (23). From the result of the
objective function value of the storage location assignment,
COA GSA has a better optimization value than SOA GSA.
The average optimal value is improved by 5-10% (Table III).
In addition, COA GSA achieves better robustness, which can
ensure the stability of the solution. In the travel distance of
picking, COA GSA also has a stronger optimization ability,
and the average optimal value is decreased by more than
9% compared with SOA GSA (Table IV). The robustness of
COA GSA is weakened in picker routing problems because
COA GSA must explore the combinatorial solution of two
problems. In total, COA PSO achieves global optimization
and robust capability improvement at the expense of the
robust performance of picking route planning problems,
particularly in large-scale cases, which indicates that the pro-
posed method has practical significance in further improving
warehouse operation efficiency. The calculation method of
some relevant indicators is as follows:

PE(%) =
average− best

best
× 100% (22)

best impro(%) =
SOA best− COA best

SOA best
× 100%

average impro(%) =
SOA average− COA average

SOA average

× 100% (23)
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Fig. 11. Flowchart of the sequential optimization algorithm

C. Comparisons between fishbone layout and traditional
layout

This section discusses the differences between the tradi-
tional layout (Fig. 12) and the fishbone layout. We simulated
two layouts in the same experimental environment.

We divided the objective function of Eq. (11) into Part 1,
Part 2 and Part 3, then summed them by setting β1 = 0.6,
β2 = 0.2, β3 = 0.2, which are shown in Table V. Part 1
ensures that items with higher turnover rates are assigned
closer to the P&D point. The fishbone layout performed
markedly better than the traditional layout in Part 1, which
indicates that we can use the fishbone layout to reduce the
operating distance markedly in unit load warehouses with
single command operations. Part 2 makes items with higher
correlations be stored closer according to the correlation
storage policy. From the results of Table V, the fishbone
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TABLE III
COMPARISON OF THE OBJECTIVE FUNCTION f2 OF STORAGE LOCATION ASSIGNMENT BETWEEN SOA GSA AND COA GSA

SOA GSA COA GSA

best average PE(%) best impro(%) average impro(%) PE(%)

40-106 7.50 8.52 13.54% 7.44 0.76% 7.72 9.32% 3.75%
60-126 7.74 8.56 10.56% 7.39 4.54% 7.78 9.04% 5.34%
80-132 8.37 9.18 9.66% 8.02 4.24% 8.70 5.24% 8.52%
100-146 9.18 10.00 8.93% 8.82 3.94% 9.07 9.26% 2.90%
120-156 9.01 10.12 12.39% 9.02 -0.19% 9.16 9.49% 1.52%

TABLE IV
COMPARISONS OF THE TRAVEL DISTANCE f3 OF ROUTING PLANNING BETWEEN SOA GSA AND COA GSA

SOA GSA COA GSA

best average PE(%) best impro(%) average impro(%) PE(%)

40-106 2958.85 2997.99 1.32% 2715.88 8.21% 2820.00 5.94% 3.83%

60-126 5021.37 5085.64 1.28% 4126.81 17.82% 4474.17 12.02% 8.42%

80-132 6651.15 6687.40 0.55% 5809.49 12.65% 6498.41 2.83% 11.86%

100-146 8962.20 9022.25 0.67% 7793.25 13.04% 8078.08 10.46% 3.65%

120-156 11632.32 11739.84 0.92% 9649.07 17.05% 9980.01 14.99% 3.43%

TABLE V
SIMULATION RESULTS OF FISHBONE LAYOUT AND TRADITIONAL LAYOUTS (β1 = 0.6, β2 = 0.2, β3 = 0.2)

Traditional layout Fishbone layout

f2 of storage location assignment Travel distance f2 of storage location assignment Travel distance

Part 1 Part 2 Part 3 Sum Part 1 Part 2 Part 3 Sum impro(%)

40-106 17.90 31.85 29.07 11.29 3313.10 5.91 35.07 14.19 7.72 2820.00 14.88%
60-126 17.99 33.10 31.31 11.15 5284.90 6.14 35.05 14.55 7.78 4474.17 15.34%
80-132 17.56 32.85 29.80 11.15 7697.25 6.77 37.48 14.28 8.70 6498.41 15.57%

100-146 19.54 35.65 31.57 12.55 9591.40 7.11 38.92 14.89 9.07 8078.08 15.78%
120-156 18.82 35.75 31.66 12.11 11355.05 7.08 39.49 14.91 9.16 9980.01 12.11%

ap/2
ap/2

P&D x

y

Fig. 12. Traditional layout

layout exhibits no advantage in Part 2. Part 3 is calculated
by Eq. (13), and the original intention of setting this part
is to reduce aisle congestion. However, results show that
the fishbone layout is a risk factor for increasing aisle
congestion compared with the traditional layout. If we don’t
consider aisle congestion, the average pickers’ travel distance
of fishbone layout is reduced by approximately 10-15%
compared to the traditional layout.

To analyze the difference between the fishbone layout
and the traditional layout of the three parts of the objective
function f2 in more detail, we simulated different weight
combinations (β1, β2 and β3) in Table VI. The results are
shown in Table VII and Fig. 13. We can find that under

different weight coefficient combinations, the comparison
results of function f2 in the two different layouts agree with
those of (β1 = 0.6, β2 = 0.2, β3 = 0.2).

TABLE VI
DIFFERENT WEIGHT COMBINATIONS

No. β1 β2 β3 No. β1 β2 β3

1 0.00 0.00 1.00 9 0.25 0.75 0.00

2 0.00 0.25 0.75 10 0.50 0.00 0.50

3 0.00 0.50 0.50 11 0.50 0.25 0.25

4 0.00 0.75 0.25 12 0.50 0.50 0.00

5 0.00 1.00 0.00 13 0.75 0.00 0.25

6 0.25 0.00 0.75 14 0.75 0.25 0.00

7 0.25 0.25 0.50 15 1.00 0.00 0.00

8 0.25 0.50 0.25 - - - -

VI. CONCLUSIONS AND FUTURE RESEARCH

Scholars have conducted many theoretical and practical
studies to improve warehouse layout schemes, operation
efficiency, and industrial applications. In this study, we
investigate the optimization of fishbone layout warehouses.

First, based on the comprehensive optimization of picking
systems, this study extends the optimization problem of
fishbone-layout warehouses to the integration optimization
of layout, storage location assignment and picker routing.
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TABLE VII
COMPARISON OF OBJECTIVE FUNCTION f2 BETWEEN THE TRADITIONAL LAYOUT AND THE FISHBONE LAYOUT IN DATASET, 120-156

Fishbone layout Traditional layout

No. β1 β2 β3 Sum Part1 Part2 Part3 sum Part1 Part2 Part3

1 0.00 0.00 1.00 -16.32 15.81 44.33 16.32 -32.60 26.56 39.90 32.60
2 0.00 0.25 0.75 -2.40 15.72 38.64 16.09 -15.21 26.36 35.70 32.18
3 0.00 0.50 0.50 10.85 15.22 37.67 15.97 1.48 26.49 34.70 31.74
4 0.00 0.75 0.25 23.91 15.25 37.05 15.51 17.53 26.07 33.92 31.62
5 0.00 1.00 0.00 36.15 15.07 36.15 14.02 32.40 26.39 32.40 28.09
6 0.10 0.10 0.80 -7.68 12.32 40.01 16.14 -19.69 24.45 37.45 32.35
7 0.10 0.25 0.65 0.47 13.28 38.10 15.98 -9.46 24.92 35.57 32.06
8 0.10 0.40 0.50 8.50 13.13 37.79 15.86 0.46 25.41 34.53 31.78
9 0.10 0.55 0.35 16.01 12.68 36.88 15.82 10.31 25.29 34.27 31.61

10 0.10 0.70 0.20 23.74 13.13 36.50 15.62 19.59 23.97 33.55 31.44
11 0.10 0.85 0.05 31.41 13.73 36.22 15.00 28.55 24.02 32.58 30.96
12 0.25 0.10 0.65 -3.74 10.29 40.69 15.97 -11.46 22.60 38.33 32.21
13 0.25 0.25 0.50 4.47 11.09 38.67 15.93 -1.19 23.40 35.73 31.94
14 0.25 0.40 0.35 12.25 11.22 37.41 15.76 8.55 23.51 34.45 31.73
15 0.25 0.55 0.20 20.10 11.21 37.08 15.48 18.22 22.42 34.35 31.40
16 0.25 0.70 0.05 27.69 10.76 36.75 14.57 26.51 21.74 32.28 30.48
17 0.40 0.10 0.50 -0.14 9.40 40.36 15.87 -3.40 21.80 38.55 31.94
18 0.40 0.25 0.35 8.00 9.44 38.94 15.76 6.73 21.62 36.80 31.77
19 0.40 0.40 0.20 15.90 9.42 37.92 15.20 16.08 21.31 34.62 31.44
20 0.40 0.55 0.05 24.06 10.03 37.81 14.89 25.30 20.74 33.63 29.93
21 0.55 0.10 0.35 3.49 8.81 41.03 15.60 4.13 20.72 38.42 31.72
22 0.55 0.25 0.20 11.49 8.60 39.32 15.33 14.04 20.15 36.90 31.32
23 0.55 0.40 0.05 19.40 8.84 38.10 14.07 23.14 20.03 34.00 29.44
24 0.70 0.10 0.20 6.65 8.03 40.73 15.24 11.31 19.61 38.42 31.27
25 0.70 0.25 0.05 14.98 8.20 39.78 14.04 20.93 19.17 35.92 29.47
26 0.85 0.10 0.05 9.89 7.65 40.71 13.61 18.31 18.81 38.17 29.89

We present a detailed 3D design optimization model of
a fishbone layout for brownfield warehouse projects. This
model ensures the minimum average distance between the
P&D point and all storage locations and deepens the study
of fishbone 3D layout optimization based on the work of
Cardona et al [5], [8]. In constructing the storage location
assignment model, in addition to the correlation storage pol-
icy and turnover-based storage policy, we present a storage
policy in which low correlation and high turnover items
are assigned farther away to reduce aisle congestion. We
construct a three-objective optimization model in which three
storage location assignment policies and TSP are used.

To solve a combination of multiple problems in order pick-
ing systems, we present three algorithms (DDA FL GSA,
SLAA GSA and PRA GSA) that can run separately to solve
three problems. We verify the reliability of DDA FL GSA
through a simulation experiment and find that it has good
adaptability and can be applied in practice. When designing
SLAA and PRA, we compared the calculation performance
of PSO and GSA, and the results show that GSA has
more advantages in finding better solutions and speeding up
convergence compared with PSO as the scale of the problem
grows. Then, we design SLAA GSA and PRA GSA in
the framework of GSA. Finally, we present COA GSA
based on DDA FL GSA, SLAA GSA and PRA GSA. The
COA GSA has the dual merits of finding better solutions and
speeding up convergence. In addition, the results of this study
show that COA GSA can improve the average optimal travel

distance by 9% more than SOA GSA, but its robustness is
partially weakened.

We simulate a fishbone and traditional layout in the same
experimental environment. The primary advantage of the
fishbone layout is a reduction in the travel distance in
picker-to-order warehouses. Experimental results show that
the pickers’ travel distance of the fishbone-layout warehouse
is reduced by 10-15% if aisle congestion is not considered.
In addition, we find that the fishbone layout has the following
characteristics:

(1) The fishbone layout can reduce the travel distance
markedly in unit load warehouses with single command
operations compared with the traditional layout.

(2) Numerical examples show that the fishbone layout has
a higher risk of aisle congestion than the traditional layout.

(3) Optimal results show that the fishbone layout ware-
house has marked advantages when using a turnover-based
policy, but the traditional layout warehouse has advantages
when using a correlation storage policy.

For future research, aisle congestion with fishbone layouts
should be investigated because the risk of aisle congestion
with a fishbone layout may increase, as found in this study.
Concurrently, fishbone layouts are more complex than tradi-
tional layouts with regard to shelf placement, aisle location,
and other aspects; thus, fishbone layout warehouse operators
need more training to gain proficient operational skills. To
put forward more comprehensive suggestions on the fishbone
layouts, scholars can add comparing cost, human resources
and other indicators with the traditional layouts. In addition,
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Fig. 13. Comparison of objective function f2 between the traditional layout and the fishbone layout

order batching and time window constraints are important
research fields with warehouses that require a quick response,
such as E-Commerce warehouses. Therefore, introducing
them into a fishbone layout warehouse will yield meaningful
research results.

APPENDIX A
DISTANCE MATRIX

The optimization models in Section III require the parame-
ters of the distance matrix D between picking points and the
distance matrix Dout, which is the distance from the picking
points to the P&D point. We introduce how to calculate
these distance matrices in this section. Cardona et al. [5],
[8] proposed a method to calculate the distance matrix from
the picking points to the P&D point, and we used the method
in the proposed optimization models. This study focuses on
how to calculate the distance matrix between picking points
[2]. The fishbone layout has four zones that are symmetric;
thus, we divide it into two circumstances and define it as

follows:

D(i1j1k1t1, i2j2k2t2) =

{
D1(i1j1k1t1, i2j2k2t2), i1 = i2

D2(i1j1k1t1, i2j2k2t2), i1 ̸= i2
(A.1)

Case 1: Opi1j1k1t1 and Opi2j2k2t2 are in the same zone.
The relevant parameters are shown in Fig. A1. D1 is

defined as follows:

D1(i1j1k1t1, i2j2k2t2) ={
D1(i1j1k1t1, i2j2k2t2), i1 = i2 ∈ {1, 4}
D2(i1j1k1t1, i2j2k2t2), i1 = i2 ∈ {2, 3}

(A.2)

D1(i1j1k1t1, i2j2k2t2) =
L1−a, j1 = j2

L1−b, |j1 − j2| = 1 ∧ (−1)min(j1,j2) = 1

L1−c, other conditions
(A.3)

with:
L1−a = |xpi1j1k1t1 − xpi2j2k2t2 | (A.4)
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Fig. A1. Path planning of case 1

L1−b = |ypi1j1k1t1 − ypi2j2k2t2 |+ |xpi1j1k1t1 − xpi2j2k2t2 |
(A.5)

L1−c = min(L1−c(1), L1−c(2)) (A.6)

L1−c(1) =
(ap
2

+A− |xpi1j1k1t1 |
)

+
ap
2

+ |ypi1j1k1t1 − ypi2j2k2t2 |

+
(ap
2

+A− |xpi2j2k2t2 |
)

L1−c(2) =
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

−
(
A+

ap
2
− |xpi1j1k1t1 |

)
+
(
Am+

ap
2
− ypi2j2k2t2

) 1

m

−
(
A+

ap
2
− |xpi2j2k2t2 |

)
+ |ypi1j1k1t1 − ypi2j2k2t2 |

√
m2 + 1

m

(A.7)

and:

D2(i1j1k1t1, i2j2k2t2) =



L2−a, j1 = j2

L2−b, |j1 − j2| = 1

∧(−1)min(j1,j2) = 1

min(L2−c(1), L2−c(2)),

|j1 − j2| ̸= 1

∨(−1)min(j1,j2) ̸= 1
(A.8)

with:
L2−a = |ypi1j1k1t1 − ypi2j2k2t2 | (A.9)

L2−b = |ypi1j1k1t1 − ypi2j2k2t2 |+ |xpi1j1k1t1 − xpi2j2k2t2 |
(A.10)



L2−c(1) =
(
B +

ap
2
− ypi1j1k1t1

)
+

ap
2

+ |xpi1j1k1t1 − xpi2j2k2t2 |

+
(ap
2

+B − ypi2j2k2t2

)
L2−c(2) =

(
B

m
+

ap
2
− |xpi1j1k1t1 |

)
m

−
(
B +

ap
2
− ypi1j1k1t1

)
+

(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m

−
(
B +

ap
2
− ypi2j2k2t2

)
+ |xpi1j1k1t1 − xpi2j2k2t2 |

√
m2+1

(A.11)

Case 2: Opi1j1k1t1 and Opi2j2k2t2 are not in the same zone.

D2 is defined as follows:

D2(i1j1k1t1, i2j2k2t2) =
D3(i1j1k1t1, i2j2k2t2), (i1, i2) ∈ {(1, 2)(4, 3)}
D4(i1j1k1t1, i2j2k2t2), (i1, i2) ∈ {(1, 3)(4, 2)}
D5(i1j1k1t1, i2j2k2t2), (i1, i2) ∈ {(1, 4), (4, 1)}
D6(i1j1k1t1, i2j2k2t2), (i1, i2) ∈ {(2, 3), (3, 2)}

(A.12)

Situation one: One picking point is in zone 1, and the
other is in zone 2; or one is in zone 4, and the other is in
zone3.

The relevant parameters are shown in Fig. A2. We assume
that Opi1j1k1t1 is in zone 1 and Opi2j2k2t2 is in zone 2, then:

D3(i1j1k1t1, i2j2k2t2) =

min(L1−2(1)−a, L1−2(1)−b(1), L1−2(1)−b(1), L1−2(1)−c),

B +
ap
2
−
(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m < ypi1j1k1t1

L1−2(2),

B +
ap
2
−
(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m = ypi1j1k1t1

min(L1−2(3)−a, L1−2(3)−b(1), L1−2(3)−b(1), L1−2(3)−c),

B +
ap
2
−
(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m > ypi1j1k1t1

(A.13)

with:

L1−2(1)−a =
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

−
(
A+

ap
2
− |xpi1j1k1t1 |

)
+

√
1 +m2

m∣∣∣∣ypi1j1k1t1 −
[
B +

ap
2
−
(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m

]∣∣∣∣
+

[(
B

m
+
ap
2
−|xpi2j2k2t2 |

)
m−

(
B+

ap
2
−ypi2j2k2t2

)]
(A.14)

The calculation methods of L1−2(2) and L1−2(3)−a are
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Fig. A2. Path planning of situation one in case 2

consistent with the method of L1−2(1)−a.

L1−2(1)−c =
(
A+

ap
2
− |xpi1j1k1t1 |

)
+

ap
4

+
(
B +

ap
2
− ypi1j1k1t1

)
+

ap
2

+
(
A+

ap
2
− |xpi2j2k2t2 |

)
+

ap
4

+
(
B +

ap
2
− ypi2j2k2t2

)
(A.15)

The calculation method of L1−2(3)−c is consistent with
the method of L1−2(1)−c.
L1 is defined as follows:

L1(x) =
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

−
(
A+

ap
2
− |xpi1j1k1t1 |

)
+

√
1 +m2

m∣∣∣∣ypi1j1k1t1 −
[
B +

ap
2
−
(
B

m
+

ap
2
− |x|

)
m

]∣∣∣∣
+

(
B

m
+

ap
2
− |x|

)
m+

ap
4

+ |x− xpi2j2k2t2 |

+
ap
4

+
(
B +

ap
2
− ypi2j2k2t2

)
(A.16)

with: {
L1−2(1)−b(1) = L1(x1)

L1−2(1)−b(2) = L1(x2)
(A.17)

max
q∈Z

{(
q − 1

2

)
ew + [2q − 1− (−1)q] ap

4
+ (−1)q(ew

2
+

ap
4

)
<A+

ap
2
−
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

}
(A.18)

x1 =(q − 1

2
)ew + [2q − 1− (−1)q]ap

4

+ (−1)q(ew
2

+
ap
4
)

x2 =(q +
1

2
)ew + [2q + 1− (−1)q+1

]
ap
4

+ (−1)q+1
(
ew
2

+
ap
4
)

(A.19)

L2 is defined as follows:

L2(y) =

(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m

−
(
B +

ap
2
− ypi2j2k2t2

)
+

√
1 +m2∣∣∣∣|xpi2j2k2t2 | −

[
A+

ap
2
− (Am+

ap
2
− y)

1

m

]∣∣∣∣
+
(
Am+

ap
2
− y

) 1

m
+

ap
4

+ |y − ypi1j1k1t1 |

+
ap
4

+
(
A+

ap
2
− |xpi1j1k1t1 |

)
(A.20)

with: {
L1−2(3)−b(1) = L2(y1)

L1−2(3)−b(2) = L2(y2)
(A.21)

max
q∈Z

{(
q − 1

2

)
ew + [2q − 1− (−1)q] ap

4
+ (−1)q(

ew +
ap
2

)
<B +

ap
2
−
(
B

m
+

ap
2
− xpi2j2k2t2

)
m

}
(A.22)

y1 =

(
q − 1

2

)
ew + [2q − 1− (−1)q] ap

4

+ (−1)q
(
ew +

ap
2

)
y2 =

(
q +

1

2

)
ew +

[
2q + 1− (−1)q+1

] ap
4

+ (−1)q+1
(
ew +

ap
2

)
(A.23)

Situation two: One picking point is in zone 1, and the
other is in zone 3; or one is in zone 4, and the other is in
zone 2.

The relevant parameters are shown in Fig. A3:

D4(i1j1k1t1, i2j2k2t2)

= min(L1−3−a, L1−3−b(1), L1−3−b(2), L1−3−c)
(A.24)

We assume that Opi1j1k1t1 is in zone 1 and Opi2j2k2t2 is
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Fig. A3. Path planning of situation two in case 2

in zone 3; then:

L1−3−a =
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

−
(
A+

ap
2
− |xpi1j1k1t1 |

)
+

√
1 +m2

m

∣∣∣ypi1j1k1t1 −
ap
2

∣∣∣
+ ap +

√
1 +m2

∣∣∣|xpi2j2k2t2 | −
ap
2

∣∣∣
+

(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m

−
(
B +

ap
2
− ypi2j2k2t2

)

(A.25)

The calculation methods of L1−3−b(1), L1−3−b(2) and
L1−3−c are consistent with L1−2(3)−b(1) and L1−2(3)−b(2).

Situation three: One picking point is in zone 1, and the
other is in zone 4.

The relevant parameters are shown in Fig. A4, and:

D5(i1j1k1t1, i2j2k2t2) = min(L1−4−a, L1−4−b) (A.26)

We assume that Opi1j1k1t1 is in zone 1 and Opi2j2k2t2 is
in zone 4, then:

L1−4−a =
(
Am+

ap
2
− ypi1j1k1t1

) 1

m

−
(
A+

ap
2
− |xpi1j1k1t1 |

)
+

√
1 +m2

m

∣∣∣ypi1j1k1t1 −
ap
2

∣∣∣+ ap

+

√
1 +m2

m

∣∣∣ypi2j2k2t2 −
ap
2

∣∣∣
+
(
Am+

ap
2
− ypi2j2k2t2

) 1

m

−
(
A+

ap
2
− |xpi2j2k2t2 |

)

(A.27)

L1−4−b =min [min(a1, b1) + c1, d1] + e

+min [min(a2, b2) + c2, d2]
(A.28)

The calculation method of (a1, a2, b1, b2, c1, c2, d1, d2, e)

is consistent with L1−2(1)−b(1) and L1−2(1)−b(2).
Situation four: One picking point is in zone 2, and the

other is in zone 3.
The relevant parameters are shown in Fig. A5, and:

D6(i1j1k1t1, i2j2k2t2) =min(L2−3−a, L2−3−b) (A.29)

We assume that Opi1j1k1t1 is in zone 2 and Opi2j2k2t2 is
in zone 3, then:

L2−3−a =

(
B

m
+

ap
2
− |xpi1j1k1t1 |

)
m

−
(
B +

ap
2
− ypi1j1k1t1

)
+

√
1 +m2

∣∣∣|xpi1j1k1t1 | −
ap
2

∣∣∣+ ap

+
√
1 +m2

∣∣∣|xpi2j2k2t2 | −
ap
2

∣∣∣
+

(
B

m
+

ap
2
− |xpi2j2k2t2 |

)
m

−
(
B +

ap
2
− ypi2j2k2t2

)

(A.30)

L2−3−b =
(
B +

ap
2
− ypi1j1k1t1

)
+

ap
4

+ |xpi1j1k1t1 − xpi2j2k2t2 |

+
ap
4

+
(
B +

ap
2
− ypi2j2k2t2

) (A.31)
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