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Abstract—In this paper, we are concerned with oscillation of
a class of fractional differential equations, where the fractional
derivative is defined in the sense of the conformable fractional
derivative. Based on the properties of conformable fractional
calculus, Riccati transformation, inequality and integration av-
erage technique, some new oscillatory criteria for the fractional
differential equations are established. We also present some
examples for the established results.
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I. Introduction

Recently, many effective numerical and analytical methods
have been proposed for various differential equations [1-
9]. In this work, we focus on the research of oscillatory
properties for differential equations. In [10-26], oscillation
of solutions of various differential equations and systems as
well as dynamic equations on time scales were researched,
and a lot of new oscillation criteria for these equations have
been established therein. In these investigations, we notice
that relatively less attention has been paid to the research
of oscillation of fractional differential equations [27-32],
and the fractional derivative lying in the existing results
are almost defined in the sense of the Riemann-Liouville
derivative.

Recently, Khalil et al. proposed a new definition
for fractional derivative named conformable fractional
derivative [33]. The fractional derivative is defined as
follows:

Definition 1. Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε .

From the definition of the conformable fractional
derivative, one can easily verify the following properties:

(i). Dα
t [af(t) + bg(t)] = aDα

t f(t) + bDα
t g(t).

(ii). Dα
t (t

γ) = γtγ−α.

(iii). Dα
t [f(t)g(t)] = f(t)Dα

t g(t) + g(t)Dα
t f(t).

(iv). DαC = 0, where C is a constant.
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(v). Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t).

(vi). Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)
g2(t)

.

(vii). Dα
t f(t) = t1−αf ′(t).

As one can see, the conformable fractional derivative is
of fine characters, especially the chain rule can be satisfied
here. Many authors investigated various applications of the
conformable fractional derivative [34-39].

In this paper, we are concerned with oscillation of a class
of fractional differential equations as follows:

Dα
t (r(t)D

α
t x(t)) + q(t)f(x(t)) = 0,

t ≥ t0 > 0, 0 < α < 1, (1.1)

where Dα
t (.) denotes the conformable fractional

derivative with respect to the variable t, the function
r ∈ Cα([t0,∞), R+), q ∈ C([t0,∞), R+), and Cα

denotes continuous derivative of order α, the function f
is continuous satisfying f(x)/x ≥ K for some positive
constant K and ∀x ̸= 0.

As usual, a solution x(t) of Eq. (1.1) is called oscillatory
if it has arbitrarily large zeros, otherwise it is called non-
oscillatory. Eq. (1.1) is called oscillatory if all its solutions
are oscillatory.

We organize the next of this paper as follows. In Section
2, using the properties of conformable fractional calculus,
Riccati transformation, inequality and integration average
technique, we establish some new oscillatory criteria for Eq.
(1.1), while we present some applications for them in Section
3. Some conclusions are presented at the end of this paper.

For the sake of convenience, in the next of this paper, we
denote ξ = tα

α , ξi =
tαi
α , i = 0, 1, 2, 3, R+ = (0,∞).

II. OSCILLATORY CRITERIA FOR EQ. (1.1)

Lemma 1. Assume x(t) is a eventually positive solution of
Eq. (1.1), and∫∞

t0
tα−1

r(t)
dt = ∞. (2.1)

Then there exists a sufficiently large T such that Dα
t x(t) > 0

for t ∈ [T,∞).

Proof . Let r(t) = r̃(ξ), x(t) = x̃(ξ), q(t) = q̃(ξ),
where ξ = tα

α . Then by use of the property (ii) we obtain
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Dα
t ξ(t) = 1, and furthermore by use of the property (v) we

have

Dα
t r(t) = Dα

t r̃(ξ) = r̃′(ξ)Dα
t ξ(t) = r̃′(ξ).

Similarly we have Dα
t x(t) = x̃′(ξ). So Eq. (1.1) can

be transformed into the following form:

(r̃(ξ)x̃′(ξ))′ + q̃(ξ)f(x̃(ξ)) = 0,

ξ ≥ ξ0 ≥ 0, (2.2)

Since x(t) is a eventually positive solution of (1.1),
then x̃(ξ) is a eventually positive solution of Eq. (2.2),
and there exists ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞).
Furthermore, we have

(r̃(ξ)x̃′(ξ))′ = −q̃(ξ)f(x̃(ξ))

≤ −Kq̃(ξ)x̃(ξ) < 0, ξ ≥ ξ1. (2.3)

Then r̃(ξ)x̃′(ξ) is strictly decreasing on [ξ1,∞), and
thus x̃′(ξ) is eventually of one sign. We claim x̃′(ξ) > 0
on [ξ2,∞), where ξ2 > ξ1 is sufficiently large. Otherwise,
assume there exists a sufficiently large ξ3 > ξ2 such that
x̃′(ξ) < 0 on [ξ3,∞). Then for ξ ∈ [ξ3,∞) we have

x̃(ξ)− x̃(ξ3) =
∫ ξ

ξ3
x̃′(s)ds =

∫ ξ

ξ3

r̃(s)x̃′(s)
r̃(s)

ds

≤ r̃(ξ3)x̃
′(ξ3)

∫ ξ

ξ3
1

r̃(s)
ds = r̃(ξ3)x̃

′(ξ3)
∫∞
t3

tα−1

r(t)
dt.

By (2.1) we deduce that lim
ξ→∞

x̃(ξ) = −∞, which

contradicts to the fact that x̃(ξ) is a eventually positive
solution of Eq. (2.2). So x̃′(ξ) > 0 on [ξ2,∞), and
furthermore Dα

t x(t) > 0 on [t2,∞). The proof is complete
by setting T = t2.

Theorem 2. Assume (2.1) holds, and there exist two
functions ϕ ∈ C1([t0,∞), R+) and φ ∈ C1([t0,∞), [0,∞))
such that

∫∞
ξ0

{Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds = ∞, (2.4)

where ϕ̃(ξ) = ϕ(t), q̃(ξ) = q(t), φ̃(ξ) = φ(t), r̃(ξ) = r(t).
Then every solution of Eq. (1.1) is oscillatory.

Proof . Assume (1.1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. By
Lemma 1 we have Dα

t x(t) > 0 on [t2,∞) for some
sufficiently large t2 > t1. Define the generalized Riccati
transformation function:

ω(t) = ϕ(t){r(t)D
α
t x(t)

x(t)
+ φ(t)}.

Then for t ∈ [t2,∞), by use of the property (v) and
(vi) we have

Dα
t ω(t) = Dα

t ϕ(t)
r(t)Dα

t x(t)
x(t)

− ϕ(t)
r(t)(Dα

t x(t))
2

x2(t)

+ϕ(t)
Dα

t (r(t)D
α
t x(t))

x(t)
+Dα

t ϕ(t)φ(t) + ϕ(t)Dα
t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

ϕ(t)r(t)

−ϕ(t)
q(t)f(x(t))

x(t)
+ ϕ(t)Dα

t φ(t)

= −ϕ(t)
q(t)f(x(t))

x(t)
+ ϕ(t)Dα

t φ(t)−
ϕ(t)φ2(t)

r(t)

+
2ϕ(t)φ(t) +Dα

t ϕ(t)r(t)
ϕ(t)r(t)

ω(t)− 1
ϕ(t)r(t)

ω2(t)

≤ −Kϕ(t)q(t) + ϕ(t)Dα
t φ(t)−

ϕ(t)φ2(t)
r(t)

+
[2ϕ(t)φ(t) +Dα

t ϕ(t)r(t)]
2

4ϕ(t)r(t)
. (2.5)

Let ω(t) = ω̃(ξ). Then Dα
t w(t) = w̃′(ξ), Dα

t ϕ(t) =
ϕ̃′(ξ), Dα

t φ(t) = φ̃′(ξ), and (2.5) is transformed into the
following form

ω̃′(ξ) ≤ −Kϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ)− ϕ̃(ξ)φ̃2(ξ)
r̃(ξ)

+
[2ϕ̃(ξ)φ̃(ξ) + ϕ̃′(ξ)r̃(ξ)]2

4ϕ̃(ξ)r̃(ξ)
, ξ ≥ ξ2. (2.6)

Substituting ξ with s in (2.6), an integration for (2.6)
with respect to s from ξ2 to ξ yields

∫ ξ

ξ2
{Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds

≤ ω̃(ξ2)− ω(ξ) ≤ ω(ξ2) < ∞,
which contradicts to (2.4). So the proof is complete.

Theorem 3. Assume (2.1) holds, and there
exists a function H ∈ C([ξ0,∞),R) such that
H(ξ, ξ) = 0, for ξ ≥ ξ0, H(ξ, s) > 0, for ξ > s ≥ ξ0,
and H has a nonpositive continuous partial derivative
H ′

s(ξ, s). If

lim
ξ→∞

sup 1
H(ξ, ξ0)

{
∫ ξ

ξ0
H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds} = ∞, (2.7)

where ϕ̃, φ̃, q̃, r̃ are defined as in Theorem 2, then
every solution of Eq. (1.1) is oscillatory.

Proof . Assume (1.1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. By
Lemma 1 we have Dα

t x(t) > 0 on [t2,∞) for some
sufficiently large t2 > t1. Let ω(t) and ω̃(ξ) be defined as
in Theorem 2. By (2.6) we have

Kϕ̃(ξ)q̃(ξ)− ϕ̃(ξ)φ̃′(ξ) +
ϕ̃(ξ)φ̃2(ξ)

r̃(ξ)

− [2ϕ̃(ξ)φ̃(ξ) + ϕ̃′(ξ)r̃(ξ)]2

4ϕ̃(ξ)r̃(ξ)
≤ −ω̃(ξ), ξ ≥ ξ2. (2.8)

Substituting ξ with s in (2.8), multiplying both sides by
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H(ξ, s) and then integrating with respect to s from ξ2 to ξ
yields

∫ ξ

ξ2
H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds

≤ −
∫ ξ

ξ2
H(ξ, s)ω̃′(s)ds

= H(ξ, ξ2)ω(ξ2) +
∫ ξ

ξ2
H ′

s(ξ, s)ω(s)∆s

≤ H(ξ, ξ2)ω(ξ2) ≤ H(ξ, ξ0)ω(ξ2).
Then

∫ ξ

ξ0
H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds

=
∫ ξ2
ξ0

H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds

+
∫ ξ

ξ2
H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds

≤ H(ξ, ξ0)ω̃(ξ2) +H(ξ, ξ0)
∫ ξ2
ξ0

|Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
|ds.

So

lim
ξ→∞

sup 1
H(ξ, ξ0)

{
∫ ξ

ξ0
H(ξ, s){Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds}

≤ ω̃(ξ2) +
∫ ξ2
ξ0

|Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
|ds < ∞,

which contradicts to (2.7). So the proof is complete.

Corollary 4. Under the conditions of Theorem 3, if

lim
ξ→∞

sup 1
(ξ − ξ0)

λ {
∫ ξ

ξ0
(ξ − s)λ{Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds} = ∞,

then every solution of Eq. (1.1) is oscillatory.

Corollary 5. Under the conditions of Theorem 3, if

lim
ξ→∞

sup 1
(ln ξ − ln ξ0)

{
∫ ξ

ξ0
(ln ξ − ln s){Kϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds} = ∞,

then every solution of Eq. (1.1) is oscillatory.
The proof of Corollaries 4-5 can be completed by

choosing H(ξ, s) = (ξ − s)λ, λ > 1 or H(ξ, s) = ln
ξ
s in

Theorem 3.

Theorem 6. Let h1, h2, Ĥ ∈ C([ξ0,∞), R) satisfying
Ĥ(ξ, ξ) = 0, Ĥ(ξ, s) > 0, ξ > s ≥ ξ0, and H has
continuous partial derivatives Ĥ ′

ξ(ξ, s) and Ĥ ′
s(ξ, s) on

[ξ0,∞) such that

Ĥ ′
ξ(ξ, s) = −h1(ξ, s)

√
Ĥ(ξ, s),

Ĥ ′
s(ξ, s) = −h2(ξ, s)

√
Ĥ(ξ, s).

If for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1
Ĥ(c, a)

∫ c

a
Ĥ(s, a)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

+ 1
Ĥ(b, c)

∫ b

c
Ĥ(b, s)[Kϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

> 1
4Ĥ(c, a)

∫ c

a
ϕ̃(s)r̃(s)Q2

1(s, a)ds

+ 1
4Ĥ(b, c)

∫ b

c
ϕ̃(s)r̃(s)Q2

2(b, s)ds, (2.9)

where ϕ̃, φ̃, q̃, r̃ are defined as in Theorem 2,

Q1(s, ξ) = h1(s, ξ) − (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)

√
Ĥ(s, ξ),

Q2(ξ, s) = h2(ξ, s) − (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)

√
Ĥ(ξ, s),

then Eq. (1.1) is oscillatory.

Proof. Assume (1.1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t2,∞), where t2 is sufficiently large. Let ω(t)
and ω̃(ξ) be defined as in Theorem 2. So for t ∈ [t2,∞),
we have

Dα
t ω(t) = −ϕ(t)

q(t)f(x(t))
x(t)

+ ϕ(t)Dα
t φ(t)−

ϕ(t)φ2(t)
r(t)

+
2ϕ(t)φ(t) +Dα

t ϕ(t)r(t)
ϕ(t)r(t)

ω(t)− 1
ϕ(t)r(t)

ω2(t)

≤ −Kϕ(t)q(t) + ϕ(t)Dα
t φ(t)−

ϕ(t)φ2(t)
r(t)

+
2ϕ(t)φ(t) +Dα

t ϕ(t)r(t)
ϕ(t)r(t)

ω(t)− 1
ϕ(t)r(t)

ω2(t). (2.10)

Furthermore, similar to (2.5), (2.10) is transformed into the
following form

ω̃′(ξ) ≤ −Kϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ)− ϕ̃(ξ)φ̃2(ξ)
r̃(ξ)

+
2ϕ̃(ξ)φ̃(ξ) + ϕ̃′(ξ)r̃(ξ)

ϕ̃(ξ)r̃(ξ)
ω̃(ξ)

− 1
ϕ̃(ξ)r̃(ξ)

ω̃2(ξ), ξ ≥ ξ2. (2.11)

Select a, b, c arbitrarily in [ξ2,∞) with b > c > a.
Substituting ξ with s, multiplying both sides of (2.11) by
Ĥ(ξ, s) and integrating it with respect to s from c to ξ for
ξ ∈ [c, b), we get that
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∫ ξ

c
Ĥ(ξ, s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

≤ −
∫ ξ

c
Ĥ(ξ, s)w̃′(s)ds

+
∫ ξ

c
Ĥ(ξ, s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)w̃(s)ds

− Ĥ(ξ, s)

ϕ̃(s)r̃(s)
ω̃2(s)ds

= Ĥ(ξ, c)w̃(c)−
∫ ξ

c
[

(
Ĥ(ξ, s)

ϕ̃(s)r̃(s)

)1/2

w̃(s)

+1
2(ϕ̃(s)r̃(s))

1/2Q2(ξ, s)]
2ds+

∫ ξ

c

ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)ds

≤ Ĥ(ξ, c)w̃(c)+
∫ ξ

c

ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)ds. (2.12)

Dividing both sides of the inequality (2.12) by Ĥ(ξ, c) and
let ξ → b−, we obtain

1
Ĥ(b, c)

∫ b

c
Ĥ(b, s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

≤ w̃(c)+ 1
Ĥ(b, c)

∫ b

c

ϕ̃(s)r̃(s)
4 Q2

2(b, s)ds. (2.13)

On the other hand, substituting ξ with s, multiplying both
sides of (2.11) by Ĥ(s, ξ) and integrating it with respect to
s from ξ to c for ξ ∈ (a, c], we get that

∫ c

ξ
Ĥ(s, ξ)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

≤ −
∫ c

ξ
Ĥ(s, ξ)w̃′(s)ds

+
∫ c

ξ
Ĥ(s, ξ)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)w̃(s)ds

−
∫ c

ξ
Ĥ(s, ξ)

w̃2(s)

ϕ̃(s)r̃(s)
ds

= −Ĥ(c, ξ)w̃(c)−
∫ c

ξ
[

(
Ĥ(s, ξ)

ϕ̃(s)r̃(s)

)1/2

w̃(s)

+1
2(ϕ̃(s)r̃(s))

1/2Q1(s, ξ)]
2ds+

∫ c

ξ

ϕ̃(s)r̃(s)
4 Q2

1(s, ξ)ds

≤ −Ĥ(c, ξ)w̃(c)+
∫ c

ξ

ϕ̃(s)r̃(s)
4 Q2

1(s, ξ)ds. (2.14)

Dividing both sides of the inequality (2.14) by Ĥ(c, ξ) and
letting ξ → a+, we obtain

1
Ĥ(c, a)

∫ c

a
Ĥ(s, a)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

≤ −w̃(c)+ 1
Ĥ(c, a)

∫ c

a

ϕ̃(s)r̃(s)
4 Q2

1(s, a)ds. (2.15)

A combination of (2.13) and (2.15) yields

1
Ĥ(c, a)

∫ c

a
Ĥ(s, a)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]ds

+ 1
Ĥ(b, c)

∫ b

c
Ĥ(b, s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]ds

≤ 1
4Ĥ(c, a)

∫ c

a
ϕ̃(s)r̃(s)Q2

1(s, a)ds

+ 1
4Ĥ(b, c)

∫ b

c
ϕ̃(s)r̃(s)Q2

2(b, s)ds,

which contradicts to (2.9). So the proof is complete.

Theorem 7. Under the conditions of Theorem 6, if
for any l ≥ ξ0,

lim
ξ→∞

sup
∫ ξ

l
[Ĥ(s, l)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]

− ϕ̃(s)r̃(s)
4 Q2

1(s, l)]ds > 0 (2.16)

and

lim
ξ→∞

sup
∫ ξ

l
[Ĥ(ξ, s)[Kϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]

− ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)]ds > 0, (2.17)

then Eq. (1.1) is oscillatory.

Proof: For any T ≥ ξ0, let a = T . In (2.16) we
choose l = a. Then there exists c > a such that

∫ c

a
[Ĥ(s, a)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]

− ϕ̃(s)r̃(s)
4 Q2

1(s, a)]ds > 0. (2.18)

In (2.17) we choose l = c > a. Then there exists
b > c such that

∫ b

c
[Ĥ(b, s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]

− ϕ̃(s)r̃(s)
4 Q2

2(b, s)]ds > 0. (2.19)

Combining (2.18) and (2.19) we obtain (2.9). The
conclusion thus comes from Theorem 6, and the proof is
complete.

In Theorems 6-7, if we choose Ĥ(ξ, s) = (ξ − s)λ, ξ ≥
s ≥ ξ0, where λ > 1 is a constant, then we obtain the
following two corollaries.

Corollary 8. Under the conditions of Theorem 6, if
for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1
(c− a)λ

∫ c

a
(s− a)λ[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]ds

+ 1
(b− c)λ

∫ b

c
(b− s)λ[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]ds
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> 1
4(c− a)λ

∫ c

a
ϕ̃(s)r̃(s)(s− a)λ−2

(λ+ (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(s− a))2ds

+ 1
4(b− c)λ

∫ b

c
ϕ̃(s)r̃(s)(b− s)λ−2

(λ− (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(b− s))2ds, (2.20)

then Eq. (1.1) is oscillatory.

Corollary 9. Under the conditions of Theorem 7, if
for any l ≥ ξ0,

lim
ξ→∞

sup
∫ ξ

l
{(s− l)λ[Kϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)
]− ϕ̃(s)r̃(s)

4 (s− l)λ−2

[λ+(
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(s− l)]2}ds > 0 (2.21)

and

lim
ξ→∞

sup
∫ ξ

l
{(ξ − s)λ[Kϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)
]− ϕ̃(s)r̃(s)

4 (ξ − s)λ−2

[λ−(
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(ξ−s)]2}ds > 0, (2.22)

then Eq. (1.1) is oscillatory.

Theorem 10. Under the conditions of Theorem 6,
furthermore, suppose (2.9) does not hold. If for any
T ≥ ξ0, there exist a, b with b > a ≥ T such that for
any u ∈ C[a, b], u′(t) ∈ L2[a, b], u(a) = u(b) = 0, the
following inequality holds:

∫ b

a
{u2(s)[Kϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]−ϕ̃(s)r̃(s)

(u′(s)+ 1
2u(s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
))2}ds > 0, (2.23)

where ϕ̃, φ̃, q̃, r̃ are defined as in Theorem 2, then
Eq. (1.1) is oscillatory.

Proof: Assume (1.1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t2,∞), where t2 is sufficiently large. Let
ω(t) and ω̃(ξ) be defined as in Theorem 2. Similar to
the proof of Theorem 6, we obtain (2.11). Select a, b
arbitrarily in [ξ2,∞) with b > a such that u(a) = u(b) = 0.
Substituting ξ with s, multiplying both sides of (2.11) by
u2(s), integrating it with respect to s from a to b, we get that

∫ b

a
u2(s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]ds

≤ −
∫ b

a
u2(s)w̃′(s)ds−

∫ b

a
u2(s)

w̃2(s)

ϕ̃(s)r̃(s)
ds

+
∫ b

a
u2(s)w̃(s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)ds

= 2
∫ b

a
u(s)u′(s)w̃(s)ds−

∫ b

a
u2(s)

w̃2(s)

ϕ̃(s)r̃(s)
ds

+
∫ b

a
u2(s)w̃(s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)ds

= −
∫ b

a
{[
√

1
ϕ̃(s)r̃(s)

u(s)w̃(s)−
√

ϕ̃(s)r̃(s)

(u′(s) + 1
2u(s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
))]2 + ϕ̃(s)r̃(s)(

u′(s) + 1
2u(s)(

2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)

)2

}ds.

Moreover,

∫ b

a
{u2(s)[Kϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
r̃(s)

]−ϕ̃(s)r̃(s)(
u′(s) + 1

2u(s)(
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)

)2

}ds ≤ 0, (2.24)

which contradicts to (2.23). So every solution of Eq.
(1.1) is oscillatory, and the proof is complete.

Remark. In Theorems 2, 3, 6, 7, 10, if we assume
f ∈ C1[R,R] satisfying f ′(x) ≥ µ > 0 for
x ̸= 0, and modify the definition of ω(t) by

ω(t) = ϕ(t){r(t)D
α
t x(t)

f(x(t))
+ φ(t)}, then following a

similar process, we can obtain similar oscillatory criteria for
Eq. (1.1), which are omitted here.

As of the term f(x(t)) in Eq. (1.1), the main results
presented in the theorems are different from existing results
in [10,12].

III. APPLICATIONS

In this section, by presenting several examples, we apply
the results established above to research oscillation of some
fractional differential equations.

Example 1. Consider the following fractional differential
equation:

Dα
t (

√
tα
α Dα

t x(t)) + ( t
α

α )−
3
2
x(t)(2 + x2(t))

1 + x2(t)
= 0,

t ≥ 2, 0 < α < 1. (3.1)

In fact, if we set in Eq. (1.1) t0 = 2, r(t) =

√
tα
α , q(t) =

( t
α

α )−
3
2 , f(x) =

x(2 + x2)
1 + x2 , then we obtain (3.1). So

r̃(ξ) = r(t) =

√
tα
α =

√
ξ, q̃(ξ) = q(t) = ( t

α

α )−
3
2 = ξ−

3
2 ,

and f(x)/x ≥ 1, which implies K = 1. Furthermore, in
(2.1),∫∞

t0
αtα−1

αr(t)
dt =

∫∞
ξ0

1√
ξ
dξ = ∞.

In (2.4), letting ϕ̃(ξ) =
√
ξ, φ̃(ξ) = 0, we obtain

∫∞
ξ0

{Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

r̃(s)

− [2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)]2

4ϕ̃(s)r̃(s)
}ds
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=
∫∞
ξ0

15
16sds = ∞.

Therefore, Eq. (3.1) is oscillatory by Theorem 2.

Example 2. Consider the following fractional differential
equation:

D2α
t x(t) + tα

α x(t)ex
2(t) = 0,

t ≥ 5, 0 < α < 1. (3.2)

In fact, if we set in Eq. (1.1) t0 = 5, r(t) ≡ 1, q(t) =
tα
α , f(x) = xex

2

, then we obtain (3.2). So r̃(ξ) ≡ 1,
q̃(ξ) = q(t) = tα

α = ξ, and f(x)/x = ex
2 ≥ 1, which

implies K = 1. Furthermore, in (2.21)-(2.22), after letting
ϕ̃(ξ) ≡ 1, φ̃(ξ) = 0, λ = 2, considering q̃(s) ≡ 1, we obtain

lim
ξ→∞

sup
∫ ξ

l
{(s− l)λ[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]− ϕ̃(s)r̃(s)

4 (s− l)λ−2

[λ+ (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(s− l)]2}ds

= lim
ξ→∞

sup
∫ ξ

l

[
s(s− l)2 − 1

]
ds = ∞

and

lim
ξ→∞

sup
∫ ξ

l
{(ξ − s)λ[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

r̃(s)
]− ϕ̃(s)r̃(s)

4 (ξ − s)λ−2

[λ− (
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)(ξ − s)]2}ds

= lim
ξ→∞

sup
∫ ξ

l

[
s(ξ − s)2 − 1

]
ds = ∞.

So according to Corollary 9 we deduce that Eq. (3.2)
is oscillatory.

Example 3. Consider the following fractional differential
equation:

Dα
t

(
sin2( t

α

α )Dα
t x(t)

)
+ x(t)(1 + x2(t)) = 0,

t ≥ 2, 0 < α < 1. (3.3)

If we set in Eq. (1.1) t0 = 2, r(t) =

sin2( t
α

α ), q(t) ≡ 1, f(x) = x(1 + x2), then we
obtain (3.3). So r̃(ξ) = r(t) = sin2( t

α

α ) = sin2 ξ,
q̃(ξ) ≡ 1, and f(x)/x = 1 + x2 ≥ 1, which
implies K = 1. Furthermore, in (2.23), after letting
ϕ̃(ξ) ≡ 1, φ̃(ξ) = 0, a = 2kπ, b = 2kπ + π, u(s) = sin s,
then u(a) = u(b) = 0, and we obtain

∫ b

a
{u2(s)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]

−ϕ̃(s)r̃(s)

(
u′(s) + 1

2u(s)(
2ϕ̃(s)φ̃(s) + ϕ̃′(s)r̃(s)

ϕ̃(s)r̃(s)
)

)2

}ds

=
∫ 2kπ+π

2kπ

(
sin2 s− sin2 s cos2 s

)
ds

=
∫ 2kπ+π

2kπ
sin4 sds > 0.

Therefore, Eq. (3.3) is oscillatory by Theorem 10.

Remark. We note that oscillation for the three examples
above can not be obtained by existing results so far in the
literature.

IV. CONCLUSIONS

We have established some new oscillatory criteria for a
class of fractional differential equations with the fractional
derivative defined in the sense of the conformable fractional
derivative. Some applications for these established results are
also presented. We note that the approach in establishing
the main theorems above can be generalized to research
oscillation of fractional differential equations with more
complicated forms such as with damping term or with forced
term, which are expected to further research.

For example, the following fractional differential equations
with damping term and forced term respectively can be
further investigated:

Dα
t (r(t)D

α
t x(t)) + r(t)Dα

t x(t) + q(t)f(x(t)) = 0

and

Dα
t (r(t)D

α
t x(t)) + r(t)Dα

t x(t) + q(t)f(x(t)) = p(t).

Also some higher order fractional differential equations can
be further considered, such as

Dα
t [D

α
t (r(t)D

α
t x(t))] + q(t)f(x(t)) = 0

and

Dα
t [D

α
t (r(t)D

α
t x(t))]+Dα

t (r(t)D
α
t x(t))+q(t)f(x(t)) = 0.
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