
 

  

Abstract—This study intends to improve the solution 

accuracy of the second-order fuzzy ordinary differential 

equation (FODEs). As a result, it introduces two fuzzy higher 

derivative terms into the block scheme with generalised 

steplength. The generalised steplength scheme is then adopted 

to develop a four-step block method for solving directly 

second-order fuzzy initial and boundary value problems. Its 
properties to ensure convergence and show the region of 

absolute stability are investigated in fuzzy form. The numerica l 

results, compared to the exact solution of the numerical 

problems under consideration (applications in engineering), 

showed the new block method performs better than existing 

numerical methods in terms of solution accuracy. Therefore, 

the proposed method is suitable for directly solving models 

defined as second-order fuzzy ordinary differential equations. 

Index Terms—fuzzy differential equations, second-order, 

four-step, block method. 

I. INTRODUCTION 

ECOND-ORDER differentia l equations have many 

applications, especially in mechanical and electrical 

engineering, chemistry, biology, physics, electronics, etc. 

However, unpredictable circumstances may arise, 

introducing the concept of uncertainty and using fuzzy 

derivatives and fuzzy differential equations (FDEs) to  deal 

with these situations [1]. There are three differentiations 

used to define the differential of fuzzy functions, the 

Hukuhara derivative (H-derivative) [2], the Seikkala  

derivative [3], and the generalized derivative (g-derivat ive) 

[4]. This research focuses on the H-derivative to define the 

differential equations covered in this article, which f o llows 

the definition used by authors' whose findings were 

compared in the numerical examples with the newly 

developed block method in this article. 

Most second-order problems modelled as FODEs may be 

difficult to solve directly, and it is not always possible to 

obtain their exact solution. As a result, experts were 
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interested in employing various numerical methods to obtain 

an approximate solution. Numerous scholars have developed 

a variety of numerical approaches for solving second-order 

FODEs [5]-[13]. Reducing the second-order FODE system 

to first-order FODEs is the most significant disadvantage o f 

these techniques since it increases computing effort and 

compromises solution accuracy. Therefore, block m ethods 

were used as a direct numerical solution to the second-order 

FODEs to avoid the rigour of reduction [14]-[16]. However, 

because of the order of the developed techniques, the 

accuracy of their obtained findings in terms of absolute error 

is low and might be improved. As a result, this article's 

motivation is to develop a block method with two fuzzy 

higher derivative terms to improve accuracy. 

This article is organized as follows: Section 2 presents the 

basic definitions for fuzzy set theory. Section  3  o f fers the 

development of the k-step (four-step) block method with the 

presence of third and fourth derivatives using linear b lock 

approach. The basic properties of the block method are 

highlighted in Section 4, while Section 5 shows the resu lts 

obtained for the linear and non-linear numerical examples. 

The article is concluded in Section 6. 

II. BASIC DEFINITIONS 

This section recalls some basic definitions which will be 
adopted in this article. 
 

Definition 2.1 [17]  
The link between the crisp and fuzzy domain is 

represented by the α-level set (cuts) of a fuzzy set A with the 
crisp set X , denoted by  

 | ( ) , [0,1]
A

A x X x    =     . 

 
Definition 2.2 [17]  

Fuzzy numbers are a subset of real numbers and represent 
uncertain values. A fuzzy number is connected to the degree 
of membership which states how genuine it is to say in ca se 

something has a place or not in a decided set.  
A fuzzy number M  is called a triangular fuzzy number 
1 2 3 3 1 2 3( , , ) ,a a a a a a    with membership 

degree ( )M x  given as 

Fuzzy Higher Derivative Block Method with 
Generalised Steplength for Direct Solution of 

Second-Order Fuzzy Ordinary Differential 
Equations  

Kashif Hussain, Oluwaseun Adeyeye, and Nazihah Ahmad 

S 

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_15

Volume 49, Issue 4: December 2022

 
______________________________________________________________________________________ 



 

1

2 1

3

3 2

1

1 2

2 3

3

0,

,
( )

,

0, x

x a

a a

a x

a a

x a

a x a
M x

a x a

a

−

−

−

−

 


 
= 

 




,   (1) 

and corresponding α-level set 

 1 2 1 3 3 2( ), ( ) , [0,1]M a a a a a a   = − − − −  . (2) 

A fuzzy number M  is called a trapezoidal fuzzy number 
1 2 3 4 4 1 2 3 4( , , , ) ,a a a a a a a a     with membership 

degree ( )M x  given as 

1

2 1

3

3 2

1

1 2

2 3

3 4

4

0,

,

( ) 1,

,

0, x

x a

a a

a x

a a

x a

a x a

M x a x a

a x a

a

−

−

−

−

 


 


=  


 




,   (3) 

and corresponding α-level set 

 1 2 1 4 4 3( ), ( ) , [0,1]M a a a a a a   = − − − −  . (4) 

 
Definition 2.3 [18]  

A fuzzy function ( )f x  is called Hukuhara differentiable if 

h>0 is sufficiently small, then H-difference exists 

( ) ( ), ( ) ( ),f x h f x f x f x h+ − − −  such that 

( ) ( ) ( ) ( )

0 0
'( ) lim lim

f x h f x f x f x h

h hh h
f x

+ − − −

→ →
= = . 

III. METHODOLOGY 

Consider the second-order FODE of the form 
'' '

( ) ( , ( ), ( ))y x f x y x y x=   (5) 

where 
''

( )y x  is an H-derivative of y , which is a  fuzzy 

function of crisp variable x. Two lower and upper solu t ions 
exist since the given function is fuzzy and the parametric 

form in the α-level set is defined as 

 
'' '

( , ) ( , ( , ), ( , ))y x f x y x y x  =   

 
' '

min( , ( , ), ( , )), max( , ( , ), ( , ))f x y x y x f x y x y x   = = .  

The generalised k-step block method with the presence of 

third and fourth fuzzy derivatives for the direct so lu tion o f 
Equation (5) form is stated as, 
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Expanding Equations (6) and (7) produces the 

expressions in Equations (8) and (9) respectively 
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(9) 
By applying Taylor series expansions by [19], 
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The unknown coefficients d and d  are obtained 

using the matrix inverse method, where 1
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The values obtained are substituted in Equations (8 ) a nd 

(9) to get the desired generalized k-step block method with  
the presence of third and fourth derivatives for solving 
second-order FODEs. A more detailed explanation is given  

in the following subsection, where the generalized 
steplength (k-step) block method scheme with the presence 
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of third and fourth derivatives is adopted to develop a f our-
step (k=4) block method for second-order FODEs. 

 

DEVELOPMENT OF FOUR-STEP BLOCK METHOD 

Consider developing a four-step block method (FSBM) 
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 The unknown coefficients in Equations (11) and (12) are 
obtained using matrix A for k=4 and matrices B and D for 
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Substituting the obtained coefficient values in Equat ion s 
(11) and (12) gives the four-step block method with the 

presence of third and fourth fuzzy derivatives in the form of  
Equations (13) and (14). 
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(14) 

IV. CONVERGENCE AND STABILITY PROPERTIES  

This section will detail the convergence and stability 
properties of the developed four-step third-fourth derivative 
scheme. The following definitions are used: consistency, 

zero-stability, and region of absolute stability from [20]-
[21]. These definitions for block methods in the crisp  f o rm 

are adopted to the proposed method f or f uzzy in it ia l a nd 
boundary value problems to prove the convergence 
properties of the proposed method.  

 
Order and Error Constant 

The linear operator which is associated with Equation (6 ) 

for the four-step block method is defined as:  

1 2 4
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!
0 0 0

( ( ), )
dh

dn n n

d

L y x h y y f






 
 
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+ +

= − =
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     (15) 
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  
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+ +
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. 

The order of this method is z if 

0 1 1 1,...., 0z    += = = = =  and 2 0z +   is the error 

constant.  
Using the definition of order and error constant, the 

developed block method has order fifteen with error 

constant 
48248741 3824 92529 7648

5340646732861440000 162983603908125 2441996677120000 162983603908125
, , ,  

So, the developed block method is consistent. 

 

Zero-Stability 
Applying the definition of zero stability in fuzzy form for 

the proposed method gives 

 ( )0 1( )P A A



 = +   (16) 

2

0 0 0 0 0 0 1

0 0 0 0 0 0 1
( ) ( 1) 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

P








  





    
    
    = + = − =
    
     

    

.  

Hence the roots ( ) 0P  =  satisfy the condition 

1, 1,2,3,4  = . 
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Since the obtained roots satisfy the above condit ion, the 
proposed four-step block method is zero-stable. The 

developed method is thus convergent having sa tisf ied the 
properties of consistency and zero-stability. 
 

Region of Absolute Stability  
Determining the absolute stability region uses the 

characteristic polynomial of the developed b lock m ethod  
obtained as 

1 2

0 0

3 4

0 0

( )

det ,

                                                                         .

k k
k j k j j k j

j j
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j k j j k j
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
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− −
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     +          

=

 

 
 

The region of absolute stability is determined by plotting 
the roots of the polynomial using the boundary locus 
approach, as shown in Figure 1. 

 
Fig. 1. Region of absolute stability of the proposed method 

V. RESULTS AND DISCUSSION 

This section details the application of the developed four-

step block method for the numerical solution of second-
order FODEs. The results are compared with the exact 

solution and existing methods. The comparisons between 
exact and approximate solutions are shown in  ta bles and 
graphs where the x-axis shows the value of the approximate 

solution and the y-axis shows α-level values. 
 
Applications of FIVPS in Mechanical and Electrical 

Engineering 
 

Here we consider the application of fuzzy differential 
equations in mechanical and electrical engineering concepts. 
The first one is the vibrating mass system without a  

damping effect, the second one is the displa cement  o f the 
pendulum due to damping, and the third one is the elect ric 
circuit of charging. 

 
Example 1 [22]  

Consider the vibrating mass system. The mass 𝑚 = 1, the 

spring constant 𝑘 = 4 𝑙𝑏𝑠/𝑓𝑡 and there is no, or negligible, 

damping. The forcing function is 2 cos( )x  and the 

differential equation of motion is 
2

2
4 2cos( ) 0

d y d y
x

dxdx
+ − =   

with fuzzy initial conditions 

(0, ) (2 ,4 2 ), '(0, ) (2 2,2 2 )y r y    = − = − − . 

The lower and upper solution of the vibrating mass 
system is given as 

2

3

2

3

2

3

2

3

( , ) 2 cos(2 ) sin(2 ) sin(2 ) cos( )

cos(2 ),

( , ) (4 2 )cos(2 ) sin(2 ) sin(2 ) cos( )

cos(2 ).

Y x x x x x

x

Y x x x x x

x

  

  

= + − +

−

= − + − +

−

 

The solution of this vibrating mass system as an FI VP is 
compared with [22], where Laplace Transformation Method 
(LTM) was presented with h=0.1. The solution's accuracy in 

terms of absolute error with lower and upper bounds in 
presented in Table 1. The drawback of the study by  [22] is 
that the second-order FIVP was reduced to first-order FIVPs 

and then LTM was applied for the approx imate so lut ion. 
Whereas, the developed method in this article directly solves 

the second-order FIVP with improved accuracy in term s of 
absolute error when comparing the appro ximate so lu tion 
with the exact solution as seen in Table 1. Figures 2 -6  with  

approximate solutions show the uncertain behaviour o f  the 

vibrating mass system with different values o f α=0, 0 ,25, 
0.5, 0.75, 1 for Example 1. It is observed that the 
approximate solution completely overlaps the exact solution.  

 
TABLE 1 

 APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF 

EXAMPLE 1 

𝛂 Lower Solution Error 

0 -0.271664665215493650 0.000000e+00 
0.25 -0.252413726782644400 0.000000e+00 

0.5 -0.233162788349795170 0.000000e+00 
0.75 -0.213911849916945920 1.387779e-18 

1 -0.194660911484096670 0.000000e+00 

𝛂 Upper Solution Error 

0 -0.117657157752699650 0.000000e+00 

0.25 -0.136908096185548920 0.000000e+00 
0.5 -0.156159034618398170 0.000000e+00 
0.75 -0.175409973051247420 0.000000e+00 

1 -0.194660911484096670 0.000000e+00 

 

 

Fig 2. (1,0)y  and (1,0)y  
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Fig 3. (1,0.25)y  and (1,0.25)y  

 

Fig 4. (1,0.5)y  and (1,0.5)y  

 

Fig 5. (1,0.75)y  and (1,0.75)y  

 

Fig 6. (1,1)y  and (1,1)y  

 

Example 2 [22] 

A pendulum of length L=8/5 𝑓𝑡 is subject to resistive 

force 𝐹𝑅 = 32/5 𝑑𝜃/𝑑𝑡 due to damping. To  determine the 
displacement function if 𝜃 (0) = 1, and 𝜃 ′ (0) = 2, the 
resulting differential equation is  

2

2

8 32
. . 32 0

5 5

d d

dxdx

 
+ + = .  

This crisp differential equation is converted to a fuzzy 
differential equation as FIVPs using definitions in Section 2  

such that 
2

2
4 20 0

d d

dxdx

 
+ + =   

with given fuzzy initial conditions  

(0, ) ( ,2 ), '(0, ) (1 ,3 )       = − = + −  

The lower and upper solutions of the damping pendulum 
problem is given as 

2 23 1

4

2 27 3

4

( , ) cos(4 ) ( ) sin(4 )

( , ) (2 ) cos(4 ) ( ) sin(4 )

x x

x x

x e x e x

x e x e x





  

  

− −+

− −−

= +

= − +
  

The solution of this FIVP damping pendulum problem is 
also compared with [22] with h=0.1. The a ccuracy of the 

solution in terms of absolute error with lower and upper 
bounds is presented in Table 2. The drawback of the 
approach by [22] is still the reduction process as mentioned 

in Example 1. Comparison of the approximate solution with  
the exact solution is seen in Table 2 and Figures 7 -11  with  

approximate solution show the uncertain behavio ur o f  the 

damping pendulum problem with different v alues o f  α=0, 
0,25, 0.5, 0.75, 1 for Example 2. Likewise, the approximate 
solution overlaps the exact solution.  
 

TABLE 2 
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF 

EXAMPLE 2 

𝛂 Lower Solution Error 

0 -0.025605520014168430 0.000000e+00 

0.25 -0.066924921166140253 0.000000e+00 
0.5 -0.108244322318112080 0.000000e+00 

0.75 -0.149563723470083930 2.775558e-18 
1 -0.190883124622055760    2.775558e-17 

𝛂 Upper Solution Error 

0 -0.356160729229943020 0.000000e+00 
0.25 -0.314841328077971220 0.000000e+00 

0.5 -0.273521926925999410 0.000000e+00 
0.75 -0.232202525774027560 0.000000e+00 

1 -0.190883124622055760    2.775558e-17 

 

 

Fig 7. (3,0)  and (3,0)  

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_15

Volume 49, Issue 4: December 2022

 
______________________________________________________________________________________ 



 

 

Fig 8. (3,0.25)  and (3,0.25)  

 

Fig 9. (3,0.5)  and (3,0.5)  

 

Fig 10. (3,0.75)  and (3,0.75)  

 

Fig 11. (3,1)  and (3,1)  

 

Example 3 [23]  
The differential equation describing an electrical circuit if 

Q is the charge of the capacitor of time x>0 is given as 
2

2
2 4 50cos( ) 0

d Q dQ
Q x

dxdx
+ + − =   

With fuzzy initial conditions 

(0, ) (4 ,6 ), (0, ) ( ,2 )Q r r r Q r r r= + − = − .  

The lower and upper solution of the capacitor charge 

problem is given as 

50 38 3 38
( , ) cos( ) ( )cos(2 )

3 3 2 3

100 107 5 1
sin( ) ( )sin( )

9 9 4 2

Q x r x r tr t x

x r tr rx

−
= + + − +

−
+ + + −

 

50 32 3 29
( , ) cos( ) ( )cos(2 )

3 3 2 3

100 169 5 1
sin( ) ( )sin( )

9 9 4 2

Q x r x r xr t x

x r xr x rx

−
= + − + +

−
+ + − + −

 

This solution of this problem is compared with [23], 
where the variational iteration method (VIM) was presented 
with h=0.1. The drawback of the study by [23] is also 

reduction of the second-order FIVP to first-order FIVPs. 
The direct solution using the developed method in this 
article is compared with [23] as shown in Table 3 . Figures 

12-16 also display the approximate so lu tion showing the 
electrical circuit's uncertain behaviour with different values 

of α=0, 0,25, 0.5, 0.75, 1.  
 

TABLE 3 

APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF 
EXAMPLE 3 

𝛂 Lower Solution Error 

0 7.869505223941254 0.000000e+00 
0.25 7.858577006672877 0.000000e+00 

0.5 7.847648789404501 0.000000e+00 
0.75 7.836720572136122 0.000000e+00 

1 7.825792354867745    0.000000e+00 

𝛂 Upper Solution Error 

0 7.782079485794236 0.000000e+00 

0.25 7.793007703062613 0.000000e+00 
0.5 7.803935920330990 0.000000e+00 

0.75 7.814864137599368 0.000000e+00 
1 7.825792354867745    0.000000e+00 

 

 

Fig 12. (2,0)Q  and (2,0)Q  
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Fig 13. (2,0.25)Q  and (2,0.25)Q  

 

Fig 14. (2,0.5)Q  and (2,0.5)Q  

 

Fig 15. (2,0.75)Q  and (2,0.75)Q  

 

Fig 16. (2,1)Q  and (2,1)Q  

 
Example 4. [24] 

Consider the second-order FIVP  

( )
''

'

1
( ) ( ) ( )

2

(0) (2 , 4 )

(0) (2 , 4 )

y x y x y x

y

y

 

 


= +


= + −


= + −



 

with exact solution  

( , ) (2 )

( , ) (4 )

x

x

Y x r e

Y x r e





 = +


= −

 . 

This solution of Example 4 is compared with [24] where 
VIM was presented with h=0.1. VIM was adopted after 

reducing the second-order FIVP to first-order FIVPs, 
whereas the block method developed in this art icle so lved 
the problem directly. Table 4 shows the comparison of 

results and Figure 17 shows the comparison between the 
exact and approximate solution for Example 4 with the 

approximate solution overlapping the exact solution.  
 

TABLE 4 

 APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF 
EXAMPLE 4 

α Lower solution FSBM  
Error  

VIM 
Error [24]  

0 5.436563656918091100 8.881784e-18 2.6645e-15 

0.2 5.980220022609900700 8.881784e-18 2.6645e-15 
0.4 6.523876388301709500 8.881784e-18 4.3476e-12 

0.6 7.067532753993518200 8.881784e-18 3.8261e-10 
0.8 7.611189119685327000 0.000000e+00 9.2191e-09 

1 8.154845485377137500 1.776357e-18 1.0925e-07 

α Upper solution FSBM  
Error 

VIM  

Error [24] 

0 10.873127313836182000 1.776357e-18 2.6645e-15 
0.2 10.057642765298469000 1.776357e-18 2.6645e-15 

0.4 9.513986399606659800 1.776357e-18 4.3476e-12 
0.6 8.970330033914850200 1.776357e-17 3.8261e-10 

0.8 8.426673668223040500 0.000000e+00 9.2191e-09 
1 8.154845485377137500 1.776357e-17 1.0925e-07 

 

 

Fig 17. (1,1)y  and (1,1)y  

 
Example 5. [25] 

Consider the second-order FBVP 
''

2

2 2 2

( ) ( ) , [0, ]

(0, ) (0.1 0.1,0.1 0,1 )

'( , ) ( 0.1 ,1 0.1 )

y x y x x x

y

y



  

  

  

 + = − 



= − −


= − + + −

  

with the exact solution as follows 
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( , ) (0.1 0.1)cos( ) (0.1 )sin( ) )

( , ) (0.1 0.1 )cos( ) (1 0.1 )sin( ) )

Y x x x x

Y x x x x

  

   

 = − + −


= − + + − −

  

The solution of this FBVP is compared with [25], where 

the undetermined fuzzy coefficients method (UFCM) wa s 
presented with h=0.1. The accuracy of the solution in term s 
of absolute error with lower and upper bounds in  given  in  

Table 5. The drawback of the study by [25] is a lso the 
reduction approach and the improved accuracy of the 
developed block method as a direct approach  is shown in  

Table 5. Figure 18 also displays the exact and approx imate 
solution of Example 5 where the approximate solution 

completely overlaps the exact solution. 
 

TABLE 5 

APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF 
EXAMPLE 5 

α Lower solution FSBM 
Error 

VIM 
Error [25]  

0 -1.054030230586813900 0.000000e+00 0.116492e-4 

0.2 -1.026394764773293200 0.000000e+00 0.111074e-4 
0.4 -0.998759298959772560 0.000000e+00 0.105656e-4 

0.6 -0.971123833146251840 0.000000e+00 0.100238e-4 
0.8 -0.943488367332731000 0.000000e+00 0.094820e-4 

1 -0.915852901519210280 1.1102237e-16 0.089402e-4 

α Upper solution FSBM 
Error  

VIM  
Error [25] 

0 2.539060279476166700 0.000000e+00 0.6231166e-5 
0.2 2.511424813662646000 0.000000e+00 0.6772968e-5 

0.4 2.483789347849124900 4.440892e-16 0.7314771e-5 
0.6 2.456153882035604600 4.440892e-16 0.7856573e-5 

0.8 2.428518416222083900 4.440892e-16 0.8398376e-5 
1 2.400882950408563100 4.440892e-16 0.8940178e-5 

 

Fig 18. (1,1)y  and (1,1)y  

VI. CONCLUSION 

The main goal of this study is to develop a numerical 

approach for solving second-order FODEs (FIVPs and 

FBVPs) that will improve the accuracy of the solution in 

terms of absolute error. As a result, this paper developed a  

block method with generalised steplength with third and 

fourth derivatives for solving second-order FODEs. As 

indicated in the tables and graphs of the numerical resu lts 

obtained, the developed four-step block method surpasses 

previous methods identified in the literature. Furthermore, 

the traditional approach of reduction to a system of f irst -

order differential equations was bypassed, implying that the 

method does not require complicated subroutines. The 

developed block scheme is a feasible strategy  f or so lv ing 

linear and nonlinear FIVPs and FBVPs with higher 

accuracy. The scheme was created employing a linear block 

approach with minimal computing complexity and fulfilled  

all convergence conditions. As a result, the approach 

proposed in this article is more suitable for solving second-

order FIVPs and FBVPs directly.  
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