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Fuzzy Higher Derivative Block Method with
Generalised Steplength for Direct Solution of
Second-Order Fuzzy Ordinary Differential
Equations

Kashif Hussain, Oluwaseun Adeyeye, and Nazihah Ahmad

Abstract—This study intends to improve the solution
accuracy of the second-order fuzzy ordinary differential
equation (FODEs). As a result, it introduces two fuzzy higher
derivative terms into the block scheme with generalised
steplength. The generalised steplength scheme is then adopted
to develop a four-step block method for solving directly
second-order fuzzy initial and boundary value problems. Its
properties to ensure convergence and show the region of
absolute stability are investigated in fuzzy form. The numerical
results, compared to the exact solution of the numerical
problems under consideration (applications in engineering),
showed the new block method performs better than existing
numerical methods in terms of solution accuracy. Therefore,
the proposed method is suitable for directly solving models
defined as second-order fuzzy ordinary differential equations.
Index Terms—fuzzy differential equations, second-order,
four-step, block method.

I. INTRODUCTION

ECOND-ORDER differential equations have many

applications, especially in mechanical and electrical
engineering, chemistry, biology, physics, electronics, etc.
However, unpredictable circumstances may arise,
introducing the concept of uncertainty and using fuzzy
derivatives and fuzzy differential equations (FDES) to deal
with these situations [1]. There are three differentiations
used to define the differential of fuzzy functions, the
Hukuhara derivative (H-derivative) [2], the Seikkala
derivative [3],andthegeneralized derivative (g-derivative)
[4]. This research focuses onthe H-derivative to define the
differential equations coveredin thisarticle, which follows
the definition used by authors' whose findings were
compared in the numerical examples with the newly
developedblock methodin thisarticle.

Most second-order problems modelledas FODEs maybe
difficult to solve directly, and it is not always possible to
obtain their exact solution. As a result, experts were
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interested in employing various numerical methods to obtain
an approximate solution. Numerous scholars have developed
a variety of numerical approaches forsolvingsecond-order
FODEs [5]-[13]. Reducing the second-order FODE system
to first-order FODEs is the most significantdisadvantage of
these techniques since it increases computing effort and
compromises solutionaccuracy. Therefore, block methods
were used asa direct numerical solution to the second-order
FODEs to avoidthe rigour of reduction [14]-[16]. However,
because of the order of the developed techniques, the
accuracy oftheir obtained findings in terms of absolute error
is low and might be improved. As a result, this article's
motivation is to develop a block method with two fuzzy
higher derivative termsto improve accuracy.

Thisarticle is organized as follows: Section 2 presents the
basic definitions for fuzzy set theory. Section 3 offers the
development of the k-step (four-step) block method with the
presence ofthird and fourth derivativesusing linear block
approach. The basic properties of the block method are
highlighted in Section 4, while Section 5 showsthe results
obtained forthelinearandnon-linear numericalexamples.
Thearticle isconcluded in Section6.

Il. BAsIC DEFINITIONS

This section recalls some basic definitions which will be
adopted in this article.

Definition 2.1 [17]
The link between the crisp and fuzzy domain is

represented by the a-level set (cuts) of a fuzzy set A withthe
crisp set X , denoted by

[AJ ={X eX|puXN)zaa 6[0,1]}.

Definition 2.2 [17]

Fuzzy numbersare a subsetof real numbersand represent
uncertain values. Afuzzy number is connectedto the degree
of membershipwhich states how genuineitis to say in case
somethinghasa place ornot in a decided set.

A fuzzy number M iscalled a triangularfuzzy number
(@,a%,a’)eR®a'<a’*<a’ with membership

degree M(X) givenas
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0,x<a'
M (x) = ) . ()
:3_:2 ,a”<x<a
0,x >a’
and corresponding a-level set
M, ={a' —a(a’ -a"),a° —a(@’-a’)},a €[0,1]. )

Afuzzy number M iscalled a trapezoidal fuzzy number
(a',a’,a%a*)eR* a'<a’<a’<a’ with membership
degree M (x) givenas

0,x<a

aé 1,a <x<a’

M(x)=<la?<x<a® ©)
2% a®<x<a'
0,x >a’
and corresponding o-level set
M, ={a'-a(a’-a')a* —a(a* -a’)},a €[0,1]. @)

Definition 2.3 [18]

A fuzzy function f (x) is called Hukuhara differentiable if
h>0 is sufficiently small, then H-difference exists

f(x+h)—f(x), f(x)—f(x=h), such that
f (X) Ilm f(X+h) f(x) _ Ilm f (x)—f (x=h) .
h—0
I1l. METHODOLOGY
Consider the second-order FODE of the form
y ()= (X, y(x),y (X)) (5)

where y"(x) is an H-derivative of y, which isa fuzzy

function of crisp variable x. Two lowerand uppersolutions
exist since the given function isfuzzy and the parametric
form inthe a-levelsetis defined as

y (@) = F(x y(x @),y (x @)

f =min(x, y(x.a),y (xa)), f = max(x, y(x, @), y (x.a)) .

The generalised k-step block method with the presence of
third and fourth fuzzy derivatives for the directsolution of
Equation(5) formisstatedas,

2 k
Yoy =(¢ o"’Q? Y, +Z{Zu/d@,

d-0[ ¢=0
with derivative expression
¢ 2 k «
yln+'7 = (yn + Z|:Z Pacy

d
fMD n=123..k. (7)
d-0[ ¢=0 .

Expanding Equations (6)7and (7) produces the
expressions in Equations (8) and (9) respectively

f:+¢D 1 =12,3,...k(6)

R

Y, +hy;1 +
Yoo, fn + Vo, foat Yooy foot < W o, fout
yn+r7 = '
‘//107 f +v/1177 f n+l +l//12r] f n+2 +l//1kr7 f n+k +
L f n T¥o, fn+1 +V¥o, fn+2 < W o, LI +_ .
®)
Yo+
. Dooy fo+ Doy foat Doayy frot i F Py foat
yn+r7 =
¢107] f +(p1177 f n+l + (0127 f n+2 +(p1kr] f n+k +
Daon f + @y, f n1 T Py f ne2 Treen TPy ot
. . _ )
By applying Taylor series expansions by [19],
no o
y(x+h:a) = [Z% f (I)(x,a)J (10)
i=0 a
to expandeachtermin Equations (8) and (9) yields
()
Yney = YX+1h; @) = (Z (oh)’ ¢ (xn,a)] 77=0.1,..k
h (nh) "
yo - (i @) +170y (o @) + 5y (xn.a)
n+n —
’7;) Y (X @)+t + ”h) y (xn,a)

The unknown coefficients v, and ¢, are obtained
usingthe matrix inverse method, where y/y,, = A'B,

Bacy = A'D, with

1 1 1 0 0 O 0
0 h .. kh 1 1 1 0 0 0
T C kh 1 1 1
¢ (kh)® 2 (kh)®
A=0 Lo 5 0 & . 5 0 h kh
3k42 (kn)*k+2 3kl (khy¥t (hy (khy*
0 (3hk+2)! (3k+2)! 0 (3hk+1)z T (3k+1)! 0 3kl 5k!
(nh)?
2! 77h
(hy? an?
e 2
(7h)* ()
] 3l
(y® am*
B= 51

,and D= 4

()3

(qh)(3k+4)
(3k+3)!

(3k+4!

The values obtained are substituted in Equations (8) and
(9) to get the desired generalized k-step block method with
the presence of third and fourth derivatives for solving
second-order FODEs. Amore detailed explanationis given
in the following subsection, where the generalized
steplength (k-step) block method scheme with the presence
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of third and fourthderivativesisadoptedto develop a four-
step (k=4) block method for second-order FODEs.

DEVELOPMENT OF FOUR-STEP BLOCK METHOD

Considerdevelopinga four-step block method (FSBM)
with third and fourth fuzzy derivatives for second-order
FODEs by substituting k=4 in Equations (8)and (9) which
resultsin Equations (11)and (12) below

Yoig =
. +hy, +
Yooy fo+ Vo, foat Yooy, frozt Vo3, fost Yoy foat
Vi, f +¥, f nat T VWi, f ne2 T Wi, f nes T Wiy f nea T

Vo, f n W, f nt T Vo f ne2 TWosy, f nes TWosy f +4

n=1234,

1)
Vo =
Yo+ )
Pooy o+ Py T ot + Pz Tz + Py Troia + 00, Froa +
Pro, f o T Py fn+1 + P, fn+2+ Pray fn+3 + Py fn+4 +
Oy o+ 0oy T+ 0y o+ Py F i+ 00ty T }
7=1234. )
(12)

The unknown coefficients in Equations (11) and (12) are
obtained using matrix A for k=4 and matrices B and D for
n=212,34 as

1278669671h° 2305208h?
4598415360 3648645
Yoor 20793569h? Y02 7490816h?
38918880 3648645
Vou 44268512 Vow _agh?
946176 35
Voo 18801383h? Yoz 151475217
116756640 3648645
Va1 Yoz
03 —15685603h> 03 —10420
72846638090 729729
You 2846638090 Yo
531347h% 763657h°
Vi 16220160 Vio2 9729720
19491781h° 24928h°
Vin 311351040 Vi 135135
— 230389h° _ | e784n®
Vior |[=| Soeaa0 | Vi |=| 045
-18603301h° -992h°
Via 311351040 Vi 6435
Vg 61072477h° Vis 5521h°
39852933120 1389960
V01 29662123h" Vo2 17783h*
19926466560 4864860
Yo g1h* Voo 159584h*
1792 1216215
Vo _5218561h" Vo —1h*
92252160 7
Va1 Vo X
3229249h* 32608h
Vo 311351040 Vs 1216215
~779951h* -1481h*
6642155520 4864860

Yoo3
Yoz
Vo3
Vos3
Yoz
V103
Vs
Vi3
Vi3
Vias
YVa03
Yoz
Vo3
Woss
Vs

Poot
Pon
Poa1
Poa1
Poar
Pro1
(438
Pray
(4%
P
Dao1
Ponn
D1
Do
Poat

Dooz
Do13
Doz
Doz3
Dosz
Dios
Dii3
Dips
Dias
Puss
Dooz
Do13
Dor3
Doz
Dosz

82001920

80789193h?
82001920

16821h?
4576

—1436859h?
1576960

123867h?
160160

—147393h?
6307840

20358801h°
164003840

421767h°
1281280

592677h°
2562560

—347751h°
1281280

81891h°
12615680

4774410*
82001920

280827h*
1281280

—2123577h*
10250240

81h*
1792

—40743h*
82001920

3028574741h

8539914240
62720030
5307120
—14753h
18480
1438733h
5307120
—551113363h

59779399680
457963769h°

9963233280

1331003h?
19459440

2187h?
17920

-391297h?
3891888

25533817h?
9963233280

10906367h°
4981616640

794921h%
9729720

-34589h°
360360

169439h°
9729720

-977791h°
4981616640

29017419h

11691h
7280
2187h
6160
723h
1040
-819531h
82001920
268101h?
5857280

11097h?
80080

87h?
17920

—1953h?
11440

22599h?
82001920

44613h°
20500480

3483h°
40040

—2187h%
40040

909h3
40040

—4293h°
20500480
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Voos
Vow
Voo
Vosa
o
V104
Vs
Vi
Visa
Vi
V04
Vs
Voo
Yoz

\Zem

Dooz
Po12
Dozz
Poz2
Dosz
Pron
(Z%P)
Prar
(4%
Drap
(2
Po1p
)
Doz
Posz

Poos
Pora
Poza
Dosa
Posa
Dros
(2
Drog
Praa
(2
Poos
Do14
ZN
Daza

4872272h?
3648645

6557696h?
1216215

—1024h2
1155

118784h?
56133

52552h%
1216215

6224h°
36855

618496h°
1216215

13568h°
45045

—77824h°
173745

—688h°
173745

1376h*
173745

126976h*
405405

—13568h*
45045

126976h*
1216215

0

82429429h
233513280
543736h
331695
—256h
1155
78856h
331695
—1950581h
233513280

1772191h?
38918880

36632h2
243243
h2
70
~107656h?
1216215

90527h?
38918880

42001h°
19459440

108104h°
1216215

-3392h°
45045

2696h°
173745

(Zm

-3473h°
19459440

1257482h
3648645

622592h
331695
—-512h
1155
622592h
331695
1257482h
3648645

52552h?
1216215

290816h?
1216215

0

—290816h°

1216215

—52552h?
1216215

344h%
173745

126976h°
1216215

—6784h°
45045

126976h°
1216215

344h°
173745
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R

Substituting the obtained coefficient values in Equations

(11) and (12) gives the four-step block method with the Yot
presence of third and fourth fuzzy derivativesin the formof h(2owas ¢ | uen L2813 _
Equations (13)and (14) . 82001920 'n ' 7280 ' n+1 " 6160 ' n+2 T 1040 ' n+3
= 819531 2 (268101 11097
Ynea saooroz0 | nva) TN (57285 9n + 50080 Tns +
. a <87 1953 22599 3(_44613
y, +hy, + 17920 In+2 ~ 11240 In+3 T 5200100 n.a)+h (20500480 m,
- 48y 2T %00 gy 4203y )
2 (1278669671 20793569 442685 40040 "' 'n+1 40040 " 'n+2 40040 " n+3 20500480 "' n+4
h (4598415360 fo+ 38918880 it 946176 foot | e
18801383 15685603 3(_531347 ¢
y .= 116756640 f n+3 2846638090 f n+4) +h (16220160 n Yo t+
n+l =
19491781 230389 18603301
+ 311351000 In+1 T 3204720 In+2 ~ 311351000 Inss + h(Ere f y222f 2 f 4852 o
61072477 4 (29662123 81 '
somszs39125 Ina) TN (Ssapase0s0 Mo + 767 Mhea Youd =| | +082F )+ h?( o Oy + s (i —
5218561 3229249 779951
__ 92252160 ' 'n+2 T 311351040 '''n+3 ~ 6642155520 mn+4)J 3 12291%8211% Ons — % O,.0)+ h® 173;47‘25 m, +
' @ 1122166927165 Moy — Zggig Mo + 1122166927165 My.s + 17334;15 mn+4) o
Yo +hy, + "
o (14)
2305208 7490816 38 1514752
h (3648645 fn + 36as65 f ni1 T35 1 ne2 T 3648605 f n+3
= 10420 3 (763657 24928 IV. CONVERGENCE AND STABILITY PROPERTIES
Ynez T 720729 nea) +h (9729720 On 135135 s + . . . . .
G g LSRG ) p( This section will detail the convergence and st_abl_llty
45045 Un+2 6435 Yn+3 T 1389960 Tn+d 4864860 "n properties of the developed four-step third-fourth derivative
|+ 35i578s Mot = Moo + 316215 Mhes ~ s Mhea) | ), Scheme. The following definitions are used: consistency,
- zero-stability, and region of absolute stability from [20]-
' 21]. These definitions for block methods in the crisp form
yn + hyl‘l + [ - -y
- - are adoptedto theproposedmethodfor fuzzy initial and
h? (B78013 f | 16821 1436850 f | 120867 f
82001920 'n T 4576 | n+1 1576060 | n+2 T 160160 | n+3 boundary value problems to prove the convergence
147393 3 (20358801 421767 roperties of the proposed method.
y = 6307840 nea) 0 (164003840 O * 1281080 Ina T prop prop
n+3
592677 347751 81891
5362560 In+2 ~ 1281980 In+a + Too15685 Ina) + Order and Error Constant
4 _ar7am 280827 2123577 The linearoperator which isassociated with Equation (6
h (82001920 My + 1281280 Mh+1 ~ 10250240 Mhs2 + P . . . q (6)
o w0743 forthe four-stepblock method is defined as:
| 1792 ' 'n+3 T 82001920 mn+4) 1), . ol 4 a
= ahy ¢ d
. SRTCCURTE ) R o YA | IS
y,+hy, + ¢=0 d-0| ¢=0 p
2 (4872272 6557696 1024 118784 ' " a
h* (Gegeas Tn + Torezrs fos — 115 T ooz + 56138 [ e S, Y(x)+.hy'(x.) + 8,0 y'(X )+, +
L(y(X) h) _ 0 n 1 n 2 n
= 52552 3 (6224 618496 13568 T 2,242
Yiea + To16215 foa)+h (m 9 + 1216215 9nea t 25025 Iz +5z+1h“1yz+l(xn) + 52+2h“ y* (%) o
77824 688 4 (1376 126976 . . .
—Tr3ra5 nes — s Inea) T 07 (3025 M + 202008 Mo The order of this method is z if
3568 126976 =0 =0 =..... = = + i
25085 Mni2 + 16215 M.3) o (i(;nstilnt 6 ==0,,=0 and 6,,#0 is the error
(13); Using the definition of order and error constant, the
y T developed block method has order fifteen with error
n
- - constant
h(Z0ETATAL f | 6272008 f 14758 1438733 §
8539914240 'n ' 5307120 ' n+1 18480 ' n+2 ' 5307120 ' n+3 |: 48248741 3824 92529 7648 :I
) 5340646732861440000 ' 162983603908125 '  2441996677120000 ' 162983603908125
yoo- — eI a) T (ol g, + B g L+ So, the developed block method is consistent.
n+1
2187 301207 25533817
17920 In+2 ~ 3ao1ees In+3 T o63233280 Unia) + Zero-Stabilit
h?3 (-L0%06367 4 194921 _ 34589 + ero- a y L e
4981616640 '''n ' 9729720 '''n+1 "~ 360360 ' 'n+2 Applyingthe definition of zero stability in fuzzy form for
169439 977791 i
9720720 'Mn+3 ~ 751616640 Mo.s) the proposed method gives _
L —/a a
Z P(g) = (jpA° + A')) (16)
' a
+ 4
" 4000 (000 1)
82429429 543736 256 78856
) h(233513280 fn T 331605 f n+l "~ 1155 fn+2 T 331605 fn+3 - 0400 000 1
=| | _1950581 2 (1772101 36632 1 _ _4? _
Ynea 233513280 fn+4)+ h (38918880 On + 243243 Ini1 T 76 sz P(g) = 00 ¢4 0 + 0001 =¢ (6-1)=0.
107656 90527 3 (_42001
1216215 9n+3 T Fao18880 Una)+h (19459440 m, + 000 ¢ 0001
108104 3392 2696 3473 a
mn+1 m + mn+3 mn+4)

1216215 T 45045 ' 'n+2 173745 "~ 19459440

a Hence theroots P(¢) = 0 satisfy the condition
|¢,|<1n=1234.
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Since the obtained roots satisfy the above condition, the
proposed four-step block method is zero-stable. The
developed methodis thus convergenthaving satisfied the
properties of consistency and zero-stability.

Region of Absolute Stability

Determining the absolute stability region uses the
characteristic polynomial of the developed block method
obtainedas

—(wW)* + A1+q{zk: BJW"J}+q2 {ZKZCJ'W“}+

i=0 i=0

k k
o Sow eS|
j=0 j=0

a

det

q = Ah.
The region of absolute stability is determined by plotting
the roots of thepolynomial using the boundary locus
approach, asshownin Figure 1.

Re(q)
Fig. 1. Region of absolute stability of the proposed method

V. RESULTS AND DISCUSSION

This section details the application ofthe developed four-
step block method for the numerical solution of second-
order FODEs. The results are compared with the exact
solution and existing methods. Thecomparisons between
exactand approximatesolutions are shown in tables and
graphswhere the x-axis shows thevalue of theapproximate
solution and the y-axis shows a-level values.

Applications of FIVPS in Mechanical and Electrical
Engineering

Here we consider the application of fuzzy differential
equations in mechanical and electrical engineering concepts.
The first one is the vibrating mass system without a
damping effect, the second one isthe displacement of the
pendulum dueto damping, andthe third one isthe electric
circuit of charging.

Example 1 [22]

Considerthe vibratingmass system. The massm =1, the
spring constant k =4 lbs/ft and there is no, or negligible,
damping. The forcing function is 2cos(x) and the
differential equation of motionis

d?y
dx?

+4ﬂ—2003(x) =0
dx

with fuzzy initial conditions
y(0,a) =(2r,4-2a),y'(0,a) = (2a—-2,2-2a) .

The lower and upper solution of the vibrating mass
system isgiven as
Y (X, @) = 2a c0os(2x) + e sin(2x) —sin(2x) + 2 cos(x)
—2c0s(2x),

Y (X, @) = (4—2¢a) cos(2x) +sin(2x) — asin(2x) + 2 cos(X)
—2¢0s(2x).

The solution of this vibratingmass systemasan FI VP is
comparedwith [22], where Laplace Transformation Method
(LTM)was presented with h=0.1. The solution'saccuracy in
terms of absolute error with lower and upper bounds in
presentedin Table 1. The drawback of the study by [22] is
that thesecond-order FIVVP was reduced to first-order FIVVPs
and then LTMwasapplied forthe approximate solution.
Whereas, thedeveloped method in this article directly solves
the second-order FIVVP with improvedaccuracyinterms of
absolute errorwhencomparingtheapproximate solution
with the exactsolution asseen in Table 1. Figures 2-6 with
approximate solutions showthe uncertain behaviour of the
vibrating mass system with different values of «a=0, 0,25,
0.5, 0.75, 1 for Example 1. It is observed that the
approximate solution completely overlaps the exact solution.

TABLE 1
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF
EXAMPLE 1
o Lower Solution Error
0 -0.271664665215493650 0.000000e+00

0.25  -0.252413726782644400
0.5 -0.233162788349795170
0.75  -0.213911849916945920
1 -0.194660911484096670
o Upper Solution
0 -0.117657157752699650
0.25  -0.136908096185548920
0.5 -0.156159034618398170

0.000000e+00
0.000000e+00

1.387779¢-18
0.000000e+00

Error

0.000000e+00
0.000000e+00
0.000000e+00

0.75 -0.175409973051247420 0.000000e+00
1 -0.194660911484096670 0.000000e+00
5 T T
—e—Lower solution
4 —»— Upper solution

Approximate Solution
N

0\'\7\*?—'—:—'—'7"*)

0 0.2 0.4 0.6 0.8 1
time/s

Fig 2. y(1,0) and y(1,0)
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Approximate solution

Approximate solution

Approximate solution

Approximate solution

—e—Lower solution
—x— Upper solution

:\\\-~_._._.__.

0 0.2 0.4 0.6 0.8 1

time/s
Fig 3. y(1,0.25) and y(1,0.25)

—e—| ower solution
—x—Upper solution

0 0.2 0.4 0.6 0.8 1

time/s
Fig 4. y(1,0.5) and y(L0.5)

—e— [ ower solution
—%—Upper solution

0 0.2 0.4 0.6 0.8 1

time/s
Fig 5. y(1,0.75) and y(1,0.75)

—e—Lower solution
—»—Upper solution

0 0.2 0.4 0.6 0.8 1

time/s
Fig 6. y(.,2) and y(L1)

Example 2 [22]

A pendulum of length L=8/5 ft is subject to resistive
force FR=32/5 d6/dt dueto damping. To determine the
displacement function if 6 (0) = 1, and 6 ' (0) = 2, the
resulting differential equation is

2

§.d—?+g.d—9+329=0 .
5 dx° 5 dx

This crisp differential equation is converted to a fuzzy
differential equation as FI'VPs using definitions in Section 2
such that

2
d '29+4%
dx dx

with given fuzzy initial conditions
00,a) =(a,2-),0'(0,) =1+ a,3— )

The lowerand uppersolutions of the damping pendulum
problem isgivenas

O(x, @) = ae™ cos(4x) + (3<2)e > sin(4x)

O(x, &) = (2— a)e > cos(4x) + (F22)e** sin(4x)

The solution of this FIVVP damping pendulum problem is
also compared with [22]with h=0.1. The accuracy of the
solution in terms of absolute error with lower and upper
bounds is presented in Table 2. The drawback of the
approachby [22] is still the reduction processas mentioned
in Example 1. Comparison of the approximate solutionwith
the exact solutionisseen in Table 2 and Figures 7-11 with
approximate solutionshowthe uncertain behaviour of the
damping pendulum problem with differentvalues of a=0,
0,25,0.5,0.75,1 forExample 2. Likewise, the approximate
solution overlaps theexact solution.

+200=0

TABLE 2
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF
EXAMPLE 2
o Lower Solution Error

0 -0.025605520014168430
-0.066924921166140253
0.5 -0.108244322318112080

0.000000e+00
0.000000e+00
0.000000e+00

-0.149563723470083930 2.775558e-18
1 -0.190883124622055760 2.775558e-17
o Upper Solution Error

0 -0.356160729229943020
-0.314841328077971220
0.5 -0.273521926925999410
-0.232202525774027560
1 -0.190883124622055760

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
2.775558e-17

2.5 -
——Lower solution

- - - Upper solution

15F

0.5F \

Approximate solution

_0.5 'l — 'l 'l 'l
0 0.5 1 1.5 2 2.5 3

time/s
Fig 7. 6(3,0) and 6(3,0)
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Approximate solution

Approximate solution

Approximate solution

Approximate solution

-
¢

N
T

o
3

o

o
()]

—_
T

1.5

—_
T

o
o
7

1.5

N

o
o

- ——Lower solution
\ - - - Upper solution

0 0.5 1 1.5 2 2.5 3

time/s
Fig 8. 6(3,0.25) and 6(3,0.25)

——Lower solution
- - - Upper solution

0 0.5 1 1.5 2 25 3

time/s
Fig 9. 6(3,0.5) and 6(3,0.5)

- i i ) ——Lower solution
AY .
\ - - - Upper solution

0 0.5 1 1.5 2 2.5 3

time/s
Fig 10. 6(3,0.75) and 6(3,0.75)

——Lower solution
- - - Upper solution

0 0.5 1 1.5 2 2.5 3

time/s
Fig 11. #(3,1) and 6(3,1)

Example 3[23]
The differential equation describinganelectrical circuit if
Q is the charge of the capacitor of timex>0is given as

2
d 9+2d—Q+4Q—5OCOS(X) =0
dx dx
With fuzzy initial conditions
Q0O,r)=@+r,6—-r),Q0,r)=(r,2-r).
The lower and upper solution of the capacitor charge
problem isgivenas

50 -38 3 38
X,r) = —c0S(X) + (—— +r ——=tr + —1t) cos(2x
Q(x,r) 3 (x) (3 5 3) (2x)

100 . -107 5 1 .
+==sin(X) + (——+—r —=tr)sin(rx
5 (x)+( s 273 )sin(rx)

= 50 -32 3 29
X, 1) = = C0S(X) + (——= —r + = Xr +—t) cos(2x
Q(x,r) 3 (x)+( 3 5 3 ) cos(2x)

100 . -169 5 1 .

+ 5 sin(x) + ( 5 4r+2xr X)sin(rx)

This solution of this problem is compared with [23],
where the variational iteration method (VIM) was presented
with h=0.1. The drawback of the study by [23] is also
reduction of the second-order FIVP to first-order FIV/Ps.
The direct solution using the developed method in this
article is compared with [23]asshown in Table 3. Figures
12-16 also display theapproximate solution showing the
electrical circuit's uncertain behaviour with differentvalues
of0=0,0,25,0.5,0.75, 1.

TABLE 3
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF
EXAMPLE 3

o Lower Solution Error
0 7.869505223941254 0.000000e+00
0.25 7.858577006672877 0.000000e+00
0.5 7.847648789404501 0.000000e+00
0.75 7.836720572136122 0.000000e+00
1 7.825792354867745 0.000000e+00

o Upper Solution Error
0 7.782079485794236 0.000000e+00
0.25 7.793007703062613 0.000000e+00
0.5 7.803935920330990 0.000000e+00
0.75 7.814864137599368 0.000000e+00
1 7.825792354867745 0.000000e+00
10 T "

P ——Lower solution

. s - - -Upper solution
.5 , N pp
3
o
7]
2
@©
£
X
o
[}
Q
<€
2 2 2 2 2
0 0.5 1 1.5 2

time/s
Fig 12. Q(2,0) and Q(2,0)
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10

Approximate solution

——Lower solution
S. - - - Upper solution

0.5

1 1.5 2
time/s

Fig 13. Q(2,0.25) and Q(2,0.25)

Example 4.[24]
Considerthe second-order FIVP

Y (0 =5(y0+y(0)
vy0)=2+a,4—a)
y(0)=(2+a,4-a)

with exact solution
Y(xr)=(2+a)e"

Y(x,r1)=(4—a)e"

Thissolution of Example 4 is compared with [24] where
VIM was presented with h=0.1. VIM was adopted after
reducing the second-order FIVP to first-order FIVPs,
whereastheblock method developedin thisarticle solved
the problem directly. Table 4 shows the comparison of
results and Figure 17 shows the comparison between the
exact and approximate solution for Example 4 with the
approximate solution overlapping the exact solution.

10
——Lower solution
.S RS - - - Upper solution
5
[)
7]
Q9
®©
E
X
o
Q
Q
<
2 . . . .
0.5 1 1.5 2
time/s
Fig 14. Q(2,0.5) and Q(2,0.5)
9 — "
RN ——Lower solution
c - - - Upper solution
O 8F
5
o
(2] 7F
2
£
= 6F
o
s }
a5F
<
4 . . . .
0.5 1 1.5 2
time/s
Fig 15. Q(2,0.75) and Q(2,0.75)
9
——Lower solution
.S sk - - -Upper solution
5
o
(2] 7F
2
£
= 6F
o
g5
<
4 'l 'l 'l 'l
0.5 1 1.5 2
time/s

Fig 16. Q(2,1) and Q(2,1)

TABLE 4
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF
EXAMPLE 4
o Lower solution FSBM VIM
Error Error [24]
0 5.436563656918091100 8.881784e-18 2.6645e-15
0.2  5.980220022609900700 8.881784e-18 2.6645e-15
0.4 6.523876388301709500 8.881784e-18 4.3476e-12
0.6  7.067532753993518200 8.881784e-18 3.8261e-10
0.8  7.611189119685327000  0.000000e+00  9.2191e-09
1 8.154845485377137500 1.776357e-18 1.0925e-07
o Upper solution FSBM VIM
Error Error [24]
0  10.873127313836182000 1.776357e-18  2.6645e-15
0.2 10.057642765298469000 1.776357e-18  2.6645e-15
0.4  9.513986399606659800  1.776357e-18  4.3476e-12
0.6  8.970330033914850200  1.776357e-17 3.8261e-10
0.8  8.426673668223040500  0.000000e+00  9.2191e-09
1 8.154845485377137500 1.776357e-17 1.0925e-07
1
0.8F
%)
©06F
=
2
. 04F
02k ——Exact Solution
- ® - Appriximate Solution
0 2 2

5 6 7 8 9 10 1"
Approximate Solution
Fig 17. y@,1) and y(L1)
Example 5. [25]
Consider the second-order FBVP
y (X) + y(X) =-X,Xe [0!%]
y(0,) = (0.1 —0.1,0.1-0,1x)
y'(%,a)=(-%5+0.1a,1+%-0.12)

with the exactsolution as follows
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Y (X, &) = (0.1 — 0.1) cos(x) + (0.1ex) sin(x) — X)

Y (X,a) = (0.1-0.1x) cos(x) + (1+ 7 — 0.1x) sin(x) — X)

The solution of this FBVP is compared with [25], where
the undetermined fuzzy coefficients method (UFCM) was
presented with h=0.1. The accuracy ofthe solutioninterms
of absoluteerror with lowerand upperbounds in given in
Table 5. The drawback of the study by [25] is also the
reduction approach and the improved accuracy of the
developedblockmethodasadirect approach is shown in
Table 5. Figure 18 also displays theexact andapproximate
solution of Example 5 where the approximate solution
completely overlaps the exact solution.

TABLE 5
APPROXIMATE SOLUTION (LOWER/UPPER SOLUTION) OF
EXAMPLE 5
o Lower solution FSBM VIM
Error Error [25]
0  -1.054030230586813900  0.000000e+00 0.116492¢-4
0.2 -1.026394764773293200  0.000000e+00 0.111074e-4
0.4 -0.998759298959772560  0.000000e+00 0.105656e-4
0.6 -0.971123833146251840  0.000000e+00 0.100238e-4
0.8 -0.943488367332731000  0.000000e+00 0.094820e-4
1  -0.915852901519210280  1.1102237e-16 0.089402e-4
o Upper solution FSBM VIM
Error Error [25]

0 2.539060279476166700
0.2 2.511424813662646000
0.4  2.483789347849124900
0.6  2.456153882035604600
0.8  2.428518416222083900

1 2.400882950408563100

0.000000e+00
0.000000e+00
4.440892¢-16
4.440892¢-16
4.440892¢-16
4.440892¢-16

0.6231166e-5
0.6772968e-5
0.7314771e-5
0.7856573e-5
0.8398376e-5
0.8940178e-5

1 7 T 7 .
0.8F ] Y .
[ ] >
306} » ¢
=}
© 3
Zoaf I
9 3
0.2F b ——Exact Solution J
s - ® - Approximate Solution
0 M M M
-2 -1 0 1 2 3

Approximate Solution
Fig 18. y(1,2) and y(11)

V1. CONCLUSION

The main goal of this study is to develop a numerical
approach for solving second-order FODEs (FIVPs and
FBVPs) that will improve the accuracy of the solution in
termsof absoluteerror. Asa result, thispaperdeveloped a
block method with generalised steplength with third and
fourth derivatives for solving second-order FODES. As
indicatedin the tables and graphs of the numerical results
obtained, the developed four-stepblockmethod surpasses
previous methods identified in the literature. Furthermore,
the traditional approach of reduction to a system of first-
order differential equations was bypassed, implyingthatthe
method does not require complicated subroutines. The
developedblockscheme isa feasible strategy for solving
linear and nonlinear FIVPs and FBVPs with higher
accuracy. The scheme was created employinga linear block
approachwith minimal computing complexity and fulfilled

all convergence conditions. As a result, the approach
proposedin thisarticle is more suitable for solvingsecond-
order FIVPsand FBVPs directly.
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