
A Polynomial-time Solution for the Maximum
Subsets Problem

Khalil Challita, Member, IAENG, Jacques Bou Abdo, Hikmat Farhat, Mireille Makary

Abstract—The main purpose of this paper is to determine
a non-trivial tractable class of the maximum (k,m)-subsets
problem. More specifically, we show that we can solve this
problem in polynomial time for m = 1. Depending on the value
of k with respect to n, we prove that in the best-case scenario
our algorithm runs in O(

√
n) time. On the other hand, an upper

bound for solving it is given by O(n4/k3). Furthermore, for
the case where n = k2, we design and implement an algorithm
in Python that yields a solution in O(n5/2).

Index Terms—Algorithms, Discrete mathematics, tractability.

I. INTRODUCTION

In this paper, we define a new problem that stems from
set theory. This problem can be formulated as follows: given
a set S of n elements, find the largest set F that includes
subsets of S of size k each, and such that the intersection of
any two subsets of F contains at most m elements. Since this
is a maximization problem that involves three variables, we
decided to refer to it as the maximum (k,m)-subsets problem.
Several similar problems were proven to be NP-hard, such as
the subset sum problem studied by Karp [15], the maximum
subarray problem [18], and the k maximum sums problem [3].
An important application of such a problem is load balancing
several tasks over a specific number of resources. Given for
example a cluster of n computers, assume that each task is
allocated one sub-cluster of size k. To maximize the efficiency
of our network, we decide to enforce the following constraint:
any two sub-clusters are not allowed to share more than m
computers.
Since this problem has been showed to be NP-hard [4],
determining the maximum number of simultaneous tasks
a cluster of n computers can handle may require exponential
time. It becomes practically infeasible to answer this question
in case the network is dynamic; in a sense where the number
of resources can change over time.
Determining the complexity of a problem has many appli-
cations in different areas of mathematics, biology, physics,
and computer science [6], [7], [14], [5], [8], [12], [13],
[19]. The main contribution of this paper is to show that
the maximum (k,m)-subsets problem becomes tractable for
m = 1, irrespective of the values of n and k. In other words,

Manuscript submitted October 25, 2021; revised March 11, 2022.
Khalil Challita is a Senior Teaching Fellow in the Department of

Computer Science, Warwick University, Coventry, United Kingdom, (e-mail:
khalil.challita@warwick.ac.uk).

Jacques Bou Abdo is an Assistant Professor in the College of Business
and Technology, University of Nebraska at Kearney, USA, (e-mail: bouab-
doj@unk.edu).

Hikmat Farhat is a Senior Teaching Fellow in the School of Electronics
and Computer Science, University of Southampton, United Kingdom, (e-mail:
h.farhat@soton.ac.uk).

Mireille Makary is an Assistant Professor in the Department of
Computer Science, Holy Spirit University, Kaslik, Lebanon, (e-mail:
mireille.makary@usek.edu.lb).

we show in this particular case that we can determine the
maximum number of simultaneous tasks in polynomial time.
We started by considering the case for which n = k2 (i.e. n
is a perfect square). Afterwards, we extended our proof to
any value of n.
The remainder of this paper is divided as follows. We formally
define the problem in Section II. Section III deals with the case
where n = k2. We provide here a pseudo-code that constructs
the set F in T (n) = O(n5/2). We show in Section IV that
the cardinal of F is bounded by O((n/k)2) when n is a
perfect power of k. We use this result to prove in Section V
that constructing F requires up to O(n4/k3) in the general
case. We also exhibit a method that constructs F in Θ(k)
when k is even and n = k2.

II. PRELIMINARIES

In this section, we simply provide a formal definition of
our problem.

Definition 1: Maximum (k,m)-subsets problem
Let n, k,m, where Un = {a1, . . . , an}, and 0 ≤ m ≤ k < n.
We denote by Uk,n = {L ⊆ Un : Card(L) = k} the set of
subsets of Un that have exactly k elements.
We say that Fm

k,n ∈ 2Uk,n is a maximum (k,m)-subset of Un

if it satisfies the following conditions:
1) ∀L,L′ ∈ Fm

k,n, Card(L ∩ L′) ≤ m.
2) ∀F ′ ∈ 2Uk,n that satisfies the above condition, we have

Card(F ′) ≤ Card(Fm
k,n).

It is easy to see that solving a general instance of our
problem using a brute-force approach has a double exponential
leading factor.
Indeed, enumerating all the subsets of Un of size k requires
exponential time. Then finding the largest subset of Uk,n that
satisfies the conditions of Definition 1 involves processing
subsets of a set that contains an exponential number of
elements. Therefore, the overall cost of this method has a
double-exponential upper bound.
For the remainder of this paper, we shall refer to Fm

k,n as the
solution to our problem.

Proposition 1: A brute-force algorithm for solving the
maximum (k,m)-subsets problem has a leading factor equal
to 2C

k
n .

Proof A straightforward method is to enumerate all the
possible subsets of Un that has size k. We have Ck

n such
subsets. Then we process all the subsets of this set that
satisfy the conditions of Definition 1, keeping track of the
largest one. Note that we have 2C

k
n such subsets.

For k = Θ(n), we have 2C
k
n = O(22

n−1

), which is a
double-exponential.

At first glance, this problem seems to be at least as difficult
to solve as the set cover problem, where we have to find

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

the smallest sub-collection of a set S ⊆ 2Un whose union
covers Un. But actually the maximum (k,m)-subsets problem
is EXP-hard. Indeed, solving any instance of this problem
where k = Θ(n) and m = k− 1 requires at least exponential
time. This is because F k−1

k,n contains all the subsets of Uk,n,
and it takes an exponential time to enumerate the solution
that consists of Ck

n subsets.
We suspect this problem to be NEXP-complete. For that
one shall reduce a known NEXP-complete problem (e.g. the
succinct K-coloring problem [17], [11]) to the maximum
(k,m)-subsets problem, possibly using binary decision dia-
grams([16], [1]) to capture the intersection of subsets of
Uk,n.

III. CASE WHERE n = k2

In this section we turn our attention to solving the maximum
(k,m)-subsets problem where n is a perfect square.

By determining a lower bound to compute Ck
n, we imme-

diately notice that using a brute-force approach for solving
this particular instance of our problem is impractical.

Proposition 2: For n = k2, we get the following lower
bound to compute Ck

n:

Ck
k2 = Ω(kk) = Ω((log n)log n)

Proof Let n = k2.
For all i where 1 ≤ i ≤ k − 1, it is easy to check that
n
k ≤ n−i

k−i .
Thus we have:

n

k
× · · · × n

k
≤ n

k
× nk

kk

n

k
× nk

kk
≤ Ck

n

k2k

kk
≤ Ck

k2

kk ≤ Ck
k2

This concludes our proof since kk = (log n)log n.
Corollary 1: Recalling Proposition 1, solving our problem

requires
T (n) = Ω(2(log n)log n

)

The key idea for solving any instance of the (k,m)-subsets
problem (when m = 1) in polynomial time is to represent
the elements of Un using a k × k square matrix.
Denote by A the below matrix where A[i, j] = aij .

a11 a12 · · · a1k
a21 a22 · · · a2k

...
...

...
...

ak1 ak2 · · · akk

We start by providing a factorial upper bound for the
number of elements in Card(F 1

k,k2).
Proposition 3: Given an integer k ≥ 2, we certify that

Card(F 1
k,k2) = O(

√
n !)

Proof We start by selecting all the elements from each row
of A to form subsets of size k. Then we do the same for the
columns of A, for a total of 2k subsets.
Afterwards, we select the remaining subsets as follows:
choose one element a1j1 from the first row, then a second

element a2j2 from the second row, and so on, until we select
element akjk from the last row; making sure that for all
l ̸= l′ we have jl ̸= jl′ . In other words, no two elements of
a subset belong to the same column.
Obviously, we have k choices for the first element, k − 1
for the second, and so on; for a total of k! possible subsets.
Therefore, an upper bound for Card(F 1

k,k2) is 2k + k!, with
k =

√
n.

We next show that F 1
k,k2 contains a linear number of

subsets.
Proposition 4: Given an integer k ≥ 2, we certify that

Card(F 1
k,k2) = O(k2) = O(n)

Proof As we did in Proposition 3, we start by processing the
k rows of A to build k distinct subsets. Then, for each of
the k elements a1j (where 1 ≤ j ≤ k) of the first row we
repeat the following:
Select subsequent elements from the following rows with a
shift of 0, then with a shift of 1, and so on until we select
an element from the last row with a shift of k− 1. Note that
the shifts are computed modulus k. In other words, for each
a1j we construct the k subsets:

{a1j , a2j , a3j , · · ·}
{a1j , a2[(j+1)mod k], a3[(j+2)mod k], · · ·}
{a1j , a2[(j+2)mod k], a3[(j+4)mod k], · · ·}

...
{a1j , a2[(j+k−1)mod k], a3[(j+2(k−1))mod k], · · ·}

For a total of k2 + k = O(n) generated subsets.
Obviously, our method generates all the potential subsets of
size k that form F 1

k,k2 . For suppose we can add a subset T
of size k that is different from all the constructed ones so far,
then its elements must be selected from different rows and
columns across the rows of the matrix. But since there are
at most k − 1 possible distinct shifts to form a subset of k
elements (note that shifts 0 and k are identical), and that our
method already considered all the shifts from 0 to k− 1, the
intersection of T with some previously constructed subset
must contain at least two elements (e.g. aij and ai(j+shift),
for some i, j and shift).
Therefore Card(F 1

k,k2) = O(k2 + k) = O(n).
Remark 1: Each time we construct a subset, we check to

see if its intersection with all the previously constructed ones
contains at most one element. If this is the case we add it to
F 1
k,k2 , otherwise we discard it.
We illustrate our method in the next two examples, before

proposing an algorithm that solves this class of problems in
polynomial time.
Without loss of generality, we assume that the elements of
the set Un are numbered from 1 to n.

Example 1: Let k = 3 and n = 9. The elements of U9

are:
1 2 3
4 5 6
7 8 9

We build F 1
3,32 as follows: we select the 3-subsets from

each row first. Then we select one element from each row
with a shift of i, where 0 ≤ i ≤ 3. Whenever appropriate
(see Remark 1), we add the processed subset to F 1

3,32 .
F 1
3,32 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9},

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

{1, 4, 7}, {1, 5, 9}, {1, 6, 8},
{2, 5, 8}, {2, 6, 7}, {2, 4, 9},
{3, 6, 9}, {3, 4, 8}, {3, 5, 7}}.

In this case, the cardinal of F 1
3,32 is equal to k+k2 = 3+9 =

12.

Example 2: Let k = 4 and n = 16. The elements of U16

are:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

In this case we get:
F 1
4,42 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},

{13, 14, 15, 16}, {1, 5, 9, 13}, {1, 6, 11, 16},
{2, 6, 10, 14}, {2, 7, 12, 13}, {3, 8, 9, 14},
{3, 7, 11, 15}, {4, 8, 12, 16}, {4, 5, 10, 15}}.

Not all the generated subsets are part of the solution. For
example, {1, 7, 9, 15} and {1, 8, 11, 14}) are not included
since their intersection with previously constructed subsets
contains two elements.
The cardinal of F 1

4,42 is equal to 12.

Algorithm 1 generates k2 + k subsets of size k each and
returns F 1

k,k2 , which is a solution to our problem.

Proposition 5: For n = k2, the maximum (k,m)-subsets
problem can be solved in:

T (n) = O(k5) = O(n5/2)

Proof This result follows from Algorithm 1. It is easy to see
that the running time of the nested for loops at lines 3 to 7 is
Θ(k2). We add to it the cost of the for loops between lines 10
and 30. The outer two for loops have cost Θ(k2), multiplied
by the sum of the two inner for loops: the one at lines 14
to 17 has cost Θ(k), and the one at lines 19 to 28 requires
O(k3). Indeed, we know from Proposition 4 that there are at
most O(k2) subsets in F 1

k,k2 . Since all the elements in the
subsets are sorted (by construction), we can compare two
subsets in O(k) (instead of the usual O(k2) time); for a total
number of O(k3) operations. Thus the overall running time
of the algorithm becomes:
T (n) = O(k2 + k2 × (k + k3)) = O(k5) = O(n5/2).

IV. CASE WHERE n = kp, p > 2

We consider here instances of our problem where n = kp

(for some p > 2), which can be viewed as a generalization
of the result established in the previous section.
Unless stated otherwise, we represent the elements of Un in
blocks (i.e. matrices) of size k × k, as shown in Figure 1.

Algorithm 1 Maximum (k,m)-subsets problems where n = k2

Require: n, k ∈ N , with n = k2 and m = 1
Ensure: Returns the largest set F 1

k,k2

1: Initialize the k×k square matrix A with values 0 to n-1
2: F 1

k,n = ∅
3: for i = 0 to k − 1 do
4: S = ∅
5: for j = 0 to k − 1 do
6: S = S ∪ {A[i, j]} {Reading off the elements row

by row}
7: end for
8: F 1

k,n = F 1
k,n ∪ S

9: end for
10: for i = 0 to k − 1 do
11: for j = 0 to k − 1 do
12: shift = j {Specifies the shift from 0 to k-1}
13: S = {A[0, i]}
14: for l = 1 to k − 1 do
15: S = S ∪ {A[(l), (i+ shift)mod k]}
16: shift = shift + j {Ensures that a constant

spacing is preserved across the rows of A}
17: end for
18: counter = 0 {Test to see if we checked all the

intersections with all the subsets of F}
19: for all S′ ∈ F 1

k,n do
20: if Card(S′ ∩ S) <= 1 then
21: counter = counter + 1
22: else
23: break
24: end if
25: if counter == card(F 1

k,n) then
26: F 1

k,n = F 1
k,n ∪ S

27: end if
28: end for
29: end for
30: end for
31: return F 1

k,k2

k

(a)

k

k

k
2

k

k

k
2

k

B1

(b)

k
2

k

k

i

(c)

Fig. 1. Blocks of size k×k representing Uk3 , Uk4 , and Uki+2 , respectively.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

Lemmas 1 and 2 will be used in Proposition 6 to prove
that the number of subsets of F 1

k,kp is sub-quadratic.
Lemma 1: Given k blocks of k2 elements each, there are

at most k2 × k2 subsets that belong to F 1
k,kp and that satisfy

the following condition: for any subset, no two elements
belong to the same k × k block.

Proof Referring to Figure 1 (a), it is easy to see that we can
construct at most k2 subsets of size k that contain the same
element from the first block and that satisfy the conditions of
Definition 1. For example, if we fix the first element of Block
1 (denoted by B1 in Figure 1), we construct the first subset by
selecting the remaining elements from each of the following
k − 1 blocks. Once done, we have k2 − 1 choices left to
construct the second subset. Indeed, we cannot choose any
of the previously selected elements again without violating
the first condition of Definition 1. In general, after step i, we
have at most k2 − i choices left to construct subset i + 1.
Repeating this process, we can construct up to k2 subsets
that contain the first element of Block 1.
Applying the same reasoning to all of the k2 elements of
the first block, we conclude that we can construct at most
k2 × k2 = k4 subsets from the given k blocks.

Lemma 2: Given ki blocks of k2 elements each, divided
into k subgroups of ki−1 blocks, there are at most ki+1×ki+1

subsets that belong to F 1
k,kp and that satisfy the following

condition: for any subset, no two elements belong to the same
subgroup.

Proof This result is a generalization of the previous lemma.
Figure 1 (b) represents the case for i = 2. Applying the
same reasoning as before, we can check that by fixing one
element from the first subgroup we can construct at most
k2 × k = k3 subsets of size k that satisfy the condition of
the lemma. Since we have k3 different elements in the first
subgroup, one can build up to k3 × k3 subsets. Generally
speaking (refer to Figure 1 (c)), given ki blocks divided into k
subgroups containing ki−1 blocks each, by fixing an element
in the first subgroup we check that we can construct at most
k2 × ki−1 = ki+1 subsets of size k.
We conclude by noticing that there are ki+1 different elements
in the first subgroup.

Proposition 6: For n = kp, card(F 1
k,n) = O((n/k)2)

Proof Given the set Ukp , we represent its elements with
blocks of size k×k as shown in Figure 2. Then we (iteratively)
divide them into subgroups of size k, k2, · · · , kp−2. All the
subgroups at a specific level contain the same number of
blocks. One can easily check that there are kp/k2 = kp−2

subgroups at level 0, kp−3 subgroups at level 1, and so on,
till we get k0 = 1 subgroup at level p− 2.

In general, there are kp−2−i = kp−1−i subgroups at level
i. So card(F 1

k,n) is bounded by the below summation Sn,
where the left terms indicate the number of different subsets
of size k we can construct from one group at a given level
(refer to Lemma 2), and the right terms represent the total
number of subgroups we have at each level .

Sn = [(k × k)× kp−2

+ (k2 × k2)× kp−3

+
...

+ (ki × ki)× kp−1−i

+ (k(i+1) × k(i+1))× kp−2−i

+
...

+ (kp−1 × kp−1)× k0]

So we have:

Sn =

p−2∑
i=0

((k2)i+1 × kp−2−i)

=

p−2∑
i=0

ki+p

= kp ×
p−2∑
i=0

ki

= kp × kp−1 − 1

k − 1
= (kp−1)2

Level 1

Level 1

Level 1

Level 1

Level 0

Level 2

Level 2 Level (p−2)

Fig. 2. Subgroups of size k, k2, . . . , kp−2 representing Ukp .

V. GENERAL CASE

We show in this section how to compute F 1
k,n in polynomial

time. We distinguish two cases.

A. Case where n ≤ k2

If n = k2, then Card(F 1
k,n) = O(n) as we showed in

Proposition 4. Otherwise we have the following result:

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

Proposition 7: Let n = q×k+r. If n < k2 then we have:

Card(F 1
k,n) =

{
q if r = 0
O(n) otherwise

Proof We reresent the elements of Un in rows of k
elements:

a11 a12 · · · · · · a1k
a21 a22 · · · · · · a2k

...
a(q+1)1 a(q+2)1 · · · a(q+1)r

If n is an exact multiple of k, then Card(F 1
k,qk) = q.

We select the q rows of the above table to form the subsets
of F 1

k,qk (note that in this case the last row is empty). No
other subset can be included since it will contain at least two
elements from a specific row.
Otherwise, the worst case scenario occurs when n = k2 − 1
(i.e. the last row is missing only one element). Following the
same reasoning as we did in Proposition 4, we know that we
can build up to k − 1 subsets once we fix an element in the
first row, for a total of O(k × (k − 1)) = O(k2) subsets.

B. Case where n > k2

We extend in this subsection the result established in
Proposition 6.

Definition 2: Let i be a positive integer. We say that a
subgroup of ki elements (represented in blocks of size k×k)
has been processed if the following holds: constructing any
new subset of size k by choosing two elements that belong to
the subgroup will violate the first condition of Definition 1.

Referring to Figure 2 for example, if all the subgroups at
some level j are processed, then we have to select k elements
from different subgroups to form a new subset at level j + 1.

Proposition 8: For n > k2, Card(F 1
k,n) = O(n2/k).

Proof This result follows directly from Proposition 6.
Indeed, there exists some integer p > 2 such that kp ≤
n ≤ kp+1. So in the worst-case scenario, the number of
subsets we can construct is bounded by the expression
Sn =

∑p−1
i=0 ((k

2)i+1 × kp−2−i), which includes one more
term than the summation given in Proposition 6. Therefore :

Sn = kp ×
p−1∑
i=0

ki

= kp × kp − 1

k − 1
= (k2p−1)

Proposition 9: An upper bound for solving the maximum
(k,m)-subsets problem is given by T (n) = O(n4).

Proof We consider two cases here.
Let n ≤ k2. We know from Proposition 5 that we can
solve our problem in T (n) = O(n5/2) in case n = k2.
The same complexity bound can be achieved when n < k2.
Indeed, referring to Proposition 7, we know that at most O(n)
subsets belong to F 1

k,n. Comparing a given subset with all
the previously constructed ones requires O(kn), as already
explained in the proof of Proposition 5, for a total running
time bounded by O(kn2).
Consider the case where n > k2. Checking whether or not
we can add a subset of size k to F 1

k,n requires at most

O(k × (n2/k)), where k is the cost of comparing two
ordered subsets of size k, and O(n2/k) is the maximum
size of F 1

k,n (see Proposition 8). Therefore, the overall
running time required to solve our problem is bounded by
O(n2 × n2) = O(n4).

Proposition 10: The maximum (k,m)-subsets problem can
be solved in O(n4/k3).

We can improve the upper bound of Proposition 9 by
taking advantage of the repetitive structure of the problem
as shown in Figure 2. Indeed, we know from Lemma 2 that
there are kp−2−i subgroups at level i. In order to process
(recall Definition 2) a subgroup at level i, we only need to
process one of its blocks Bi, then map the selected subsets
(that are part of the solution) to the remaining blocks of this
subgroup.
Processing a subgroup at level i requires (ki×ki)2×k steps:
one can generate at most ki×ki subgroups, and each subgroup
must be checked against the ki×ki generated ones; multiplied
by the cost of comparing two ordered subsets of size k. On the
other hand, we need O(kp−2−i)× (k(i+1)×k(i+1)) steps for
the mapping: which is equal to the total number of subgroups
at level i, multiplied by the total number of subsets we get
after processing Bi.
Denote by Tn = Tk2×kp−2 + Tr the overall running time
for constructing F 1

k,n, where Tk2×kp−2 (resp. Tr) is the time
to process kp (resp. r) blocks. It is easy to see that Tr =
O(Tk2×kp−2). We compute Tn following the same line of
reasoning as in Proposition 6.

Tn = [(k × k)2 × k +O(kp−2)× (k × k)

+ (k2 × k2)2 × k +O(kp−3)× (k2 × k2)

+
...

+ (ki × ki)2 × k +O(kp−1−i)× (ki × ki)

+
...

+ (kp−1 × kp−1)2 × k +O(k0)× (kp−1 × kp−1)]

So we have

Tn = k

p−2∑
i=0

(k2(i+1))2 +

p−2∑
i=0

O(kp−2−i)× (k2(i+1))

= k5
p−2∑
i=0

(k4)i +

p−2∑
i=0

O(kp+i)

= k5 × (k4)p−1 − 1

k4 − 1
+O(kp × kp−1 − 1

k − 1
)

= O(k4p−3) +O(k2p−2)

= O(k4p−3)

VI. IMPLEMENTATION AND RESULTS

Using the Spyder IDE, we implemented Algorithm 1 in
Python and ran it on a 64-bit Windows operating system with
the following specifications: Intel Core I7, 3.4 GHz, and 8
GB RAM.
We noticed that when k is even, the total number of subsets
that form the solution to our problem is (always) equal to 3k.
On the other hand, when k is odd, this number is (most of
the time) equal to k2 + k. Figure 3 represents the cardinal of

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

F 1
k,k2 for values of k ranging from 0 to 50. We also represent

(in dashed line) the function:

f(k) =

{
3k if k is even
k2 + k if k is odd

Fig. 3. Size of F 1
k,k2 for k = 0 to k = 50.

After further analysis, we found out that when k is even
Card(F 1

k,k2) = 3k (for all k ≤ 200). The values of k for
which there is a mismatch with the function k2 + k are:
9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69,
75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119,
121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155,
159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195.
And the respective values of card(F 1

k,k2) are:
36, 60, 84, 150, 108, 132, 210, 156, 180, 392, 204, 330, 228,
252, 390, 276, 300, 616, 324, 510, 348, 728, 372, 570, 396,
420, 444, 690, 468, 952, 1452, 492, 750, 516, 1064, 540,
564, 1716, 870, 588, 612, 930, 636, 1288, 660, 2366, 684,
1050, 708, 732, 1110, 2244, 756, 780.

We notice that the mismatches always happen after the
first, second, or third consecutive odd values of k (this is
reflected by spacings of 2, 4, and 6 for the above values of
k). We just mentioned this fact in case one is interested in
determining whether this pattern also holds for k > 200.

Proposition 11: When n = k2 and k is even, the maximum
(k,m)-subsets problem can be solved in Θ(

√
n).

Proof This proof is based on the empirical result
we obtained in this section. We know in this case that
card(F 1

k,k2) = 3k = Θ(
√
n).

Representing the elements of Un in a matrix A, we select the
3k subsets directly from the rows, columns, and diagonals
(modulus k) of A. We know that all these subsets satisfy
the conditions of Definition 1. Furthermore, no comparisons
with previously constructed subsets are done here.
Intuitively, trying to add any subset to the solution by
considering elements from different rows of A (as we did in
Proposition 4) would violate the first condition of Definition 1.

Table I summarizes the size of F 1
k,n and the cost of solving

our problem for the different values of n with respect to k.
Before concluding, it is worth noting that the space

requirements for solving our problem matches the time
requirements given in Table I. This is because we need to
keep in memory all the constructed subsets when computing
F 1
k,n.

TABLE I
TIME TO COMPUTE F 1

k,n .

Cardinal of F 1
k,n Time to compute F 1

k,n

n = k2 (k odd) Θ(n) Θ(n2√n)
n = k2 (k even) Θ(k) Θ(

√
n)

n < k2 O(n) O(n2√n)
n > k2 O(n2/k) O(n4/k3)

VII. CONCLUSION AND FUTURE WORK

We tackled in this paper the maximum (k,m)-subsets
problem and showed that for m = 1, this hard problem can
be solved in polynomial time. The key idea was to consider
the special case n = k2, where the elements of the initial
set can be represented by a square matrix. We designed and
implemented (in Python) an algorithm that can solve this
problem in Θ(n2

√
n) when n is odd, and in Θ(

√
n) when

n is even. The latter result is the most efficient one since it
provides a strict sublinear solution to the original problem.
We then distinguished two cases. For k < n2, we showed that
we can solve this problem in O(n2

√
n). As for k > n2, we

exhibited a solution in O(n4) that we improved to O(n4/k3)
by taking advantage of the repetitive structure of the problem.
Our next aim is to find other tractable classes of the maximum
(k,m)-subsets problem. Another interesting question to address
is that of determining the boundaries between hard and easy
instances of this problem, as this was done for SAT [9]
for example; where the authors proposed a polynomial-
time solution to 2-SAT [2], knowing that 3-SAT is NP-
hard [15]. Last but not least, one must determine the exact
complexity class of this problem. Considering its hardest
instances, we believe that the maximum (k,m)-subsets problem
is NEXP-complete. To prove our claim, one must reduce a
known NEXP-complete problem (e.g. the succinct K-coloring
problem [17], [11]) to the maximum (k,m)-subsets problem,
possibly using binary decision diagrams [16], [1] to capture
the intersection of subsets of Uk,n.

REFERENCES

[1] S. B. Akers, Binary Decision Diagrams, IEEE Transactions on
Computers, pp. 509–516, 1978.

[2] B. Aspvall, M. Plass, and R. Tarjan, A Linear-time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas, Information
Processing Letters, pp. 121–123, 1979.

[3] F. Bengtsson, J. Chen, Efficient Algorithms for k Maximum Sums. In:
R. Fleischer, G. Trippen, (eds.). LNCS, pp. 137–148, 2004.

[4] K. Challita, J.B. Abdo, The Maximum (k,m)-subsets Problem is in the
Class NEXP. IAENG International Journal of Computer Science, vol.
48, no. 2, pp. 451–455, 2021.

[5] K. Challita, Infinite RCC8 Networks, International Journal of Artificial
Intelligence, vol. 15, pp. 147–162, 2017.

[6] D.L. Yuan, and Y. Xu, Lightweight Vehicle Detection Algorithm Based
on Improved YOLOv4. Engineering Letters, vol. 29, no.4, pp. 1544–
1551, 2021.

[7] Efron Manik, Relationship Between Segment Edges and Thresholds
on Segmentation Generated by Minimum Spanning Trees. Engineering
Letters, vol. 28, no.3, pp. 796–802, 2020.

[8] Jie Qian, Hongyu Long, Yi Long, and Chenxu Zhao, Improved NSGA-
III Algorithm and BP Fuel-cost Prediction Network for Many-objective
Optimal Power Flow Problems. IAENG International Journal of Applied
Mathematics, vol. 51, no.2, pp. 307–320, 2021.

[9] S. Cook, The Complexity of Theorem Proving Procedures. Proceedings
of the Third Annual ACM Symposium on Theory of Computing
(STOC71), pp. 151–158, 1971.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, Second Edition, McGraw-Hill Science, 2001.

[11] H. Galperin, A. Wigderson, Succinct Representations of Graphs.
Information and Control, pp. 183–198, 1983.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

[12] H. Farhat. Composition of partially-observable services. IEEE Access,
7:2281–2290, 2018.

[13] H. Farhat. Web service composition via supervisory control theory.
IEEE Access, 6:59779–59789, 2018.

[14] K. Challita, Reasoning with Lines in the Euclidean Space, 21st
International Joint Conference on Artificial Intelligence (IJCAI 2009),
pp. 148–157, 2009.

[15] R. Karp, Reducibility Among Combinatorial Problems, In R. E.
Miller; J. W. Thatcher; J.D. Bohlinger (eds.). Complexity of Computer
Computations. New York: Plenum. pp. 85 - 103, 1972.

[16] C. Y. Lee, Representation of Switching Circuits by Binary-Decision
Programs. Bell System Technical Journal, vol 38, pp. 985–999, 1959.

[17] C. Papadimitriou, M. Yannakakis, A Note on Succinct Representations
of Graphs. Information and Control, pp. 181–185, 1986.

[18] T. Takaoka, Efficient Algorithms for the Maximum Subarray Problem
by Distance Matrix Multiplication. Electronic Notes in Theoretical
Computer Science, pp. 191–200, 2002.

[19] H. Farhat. Control of nondeterministic systems for bisimulation
equivalence under partial information. IEEE Transactions on Automatic
Control, 65(12):5437–5443, 2020.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_19

Volume 49, Issue 4: December 2022

__

	Introduction
	Preliminaries
	Case where n = k2
	Case where n = kp, p > 2
	General case
	Case where nk2
	Case where n > k2

	Implementation and results
	Conclusion and future work
	References

