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Enhanced Language Model with Hybrid
Knowledge Graph for Knowledge Topics
Identification in Questions

Canghong Jin, Wenkang Hu, Hao Wu, Yabo Chen, Minghui Wu

Abstract—The foundational mission in the educational field
is to understand knowledge topics, that as capturing latent
concepts of questions, evaluating study performance, and rec-
ommending content in online learning systems. Compared to
traditional text classification, mathematical topic classification
has several main challenges: (1) the length of mathematical
questions is relatively short; (2) there are different ways of
examining the same mathematical concept (i.e., calculation and
application); (3) the content of questions is complex, including
algebra, geomeiry, and calculus. To overcome these problems,
we propose a framework that combines content tokens and
mathematical knowledge concepts in whole procedures, which is
called KG-MTP(Knowledge-Graph-based Mathematical Topic
Prediction). We embed entities from mathematics knowledge
graphs, integrate entities into tokens in a masked language
model, set up semantic similarity-based tasks for next-senience
prediction, and fuse knowledge vectors and token vectors
during the fine-tuning procedure. We also build a Chinese
mathematical topic prediction dataset consisting of more than
70,000 mathematical questions with topics. Based on real-world
data, our experimental results well performs than state-of-the-
art methods.

Index Terms—knowledge graph, language fusion mode, in-
telligent education

I. INTRODUCTION

How best to teach conceptual and procedural knowledge
in mathematics is an open question in education. Procedu-
ral knowledge is defined as “Learning that involves only
memorizing operations with no understanding of underlying
meanings”, whereas conceptual knowledge is “Explicit or
implicit understanding of the principles that govemn a domain
and of the interrelations between pieces of knowledge in a
domain” [1]. Given certain knowledge, it is possible to design
procedural knowledge-based or conceptual knowledge-based
guestions. Therefore, in terms of teaching and learning,
knowledge topics have several uses, including developing
auto-generated test systems, measuring the study abilities
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of students, and influencing the practice-based theory of
mathematical knowledge for teaching.

Correctly predicting the knowledge topic to which a
question belongs is not a trivial task. There are three main
challenges, as follows. (1) Short context classification: for
given mathematical questions, the length of the context is
usually shorter than that of the original text of the classi-
fication task, in our case, the length of question content is
usually less than 30 chars. How to learn using such short
texts, especially in the pre-training procedure, is an important
problem. (2) Mathematical knowledge topic encoding: the
entities and relationships in the mathematical knowledge
graph should be extracted and encoded in the question clas-
sification task using a language model. (3) Heterogeneous
information learning: a mathematical question contains
both normal content and mathematical keywords, resulting
in two individual vector spaces. Distinguishing lexical and
syntactic information and keywords related to mathematics
in a question from the normal context is a difficult task, as
is fusing these two different content tvpes in the pre-training
and fine-tuning procedures.

Mathematical symbols are not just abbreviations, and
students need to learn to understand each symbol in the
context of a variety of concrete situations, pictures, and
languages. The symbols of mathematics allow us to both
discover and express relationships between concepts.

Example I There are 100 orange trees in an orchard, and
each tree has an average of 600 oranges. Several orange
trees can increase their yield, but if this occurs, the distance
between the trees and the sunlight received by each tree will
decrease. According to experience, each tree will produce
an average of five oranges. Find the functional relationship
between the number of trees grown and the total vield of
oranges.

Example 2: How many real roots does the following
equation have? z? 4+ 3z 4+ 4 = 0.

To overcome the challenges mentioned above, we propose
a new method called KG-MT P (Knowledge-Graph-based
Mathematical Topic Prediction), which pre-trains a mathe-
matics representation model using both large-scale tagged
questions and knowledge graphs for use in mathematical
education.

To facilitate the study and evalvation of mathematical topic
prediction tasks, we build a novel benchmark dataset named
Chn-Math, based on middle-school mathematics. For most
mathematical concepts, teachers design different content and
use different symbols and questions to evaluate students’
understanding. Therefore, we directly collect real questions
used in middle-school education to build a benchmark. Next,

Volume 49, Issue 4: December 2022



TAENG International Journal of Computer Science, 49:4, IJCS 49 4 20

we invite several mathematics teachers to provide a question
on each of several (at most five) topics. Moreover, in order
to improve the quality of the dataset, we remove those items
that contained fewer than 10 words. We call this benchmark
dataset Chn-Math.

The main contributions of this paper are as follows:

+« We propose a pre-trained method that uses word and
entity encoding to predict mathematical topics. Our
model is based on BERT but integrates a mathematical
knowledge graph. We also propose some novel tasks
during pre-training processing to improve the perfor-
mance of the model. Our method can be applied not
only to mathematical questions but to all classification
problems.

» We introduce a novel topic prediction task for mathe-
matical questions in Chinese. Mathematical questions
contain normal text, mathematical symbols, pictures,
and concrete instances, in contrast to other short texts.
This represents an interesting and significant contribu-
tion to natural language processing (NLP) research.

+» We evaluate the accuracy of the top & items in the
Chn-Math dataset. Compared with state-of-the-art deep
learning models, such as BE RT, the evaluation results
demonstrate that our model outperforms other baselines.

The structure of this paper is as follows. In Section 2,
we discuss related work in two categories: text classification
methods and natural language models. In Section 3, we
present our motivation and the notation used in our problems.
Section 4 shows the architecture of our model (K G-MT P).
In Section 5, we present experimental results obtained using
our framework. Section 6 presents our conclusion and several
directions for future work.

II. RELATED WORK

Mathematical question topic prediction is closely related
to other research areas, including text classification and
NLP, which focus on programming computers to process
and analyze large amounts of natural language data. In this
section, we provide a brief review of related works in two
categories: text classification methods and natural language
models.

A. Texr Classification Methods

Text classification is a similar problem to mathematical
topic prediction, especially in the case of short texts. The
task in text classification is to assign a document to one or
more classes based on its content. Short texts have natural
characteristics, including sparseness, large scale, immediacy,
and non-standardization [2]. Traditional methods [3] for clas-
sifying short texts leverage semantic and topic models (e.g.,
Latent Diirichlet Allocation) with single or multiple levels
of granularity [4]. In recent vears, text classifiers have been
designed using deep learning models to improve performance
[5]; these include word-embedding-based methods such as
Pte [6] and LEAM [7], and graph convolutional network-
based methods such as SSC-GCN [8] and Text GCN [9].

Our work uses similar ideas to these methods; the ma-
jor difference is that we use a pre-trained model with a
knowledge structure instead of word embedding or structure
embedding.

TABLE I: Notation used in our problems

Notation Description

q Mathematical quastion

e Knowledge entity; e, is the entity in question
a

P2 Knowledge entity relations; r(es,ey) is the
relation between entities e; and e

G Knowledge graph, K& = {e,r}

T Topic set; ¢ is the concrete topic and £ C 7

7 ¢-th topic of ¢

B. Pre-Trained Nawral Language Model

There are many pre-trained language representation mod-
els for capturing information from text in various NLP
tasks [10]. Pre-trained models can train auto-encoders on
an unlabeled corpus with fine-tuning for special tasks. The
best of these methods is the deep bidirectional model with
multiple layer transformers (BELRT") proposed in 2018 [11].
XLNet integrates an auto-regressive model in the pre-training
process and outperformed BERT on 20 NLP tasks [12].
Other methods optimize encoding methods in the pre-training
procedure and also show better performance than BLRT,
these include SpanBert [13], ERNTE (BERT with knowl-
edge graphs) [14], and FRNIE (Baidu) [15].

Our work refers to ideas and architectures from the above-
mentioned pre-training techniques; however, unlike these
models, our model integrates a knowledge graph and uses
novel masking and prediction strategies to enhance entity
representation.

ITI. PRELIMINARIES
A. Mathematical Understanding and Motivation

Conceptual understanding involves knowing more than
isolated facts and methods. The successful student under-
stands mathematical ideas and has the ability to transfer their
knowledge to new situations and apply it to new contexts.

There are four key components of mathematics questions:
concrete experiences, symbols, language, and pictures. Here,
we focus on the first three components. The connections
between symbols, language and concrete experiences can be
developed and established to improve students’ mathematical
understanding. Our motivation is how to distinguish these
components in questions and extract latent semantics during
the pre-training and fine-tuning procedures. As shown in
Figure 1, we use knowledge graphs to help the model to
navigate and to enhance the use and understanding of the
mathematics corpus.

B. Problem Formulation

In this section, we first define several basic concepts
and then provide a formal definition of knowledge topic
classification problems. Detailed descriptions of the notation
used in our problems can be found in Table L.

The mathematics topic prediction problem refers to how
to judge, given a question g and total topics 7, whether each
topic ¢ belongs to ¢.

IV. METHODOLOGY

In this section, we describe the construction of our model,
including (1) the overall framework architecture of K G-
MTP; (2) encoding of knowledge entities in knowledge
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Fig. 1: Model learning from a new dataset to generate novel nodes and edges

graphs; (3) two pre-training procedures: masking tokens
by their mathematical semantics, and predicting the next
question via related knowledge entities; (4) details of the
fine-tuning procedure with token and mathematical semantic
fusion in questions.

A. Model Architecture

The architecture is shown in Figure 2. The architecture
of the KG-MTP model consists of three separate main
procedures: (1) generating the underlying textual encoder to
capture basic lexical and external mathematical information
in a knowledge graph; and (2) setting up four tasks: an
advanced mask content model with knowledge entities, next-
guestion prediction based on mathematical concept simi-
larity, token and knowledge entity fusion in the transfer
procedure, and details of fine-tuning with entity semantics.

B. Knowledge Entity Embedding

Based on mathematical education concepts, we need
to embed components of the knowledge graph, including
entities and relations, into continuocus vector spaces [16].
The mathematical knowledge graph contains three different
relations between two entities: subclass, has, and is. For
simplicity, we use a translation distance model TransE [17] to
exploit the relations as vectors in the same space R, Given
two embedded entities e; and e; connected by r, e;+7 = e;
when (h,r,t) holds. Other TransE extend methods could
also be implemented in our knowledge graphs, for instance,
TransH [18], TransR [19], or KG2E [20].

C. Pre-Training with Knowledge Graphs

Semantic Mask Procedure Although the masked lan-
guage model (MLM) is strictly more powerful than a bidirec-
tional model or single directional model, randomly selected
WordPiece tokens in the MLM procedure would cause a loss
of the semantics of mathematical questions. Similar to the
use of MLLM in B E'RT pre-training, here, we select masked
tokens with their related knowledge entities. We refer to this
procedure as “semantic MLM?”. In all our experiments, we set
a parameter 4 to determine whether to mask a normal token
or knowledge entity. For each sentence in a mathematical
question, we replace the é-th token with a [MASK] token

if the generated random value is larger than 6. Moreover,
unlike FRENITFE [14], which assigns an aligning sequence
{e1,...,em ) to the token sequence {wq,...,wy, ), we select
entities from tokens and choose parts of entities at random.
In order to reflect the correlation between mathematical
concepts and duplicated entities in mathematical questions,
we mask these entities using [MASK] and predict the masked
words using the corresponding hidden vectors.

In our training procedure, the strategy of token replace-
ment is the same as that used in BERT. We replace the
chosen entity by the following rules: (1) token [MASK] 80%
of the time; (2) a random entity 10% of the time. Then, a
transformer function is used to predict the original token or
entity with cross-entropy loss.

Related Question Prediction In many natural language
tasks such as question answering and natural language in-
ference, understanding of the relafionships of sentences is
captured by next-sentence prediction in BERT [11]. Here,
as the length of mathematical content tends to be shorter
than that of other types of text corpus, especially as many
questions have only one sentence, we design a strategy to
generate the relationships of different mathematical questions
with their mathematical concepts in knowledge graphs. We
first extract mathematical entities e for question g. Then,
we choose a pair of questions << A, B > and evaluate their
similarity using sém(et, ef), where sim is the similarity
function for two sets. When the similarity value is larger than
a threshold parameter -, we treat B as a related question of A
{.e, << A, B > is labelled as Related), otherwise, < 4, B >
is labelled as NotRelated for training purposes. Despite
the simplicity of the idea, we can choose various similarity
functions to measure the relationship between two questions
and to demonstrate the benefit of our tagging problem.

Question Relevancy Rank

Mathematical concept questions and word problems are
expressed differently for the same testing topic. Therefore,
our work integrates knowledge entities to train the encoding
procedure to reconstruct token vectors. During the pre-
training process, in each batch operation, we select n pairs
of questions, < g;,¢; >, and calculate their similarity using
the séme function. The input collection for the transformer is
{< 91,92, V(1,2) < G193, U(1,3) Py T G G55 V(4,5) o=
where v ;) 18 the similarity value, used as the score of each
pair of questions.
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Fig. 2: Architecture detail of KG-MTP

Algorithm 1 Question relevancy rank

Input: a batch of pre-training samples 5; the number of candidate samples
for ranking, C
Output: NDCG_Loss

1. ‘P, Pair_Inder= Random_Pairs_from_Batch(}5,C)

2: Correlation_Scores = []

3: for pair in P do

4: related_pair() = FindNeighbors{pait[0])

5 related_pair]l = FindNeighbors(pair[1])

G score = JaccardSimilarity{related pair0, related_pairl)

7 add score — Correlation_Scores

8. end for

9: Sequence_Output = BERT(5)
10: Candidate Pairs = GetPairs(Sequence _Output, Pair_Indez)
11: Candidate Correlation_Scores = PearsonCorrelation(Candidate Pairs)
12: NDCG_Loss = NDCG(Correlation_Scores, Candi-

date_Correlation_Scores)
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Fig. 3: Relevancy rank task: the aim is to train word
embedding to make questions much closer if they are

The goal of our transformer layvers is to reconstruct the
vectors of tokens and make two questions more similar after
training when they have similar mathematical semantics. As
shown in Figure 3, our encoders are:

1,00y = MH — ATT({ulY, ..., w5, N
(69,60 = MH — ATT({f™V, .., el

The question’s semantic is encoded by its related entities;
for simplicity, we use the function mean to calculate the
vector space égt) of the question. In the fusion layer, we in-
tegrate the token sequence and semantic vector and compute
the output embedding for each token and entity as follows:
(2 82

(2))

58 _
g;’ = mean(g -

hi = o (W 4 b(”)) +o- g,
o (WiPh; +b{),
el = a(Wh; +b@).

(2)

W =

similar based on the knowledge semantic measure

In order to train the token and entity more closely in related
questions, we use the ranking model ¥NDCG (normalized
discounted cumulative gain) as the loss function. The process
is shown in Algorithm 1. We define gain as the Pearson
correlation coefficient of each pair of questions p(g;, g;), use
a collection £ of < g4,¢; > ranked by coefficient value p,
and set ¢ as the index position of the collection.

Many existing similarity methods for use in knowl-
edge graphs could be applied to p(g;,¢;), including string-
based approaches [21], graph-based approaches [22], and
embedding-based approaches [17]-[19]. Here, for simplicity,
we use a graph-based method to compare two nodes based
on their nearest neighbor. Given two questions g; and gj,
E; and E; are sets of entities belonging to each question,
respectively. For each entity e; in set ¥, we obtain direct
neighbor relationships < ey, 7¢,e; > and place these in an
array called the Jaccard function according to the type of
relationship.
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90(8 %) 1 =0
Di< s, g5 >,8) = ¢ 2°(@s:) _q - 3)
loga(t+1) B
DCG(L, £y = ulyD(r) @)
=1

For simplicity, rank function f is defined as ranking
collection £ by p(g;, g;) descent. Let the ideal DCG ({ DC'G)
be defined by its original similarity value as follows:

TDCG(L, ) = Y ylyD(r). (5)
=1

Here, function f/ is not generated to the maximum DCG
value of the collection but to rank collection £ by the
v(g;,q;) value, which represents the original similarity of
(¢, q;). Finally, the loss function is defined in every layer

for training as NDCG(L) = _IDDCCQQ-

D. Topic Prediction Procedure

The topic prediction procedure of our model is similar to
the fine-tuning process in BERT. We use a feature-based
approach where fixed vectors of both tokens and entities
are extracted from the pre-trained model. We use a special
token [CLS] at the beginning of each question, and then
we reuse the mean function to create semantic embedding
with related entities. In contrast to the pre-training procedure,
the topic prediction procedure focuses on the final target:
mathematics question classification. In each integrator layer,
we combine both token embedding information and entity
embedding information.

Finally, we use the sigmoid output function before the
full connection laver and utilize binary cross-entropy as the
loss function:

Ec(xa y) - Lc - {ll,ca -“alN,c}Ta (6)

N
1
b, = _N ;[pcyi,c'l()go—(iri,c)‘f'(1_yi,c)'lOg(l_g(Ii,c))}a
(7

where ¢ > 1 for multi-label binary classification, and p, is
the weight of the positive value for the class .

V. EXPERIMENTS

In this section, we present experimental results obtained
using our framework. First, we describe our dataset and
experimental environment. Then, in comparison with several
state-of-the-art methods, we evaluate our models with respect
to precision and top-K. Finally, we demonstrate the effects
of the parameters in various datasets.

A. Pre-Training Dataset

Dataset: An overview of a real-world Chinese mathemat-
ics dataset is given. We remove duplicated questions and
simple questions with only a few terms. Finally, we collect
more than 60,000 questions with 541 topic labels, as shown
in Table II.

For each label, we choose 80% of the data at random for
training and vse the remaining data for testing.

TABLE IT: Summary statistics of Chn-Math

Chn-Math Knowledge Graph
Attribute Value Attribute  Value
# Questions 63913 # Entities 450
# Labels 541 # Edges 671
# Length 76.39+ 43.56
# Entities 5.21+ 3.49

B. Parameter Settings and Training Details

We use PyTorch and the "bert-base-chinese” version of
BERT to implement the model. For pre-training, to accel-
erate the procedure, we set the maximum sequence length to
256 instead of 512, as the computation of self-attention was
costly with respect to length. The two datasets are trained
for 10 epochs on four GPUs (GTX 1080 Ti) with gradient
accumulation per eight steps, which made the batch size
approximately 544. The random seed is 42, and the learning
rate of Adam is 3e-5.

For fine-tuning, each model is trained for 60 epochs, saved
as a checkpoint, and evaluated against the validation set every
10 epochs. The parameter of gradient accumulation steps in
this procedure is 6, the batch size is 480, the learning rate
of Adam is Se-4, and the random seed is 2018. All other
hyper-parameters are the same as in BERT

We select the top three checkpoints based on their eval-
uation losses on the validation set, and report the averaged
results on the test set.

C. Experimental Evaluafion

Based on the “all spot” and “special spot” scenarios, which
are the same for all users, and the “favorite spot” scenario,
which varies among users, we compare our method with a
variety of competing methods grouped into three categories:
classification methods, anomaly detection methods, and deep
learning methods.

s Machine Learning: We use ensemble learning meth-
ods such as Random Forest and XGBoost, and vectorize
text features by TE-IDE

s FastText learns vector representation and classifies
texts. We train models in Djgpeieq using the FastText
source code in github.

s TextCN N uses multiple kernels of different sizes to
extract key information from sentences. We train models
in Digpelied using the Text' NN source code in github.

+ BERT uses base model BERT as the pre-trained
model and refines the model during the fine-tuning
procedure in the Chn-Math dataset.

« BERT )y implements the model under both
Doyniaverica and Diggerzeq datasets. As Dygisbesiea has
no label, we retrain the BERT model only on the pre-
training task.

» KG-MT Pg;s uses the same architecture as BERT
except the MLL, which is replaced by our entity mask
strategy. In this model, we set only one mask task during
the pre-training process.

+ KG-MT Pgpy e is similar to FRNIL, we fuse the
knowledge graph based on word and question gramu-
larity. In this model, we implement the semantic mask
model in the pre-training and the fine-tuning procedure.
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TABLE III: Results of various models on Dj,pe;

Model Precision

acc@l acc@3 acc@5
RandomForest 2894% 43.51% 51.77%
XGBoost 30.31% 46.13% 55.80%
FastText 3844% 56.25% 62.80%
TextCNN 34.69% 35.34% 63.44%
BERT 5557% 7445 % 82.07%
BERTwin 56.10% 7527 % 82.29%
KG-MT Pgys 56.19% 75.39% 82.93%
KG-MT Ppy 56.87% 75.70 % 83.09%
KG-MT Peyropre 57.10%  7553%  83.17%

° KG-I\JTPEAJ,RQRRR is based on [(G-]W'TPEIM,KG
with two additional tasks: related question prediction
and question relevancy rank. Datasets and all parameters
are the same as in KG-MT Pgy and KG-MT Pgag.

1) Overall Performance: As shown in Table III, KG-
MTPgrym rop rr performed the best, significantly outper-
forming other baseline models. More in-depth analysis shows
that the existing Chinese-only BE RT model performs a little
worse than the mathematics pre-trained model BERT 1 s
in the top five but is better in the top one and three. The
KG-MTP models achieve significantly better results than
FastText and TextCN N. The main reasons are twofold: i)
the entity encoding can capture both word-level and question-
level representation; thus, all the KG-MT P methods are
better than the original BFE RT-based models. ii) With the
KG-MTP methods, our proposed tasks, such as related
question prediction and relevant rank, improve the perfor-
mance effectively.

2) Data Characteristic Sensitivity: In order to evaluate
the effects of question content, we test several main models
(Table IIT) on different split datasets. As shown in Figure 4,
we evaluate the effectiveness of models with respect to two
aspects: the length of questions and the number of entities
in questions. For the length sensitivity experiment, we set
the maximum length to 256 words (longer texts were set
to 256) and divide C'hn-M ath into six subgroups of equal
length. As the numbers of items in different groups are
different, and most questions contain fewer than 100 words,
we randomly select 1000 questions from each group. For
entity sensitivity analysis, we also generate subgroups by one
to five entities and consider additional groups as non-entities.
Based on the results shown in Tables IV and V, we make
the following observations. All the pre-trained models in
Chn-Math perform better than the un-pre-trained Chinese
language model BERT in all length groups. Although the
KG-MTPgar,rop,rr model with all tasks perform best
on the whole dataset, it did not perform quite as well as
other simpler models. For instance, K G-MT Pgas performs
the best in Top-1 in G2, and BE RT3, has the highest
accuracy in Top-5 in G4, indicating that the performances of
various pre-trained models are not stable.

We further compare the prediction accuracy of our
best-performing model KG-MT Pgyrrop,rr (KG-MTP
for short) with those of the three baseline methods, i.e.,
FastText, TextCNN, and BERT (BERT for short) , by
keeping the parameters the same. As shown in Table IV,
all the models perform worse as the length of questions
increases, indicating that an increasing number of terms
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increases the amount of noise information, especially in G4,
which might contain word problem questions with many
descriptive words. In terms of entity size, as shown in
Table V, models perform better when questions contain more
entities, which is probably because entity size is important
in questions. More entities can facilitate richer mathematical
semantics.

3) Term and Entity Visualization: In this section, we
demonstrate the effectiveness of the knowledge-based en-
coding method in our pre-trained model through word-level
and question-level visualization. As shown in Figure 5 and
6, we use the t-SNE tool for word-level and question-level
visualization by BERT and KM-MTP [23]. We choose
several labels; some are similar in mathematical semantics,
whereas others are relatively different. We choose keywords
for each class via the TF-IDF method, and discard stop words
and LaTeX symbols (which have been translated into terms).
Some selected words are shown in Table VI.
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Fig. 5: The t-SNE visualization of word vectors
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Fig. 6: The t-SNE visualization of question vectors (perplex-
ity=30, init="random’)

To provide an illustrative visualization of the question
vectors learned by BERT hyn and KG-MTPgry rop,RR.
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TABLE IV: Performance evaluation for various question lengths

Method Glilength < 64 3265 < length < 128 33 1120 < length = 102 G4 1108 < length < 256
acc@]  acc@3  acc@5  acc@l  acc@3  acc@d  acc@l  ace@3  acc@d  acc@l  acc@3  acc@35
RondomForest 3220 4459 5621 2546 41,92 5742 2024 3690 5354 18.86 3083 30.68
XGBoost 33.17  4e2l 5765 2716 4308 5908 2042 3838 5479 2022 3180 5143
FostText 42,35 5346 66.37 3581 5234 68.13 2999 4729 6434 2057 4107 6072
TextC NN 41.17 5823 65.40 3233 5138 62.55 2844 4487 6132 2391 38Tl 5973
BERT 5240  T388 82359 5830 7635 83.15 3500 7366  B178 4940 7033 7288
BERET v 5450 7404 B34 5019 72T #2378 5550 7558 8221 5160 7182 BO.G0
KE-MT Prjr 5510 74.53 82,87 50.80  78.07 2432 5520 7578 81985 5110 7188 8LO7
KG-MT P i 36,30 7407 B34 5930 TEM 84,78 57.09 7476 8334 5200 7276 BO9D
HG-MTFgymroprr 5790 7555 8388 5709 7545 #2333 5588 T35% BRT0 5170 Tl44  BOTZ
TABLE V: Performance evaluations with various entities
Ilethod non 1 2 4 4
acc@l  ace®@3  acc®S  acc®@l  ace®@3  ace@S ace@l  ace@3  ace®5  ace®1l  ace@3  ace @S acce @l ace @3 ace @S
FmndomE orest 3318 4071 31.9% 3835 44.74 364% 3874 45472 a0.43 38.84 45,83 61.08 3652 4799 60.44
K G Boost 3410 42,04 52.86 319 4866 5768 3785 48,94 a1.11 352 47 62,21 38.32 4927 a1.80
FastText 4323 0.8 62,31 47.34 53.34 al3% 4715 5822 T0.ES 4856 SeMd 712 474 587 .07
TextCNN 4258 51.04 60,55 43,88 2621 a5.1% 4898 5754 66,481 44,35 5721 68,93 48,58 2887 J0.50
BERT 4930 a%12 7835 SB.e9 T5.13 52,34 27.4% 739 §2.24 57.08 1421 81.60 3510 7378 B3.05
BEERTwrrns 4881 a%.10 TB.79 58,28 7617 52.31 5819 75,40 B2.E7 58,80 74,42 5212 5725 7135 84,25
EG-MT Fepr 50.78 68,24 7813 57.9% Jals B3.73 56.8% Ta.41 52.51 58.0% Ja.a7 079 58.6% 7733 84,70
HG-MTFeyna 48,13 6540 7833 5850 7735 83.45 50.19 T6.B6 B4.42 60,19 T4.48 2B 59.5% 778l 84,24
HG-MTFgyr pgrrr 2094 69.23 TE.68 5B.19 74.a87 5271 S8.B0D T4.95 B304 59.0% T4.93 83.22 50,69 TBOT 84,15
TABLE VI: Keywords of different labels (in part) 22 Tof-s
Labels Keywords 80 | //—’"—'//
YWariable, Constant, Inverse Function, 75|
Funetion CQuadratic Function, Dependent Variable, 0| vlv
Trigonometric Funetion, ... ‘565
Cirels Are, Radiug, Diameter, Curve ool
Circumsctibed Circle, Secter, External Cutting, ... 2 )
Quadrilateral, Straight Line, Square, o 23 ——Top-1
Plane Geometry — Congruent Triangle, Right-Angle Trapezoid, 50| —— Top-3| |
Diamond, ... 45 — Top-5 |
40
521 S22 SZ3 524 525 526 SZ7
different size of questions
we select 350 distinct labels and their related questions (a) Bvaluation by BERT,
and obtain question vectors from the output layers. The -
results show that KG-MT Py rorre could leam more i
distinct question vectors, which meant that most questions a0 |
are closer to each other if they belong to the same label. 75 |

Question vectors integrating knowledge information appear
more similar than original vectors.

4} Data Size Sensitivity: In order to evaluate the effect
of the size of the labelled data, we test the performance
of the original BERTChn and KG—MTPEM}RQP}RR with
different training data sizes. In dataset Chn-Meath, each
label has various numbers of question instances, from 30
to 231. Therefore, we generate several datasets according to
the number of questions and evaluate the prediction accuracy.
The results are shown in Figure 7.

We evaluate the prediction accuracy in various groups to
demonstrate effectiveness by data size. Here, we split the
data into seven groups (named .57) based on the number of
questions, e.g., 5Z1 = [30,60], 522 = [60,90], and 5Z3 =
[90,120]. The results illustrate that prediction performance
is improved by including more instances in all Top-1, Top-
3, and Top-5 targets. We note that our model K &-MTF
performs better in the SZ1 group, indicating the effective-
ness of knowledge entities in a situation with few instances.
Similarly, compared with the un-pre-trained 5EET model,
KGE-MTPF performs relatively well.

(=]

accuracy(%)
th m & =l
[ =BT

(1]
(=B}

& &

GZ1

Gz2
different size of questions

(b) evaluation by KG-MTF,

GZ3 GZ4 GZ5 GZ6 GZ7

Fig. 7: Prediction accuracy for various data sizes

D. Insights and Discussion of Results

To better understand the performance of various models,
we summarize our experimental results and also discuss
performance in different situations.

(1) Difficulty of mathematics understanding. Mathemat-
ical questions are usually shorter than normal text and con-
tain language, symbols, and pictures that are heterogeneous
in text. The goals of mathematics understanding are counting,
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sorting, matching, seeking patterns, making connections, and
recognizing relationships. Therefore, external knowledge is
necessary to extract the latent semantics of questions and
has been utilized in some short text classification models.
In this work, for simplicity, we ignore figures and choose
questions without figures, although obviously, figures may
contain some mathematical information.

{2) Effectiveness of entities. Our experiments show that
knowledge graph entities could improve the accuracy of pre-
diction, which suggests that the information fusion method
could result in richer features of questions. However, to our
knowledge, there is no public mathematics knowledge graph
specifically in Chinese. It is difficult to extract elements
from mathematics textbooks and generate their relation-
ships. Moreover, according to our experience, mathematical
symbols written in LaTeX format are also significant for
prediction.

(3) Effectiveness of question length. Many different
styles of questions can be used very effectively to develop
knowledge of mathematics and mathematical skills, includ-
ing algebraic expressions, linear equations, fractions, and
functions; thus, some questions are simple and short, whereas
others are complex and longer. Based on our evaluation,
simple questions are relatively easy to classify.

{4) Effectiveness of data size. More instances for training
would improve the performance of pre-trained models such
as BERT and KG-MTP. A larger data corpus would also
improve performance. Pre-trained models with knowledge
information fusion perform better, especially in situations
with fewer instances, probably because knowledge has a
more important role when the data are insufficient. For
common mathematical questions, there are enough examples
for training, so the role of knowledge entities is not very
important. However, when the size of the dataset is relatively
small, as is the case for some unusual mathematical concepts,
external information is more important for improving the
accuracy of models.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate the problem of question topic
prediction. We propose a framework based on a pre-trained
model, integrating external information in a mathematical
knowledge graph. To improve the expressiveness of the
model, three pre-training tasks were designed. We also design
a novel topic prediction task for mathematical questions in
Chinese. Furthermore, we build a real-world dataset with
human-defined labels and set up a knowledge graph for math-
ematics concepts used in middle-school education. Extensive
experiments show that our KG-MTFP model significantly
outperforms all baselines, including BERT' and its extended
models.

There are several directions for future work. First, we only
use textual information to describe the semantics of ques-
tions. Other information such as figures will be considered in
further research. Second, our current work does not consider
the structure of mathematical formulas in LaTeX, which
usually contains latent concepts. Third, we plan to add more
data in addition to the current questions relevant to middle-
school education and update our mathematical knowledge
graph accordingly. We will make the dataset available to the
public and hope that more researchers will make use of it.

Furthermore, although our experiments are on Chinese data,
our method is generalizable. We plan to apply it to questions
in English and other subjects such as physics and chemistry.

VII. DATA AND CODE AVAILABILITY

The benchmark dataset Chn-Math used in this study
is available at hitps://github.com/jincanghong/Enhanced
Language Model_with Hybrid Knowledge Graph for
Knowledge Topics Identification in Questions/tree/main/
data.

Source codes for the model proposed in this study
are available at https:/github.com/jincanghong/Enhanced_
Language Model with Hybrid Knowledge Graph for
Knowledge_Topics_Identification_in_Questions.
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