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Abstract—With the exponential growth of the amount of 

information on Internet web pages,the search efficiency and 

accuracy of search engines become a serious challenge. Inverted 

index as the core index structure of the search engines, its 

organization and storage have a significant impact on the 

performance of the search engines. To address the problem that 

the classical fast inversion algorithm (FAST-INV) cannot build 

inverted indexes quickly in the face of large-scale document data. 

This paper proposes two new inverted index construction 

algorithms: an improvement upon FAST-INV  algorithm named 

FASTER-INV and a new algorithm AC-INV based on 

Aho-Corasick (AC) automaton for inverted index construction. 

Firstly, aiming at the redundancy of four information 

documents in FAST-INV, FASTER-INV is proposed to reduce 

two unnecessary information documents to build an inverted 

index. FASTER-INV cuts down redundant information while 

optimizing the memory space cost. Then this paper further 

proposes AC-INV, which combines the process of constructing 

<Doc_ID, Term_ID> pairs and inverted indexing. AC-INV 

saves significant memory occupation while ensuring the 

integrity of information. In addition, it eliminates the time of 

constructing information documents and improves the 

algorithm's scalability. Finally, experiments have been 

conducted on the Chinese AI and Law challenge dataset. The 

experimental results show that FASTER-INV and AC-INV 

proposed in this paper are better than FAST-INV. 

FASTER-INV's speed has increased by 1.11~1.14 times, and the 

memory has saved about 10%. AC-INV's speed has increased by 

1.33~1.43 times, and the memory saved about 35%. 

 
Index Terms—Search engine, Full-text index, Inverted index, 

Fast inverted, Aho-Corasick  automaton 

 

I. INTRODUCTION 

HE search engine is a general term for a class of system or 

software, and its functions are to retrieve documents that 

match information needs. Search engines can perform 

full-text search in two ways, one by sequentially scanning all 
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documents and the other by indexing. Sequential scanning is 

generally only suitable for processing a small number of 

documents or cached documents. Therefore, it is essential for 

search engine systems to build full-text indexes. The data 

structure, construction, and compression algorithms used for 

full-text indexes affect the search engine retrieval efficiency 

[1-2]. Researchers have proposed different data structures to 

support the construction of full-text indexes, such as signature 

files [3], suffix trees [4], and inverted indexes [5]. Xiaozhu 

Liu et al. [6] studied the performance of these three index 

structures, they concluded that the inverted index is the fastest 

and most scalable data structure for building full-text indexes 

under the condition that the storage space is large enough. 

Combining resources such as time, storage space, and 

processor, most common search engine systems usually 

construct indexes in an inverted way [7-10]. Therefore, 

optimizing inverted index construction algorithms is a 

research hotspot, such as reducing the time of building 

inverted files and improving data storage performance. 

Fig. 1 shows the structure of the inverted index. An 

inverted index consists of a dictionary (a collection of terms)  

and an inverted list (a collection of postings lists). The 

postings list contains postings, and the posting contains 

document ID, word frequency, and the position of the word 

term in the document. Because the inverted index stores the 

inverted list for each term, search engines can find the 

documents associated with each term in a query through direct 

access, and retrieve matching documents quickly [11]. 
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Fig. 1.  Structure of the inverted index. 

 

Fast inverted algorithm (FAST-INV) [12] is a classic 

inverted index construction algorithm, and it is suitable for 

building inverted indexes on some large-scale data. However, 

there is some redundancy between the information in the load 
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tables, files of concept postings/pointers (CONPTR) and 

document vector loads files constructed by this algorithm. 

Building the above three data tables requires significant input 

and output (I/O) costs when facing large-scale data. Therefore, 

this paper optimizes the information redundancy of 

FAST-INV, new optimization algorithm is named faster 

inverted index algorithm (FASTER-INV). FASTER-INV 

eliminates the need to construct CONPTR and document 

vector loads files, the construction of inverted index only 

requires the input <Doc_ID, Term_ID> pairs and load tables 

to obtain enough information. FASTER-INV saves time and 

space compared to FAST-INV and eliminates the time 

overhead of reading in and out of CONPTR and document 

vector loads files. 

As the number of dictionary terms increases continuously, 

the cost for I/O of the texts also increases gradually. Therefore, 

this paper proposes a novel AC automaton-based inverted 

index construction algorithm (AC-INV).The AC automaton 

algorithm is a string search algorithm proposed by Alfred V. 

Aho and Margaret J. Corasick [13]. It is used to match 

substrings in a finite dictionary in an input string and is an 

exact matching algorithm. AC automaton is built based on the 

trie structure combined with the ideas of KMP [14]. The 

algorithm provides solutions to many real-world problems 

and is one of the most fruitful algorithms in computer science 

[15-16]. AC-INV uses a trie for preprocessing to construct 

terms of the dictionary to achieve compression of the 

dictionary. Then, build inverted indexes and fail pointers 

based on the trie tree, thus constructing the AC automaton. 

Finally, based on the characteristics of the AC automaton, 

AC-INV can count all the terms in the dictionary by reading 

the document once. At the same time, using the insertion 

property of hash, the construction of the inverted index is 

completed in O(logn) time complexity. AC-INV reduces the 

time overhead in I/O compared with FASTER-INV. In the 

construction of the lexicon and intermediate process, not only 

dictionary term compression is performed, but also the 

building of the load tables is canceled, so that the inverted file 

can be constructed with less space overhead. 

The contributions of the paper can be summarized as 

follows: 

 FASTER-INV reduces the information redundancy of 

FAST-INV.  

 AC-INV merges the process of constructing <Doc_ID, 

Term_ID> pairs and inverted index, reducing substantial 

time and space overhead. 

 For large-scale data, this paper compares FASTER-INV 

and AC-INV with the classical FAST-INV to verify the 

performance of the algorithm. 

II. RELATED WORK 

The inverted index can be realized by structures such as 

sorted arrays, B-trees, and Hashes [17]. The sorted array 

structure is the simplest and easiest to implement. Manning et 

al. [18] used sorted arrays to build the inverted index, and 

input texts had to be parsed into a list of terms and the position 

of the terms in the text. Sorted arrays need to be sorted 

continuously during the index building process. For 

large-scale document sets, there is not enough storage space 

to keep both sorted and unsorted versions of this list of terms. 

Gupta et al. [19] used B-tree to construct inverted indexes, 

which are easier to update, faster to retrieve, and more 

suitable for storing text indexes compared to sorted arrays. 

However, implementing inverted documents using B-tree is 

more complex than sorted arrays. Tan et al. [20] designed and 

combined hash functions to implement an upgraded inverted 

index to make the corresponding queries more accurate and 

memory efficient. The construction of the fundamental 

inverted index is improved, Heinz et al. [21] proposed the 

single-pass in-memory indexing(SPIMI). SPIMI eliminates 

the <term , document> pair mapping and sorting operations,it 

uses the term instead of the term_ID, writes the dictionary for 

each block to disk, and then starts a new dictionary for the 

next block. SPIMI can index collections of any size but 

requires sufficient available disk space. Fox et al. [12] 

proposed FAST-INV, which uses multiple memory loads to 

invert the file to use the disk optimally. FAST-INV provides 

time and space optimizations over sorted arrays for building 

inverted indexes, but there are still areas that can be optimized. 

The overall scheme of the FAST-INV algorithm is shown in 

Fig. 2. 
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Fig. 2.  Overall scheme of the FAST_INV algorithm. 

 

 FAST-INV is a fast inverted algorithm based on sorted 

arrays. The algorithm uses mem ory in a near-optimal way and 

processes the data through three operations. The input to 

FAST-INV is a document vector file. This document vector 

file contains the term_ID of each document, and each term 

value points to the same term-document association table. 

Notably, the document vector file is an ordered file, this file is 

sorted based on the term_ID and then sorted based on the 

doc_ ID, which is the key to the correct use of  FAST-INV.To 

better explain FAST-INV, the definitions of the relevant 

terms used in the algorithm are listed below. 

Definition 1. HCN  is the total number of types of term ids 

in the dictionary. 

Definition 2. L  is the length of the document vector file, 

which is the length of the input. 

Definition 3. M  is the assumed memory size, which is the 

available memory space. The actual index file to be processed 

may require multiple disks for storage. Memory does not fit, 

so a flexible conversion between memory and external 

memory is required. 

Definition 4. Assuming that HCNM  , CONPTR and 

load table can be created in the main memory. 

Definition 5. Assuming that LM  , multiple main 

memory load spaces are needed to process the document 

vector data. 
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Definition 6. LL  is the current load length, equal to the 

number of <Doc_ID, Term_ ID> pairs. 

Definition 7. S  is the distribution of the number of terms 

in the current load, equal to the difference between the ending 

term_ID and the starting term_ID plus one. 

Definition 8. The following constraint is imposed on the 

load space: 8 bytes is the space needed for each 

term_ID / weight pair. 4 bytes is the number of pointers to 

store for each term. Therefore, to fit the loaded data into 

memory, adding a term to the current load space must satisfy 

the requirement of MSLL  *4*8 . 

The pseudo code of the FAST-INV algorithm is shown in 

Table I. 

 
TABLE I 

PSEUDO CODE OF FAST-INV 

Algorithm 1: FAST-INV 

Input: Compression matrix formed by <Doc_ID, Term_ ID> pairs 

Output: Inverted_index 

1. read_vector←Ø 

2. Init( HCN , L , M ) 

3. for i in range(read_vector) 

4.   con_entries.push_back(i) 

5. for i in con_entries 

6.   if ( MSLL  *4*8 ) 

7.     post/points++ 

8.   else post/point.push_back(i) 

9. build_load(post_points) 

10. for i in Load table , j in post/points 

11.   if (con < Load_table[i].EndCon ) 

12.     D_V_L_F.push(Doc, Con) 

13.   else 

14.     D_V_L_F++ 

15. for i in Load table , j in post/points , k in D_V_L_F 

16.   if(con < Load_table[i].EndCon) 

17.     Inverted_index.push(Build(i, j, k)) 

18.   else 

19.     Inverted_index.add; 

20. return Inverted index 

 

Algorithm 1 has five steps: 

Step 1. [Algorithm initialization] (lines 1-4): The 

initialization function stores the read <Doc_ID, Term_ID> 

pairs and updates global variables such as HCN , L , and M . 

Step 2. [Generate CONPTR] (lines 5-8): When looping 

through <Doc_ID, Term_ID> pairs, if the number of terms 

exceeds the constraint defined by the current load space, new 

load space is created in the CONPTR. If the current bound is 

satisfied, then add operation is performed in the load space of 

the current CONPTR. 

Step 3. [Generate load table] (line 9): Generate the starting 

term_ID, ending term_ID, kind of term_ID, and number of 

term_ID of load tables by the term_ID, starting address 

number, number of existing documents, and load table 

number of the CONPTR. 

Step  4. [Generate document vector loads file] (line 10-14): 

Loop through the generated load tables and the CONPTR. 

Determine if the constraint of the current document vector 

loads file is exceeded, and if it is in the current constraint, 

push the current <Doc_ID, Term_ID> pairs into the 

document vector loads file. Instead, apply a new document 

vector loads file. 

Step 5. [Generate inverted index] (line 15-20): Loop 

through the generated CONPTR, load tables, and document 

vector loads files. If the current term_ID does not exceed the 

end term_ID of the load table, press all the generated data into 

the inverted index. If not, request a new inverted index. 

Finally, return the generated inverted index. 

It can be seen that Algorithm 1 generates four intermediate 

table documents and performs three times I/O. Let the number 

of lexical items be W, the number of documents is D, and the 

average document length is DL. The time complexity of 

Algorithm 1 is O(W*D*DL), and the additional space 

complexity of Algorithm 1 is O(W*D). The optimization of 

Algorithm 1 will be given in the FASTER-INV algorithm 

section in Section 3. 

III. FASTER-INV ALGORITHM 

A. Algorithm Description 

The FASTER-INV is an optimized and improved 

algorithm based on FAST-INV, which suffers from 

information redundancy.FASTER-INV achieves temporal 

and spatial optimization of the FAST-INV algorithm by 

trimming down the CONPTR and the document vector loads 

file in the process of building the inverted index. The pseudo 

code of the FASTER-INV algorithm is shown in Table II. 

 
TABLE II 

PSEUDO CODE OF FASTER-INV 

Algorithm 2: FASTER-INV 

Input: Compression matrix formed by <Doc_ID, Term_ ID> pairs 

Output: Inverted_index 

1. read_vector←Ø 

2. Init( HCN , L , M ) 

3. for i in range(read_vector) 

4.   con_entries.push_back(i) 

5. for i in con_entries 

6.   if ( MSLL  *4*8 ) 

7.     Load_table++ 

8.   else 

9.     Load_table.push_back(i) 

10. for i in con_entries j in Load_table 

11.   if (cies[i].con_entron < Load_table[j].EndCon) 

12.     Inverted_index.push_back(i, j) 

13.   else 

14.     Inverted_index.add 

15. return Inverted index 

 

Algorithm 2 has three steps: 

Step 1. [Algorithm initialization] (lines 1-4): The 

implemented function is the same as Algorithm 1. 

Step 2. [Generate load table] (line 5-9): Loop through the 

con_entries array to count document_ID and term_ID. 

Determine whether the lexical items that join the current load 

table conform to the space constraints, and update the 

information of the load table when it meets the constraint. If 

the constraint is not satisfied, apply a new load table. 

Step 3. [Generate inverted index] (line 10-15): Loop 

through the con_entries array and the load table. When the 

term_ID is greater than the end term_ID of the current load 

table, a new inverted index is applied. If it is smaller than the 

end term_ID of the current load table, the read information is 

added to the current inverted index. Finally, return the 

generated inverted index. 
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Fig. 3.  FASTER-INV algorithm to construct inverted index. 

 

B. FASTER-INV Algorithm Example 

The document ID set Doc_ID = {1, 2, 3, 4, 5} and these 

five documents correspond to five lexical item ID vector files 

Term_No_in_Doc = {{1, 3, 5, 13, 14}, {3, 5, 10, 11}, {2, 3, 5, 

12, 13}, {1, 10, 13, 14}, {3, 6, 13, 14}} as an example to 

illustrate the FASTER-INV to construct inverted index 

process, the detailed process is shown in Fig. 3. 

In the first stage, the FASTER-INV algorithm reads the 

compression matrix constructed by the <Doc_ID, Term_ID> 

pairs and initializes the variables according to the read data. 

Then the FASTER-INV algorithm transforms the 

compression matrix into an array of con_entries through the 

data's relationship. Documents 1, 2, 3, 4, and 5 in Doc_ID 

point to the 1st, 2nd, 3rd, 4th, and 5th vectors in 

Term_ID_in_Doc. These documents' data denote the 

information about the term_ID that appears in the documents. 

In the next stage, the load table is constructed based on the 

data of the con_entries array. The load table generates the 

corresponding starting term_ID, ending term_ID, kind of 

term_ID, and number of term_ID in each of the three load 

tables based on the data of the con_entries array and the 

constraints of the load table. 

In the last stage, match the information in the con_entries 

array and load table to generate the inverted indexes. The 

information in load tables {1, 2, 3} is used to construct the 

corresponding three inverted indexes. 

C. Algorithm Complexity Analysis 

FASTER-INV is optimized in constant space compared to 

the FAST-INV algorithm. The FASTER-INV algorithm 

performs I/O operations two times in constructing the 

con_entries array and the load table. Thus the time complexity 

of FASTER-INV is O(W*D*DL). Compared to the 

FAST-INV algorithm, the FASTER-INV algorithm is 

optimized in constant time. The additional space complexity 

is O(W*D). 

IV. AC-INV ALGORITHM 

A. Algorithm Description 

AC-INV is an algorithm for constructing an inverted index 

based on the multi-pattern matching characteristics of AC 

automaton. After the AC-INV algorithm uses the AC 

automaton to count the information of terms, the AC-INV 

algorithm uses the hash mapping to construct the 

corresponding inverted index. AC-INV algorithm compares 

with FASTER-INV algorithm, AC-INV algorithm saves the 

process of building the con_entries array and load table. It 

further reduces the waste of information redundancy. Thus, it 

achieves better improvements in time and space than the 

FASTER-INV algorithm. Before the description of the 

AC-INV algorithm, definitions of relevant terms used in the 

algorithm are given as follows: 

Definition 9. P = {p1, p2, ..., pn} represents the set of 

pattern strings. p1, p2, ..., pn denotes the encoded pattern string 

of the term, where n denotes the number of pattern strings 

entered. 

Definition 10. Node = {S0, S1, ... Sm} represents the state 
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set of the AC automaton, where m denotes the number of 

nodes of an AC automaton. EndNode = {S0, S1, ... Si} 

represents the set of end states. EndNode is a subset of the 

state set of the AC automaton. 

Definition 11. Each node of the trie has ten subnodes, and 

each node corresponds to a pointer that represents the integer 

[0, 9] in the number. 

The pseudo code of the AC-INV algorithm is shown in 

Table III. 

 
TABLE III 

PSEUDO CODE OF AC-INV 

Algorithm 3: AC-INV 

Input: Terms to count and Documents to consult 

Output: Inverted_index 

1. read←Ø 

2. for i in read: 

3.   s = make_word_to_figure(i) 

4.   insert(s) 

5. while(!queue<Node*> P.empty( ) ) 

6.   cur = P.front( ),P.pop( ) 

7.   for (int i = 0 ; i < 10 ; i++) 

8.     if (cur->Next[i]) 

9.       cur->Next[i]->fail = root 

10.     cfail = cur -> fail 

11.     While (fail) 

12.       if (fail->Next[i]) 

13.         cur->Next[i]->fail = cfail->Next[i] 

14.         break 

15.   P.push(cur->Next[i]) 

16. read_article←Ø 

17. for i in read_article: 

18.   if ( MSLL  *4*8 ) 

19.     inverted_index.push(Map<con,vector<Doc>>) 

20.   else 

21.      inverted_index.add 

22. return inverted index 

 

Algorithm 3 has three steps: 

Step 1. [Construct terms into trie] (lines 1-4): Read terms 

into memory sequentially, then iterate over the terms. Encode 

terms into ASCII codes and push them codes into the trie. 

Step 2. [Construct fail pointers] (lines 5-15): Determine 

whether the node in the queue is empty, if the node is not 

empty, perform the queue exit operation. Iterate through the 

children nodes of the current node and determine whether the 

ith pointer of the current node is empty or not. If it is not 

empty, point the fail of the ith pointer of the current node to 

the root node. And also, point the cfail pointer to the fail 

pointer of the current node. When fail points to non-empty, 

determine whether the ith pointer of the fail pointer is empty. 

If not empty, point the ith pointer of the current node's fail 

pointer to the ith pointer of the cfail pointer, and then jump out 

of the loop. Finally, the ith pointer of the current pointer is 

pushed into the queue. 

Step 3. [Read documents and Construct inverted indexes] 

(lines 16-22): Read documents to be queried in sequence. 

Iterate through the read documents and constrain the memory 

size occupied by the current inverted index. If the current 

inverted index satisfies the constraint, a series of statistics of 

the word items are stored in the inverted index ,the form is 

mapping. If not, a new inverted index is requested. Finally, 

return the generated inverted index. 

B. AC-INV Algorithm Example 

The following is an example of {"法律 (law)", "律师

(lawyer)", "大法官(grand justice)"} to illustrate the process 

of constructing the inverted index by the AC-INV algorithm. 

In the first stage, Encode {"法律(law)", "律师(lawyer)", "

大 法 官 (grand justice)"} as {"24781", "781620", 

"14152436"}. A trie is constructed based on the encoding of 

each term. The constructed trie is shown in Fig. 4. 
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Fig. 4.  Trie  constructed from {"24781", "781620", "14152436"}. 

 

In the next stage, the AC-INV algorithm constructs fail 

pointers to generate an AC automaton. Fig. 5 shows the 

process of constructing fail pointers. This description of the 

algorithm is ordered by dictionary.As shown in Fig. 5, if the 

fail pointer of the parent node of the current node points to a 

node with the same number as the current node ，the curent 

node's fail pointer of the current node poiont to the node of the 

fail pointer of the parent node of the current node, otherwise 

the trie-tree make the point the fail pointer of the current node 

to the root node. Follow this rule, the trie-tree builds fail 

pointers to "14152436", "24781", and "781620" in turn. 
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Fig. 5.  Construct fail pointers to generate AC automaton. 

 

In the last stage, Fig. 6 shows the procedure for reading the 

document and performing inverted index construction by the 

AC-INV algorithm. The rule of multi-mode matching of AC 

automata: According to the matching current node, if there is 

a matching node, it goes to the next node. Otherwise, traverse 

to the fail pointer pointing to the current node's parent node. 

Repeat the rule until the match is successful, or iterate through 

the fail pointers until the root node. As shown in Fig. 6(a) and 

Fig. 6(b), "24781624781" and "7814152436" are patterns 

matching the fragments in the document in turn. Finally, the 

inverted index on the right side of the figure are formed in 

turn. 
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Fig. 6.  AC-INV algorithm to construct inverted index. 

 

C. Algorithm Complexity Analysis 

Let N be the number of nodes of the AC automaton, then 

the time complexity of the AC-INV algorithm is 

O(3*W+10*N+3*D+W*log(W)). Because W*log(W) is the 

smallest, its time complexity is negligible. Therefore the final 

time complexity of the AC-INV algorithm is O(W+N+D). 

The additional space complexity of AC-INV is O(W +D). 

V. EXPERIMENTS 

A. Experimental Setup and Dataset 

The experiments in this paper focus on comparing the 

space/time efficiency between our proposed algorithms and 

the FAST-INV. Since the final construction of inverted 

indexes by the three algorithms is the same, the evaluation 

criteria of the experiments are as follows： 

 Time for the algorithm to construct the inverted index 

 Memory occupation of the algorithm 

The basic configuration of the machine used for the 

experiments is 11th Gen Intel(R) Core(TM) i7-1160G7 @ 

1.20GHz 2.11 GHz, 16.0 GB RAM, 0.5 TB hard disk, and 

Window 10 operating system. All  algorithms are 

implemented in C++ and compiled by Dev-C++ 5.10 

compiler. 

The experimental dataset is the Chinese AI and Law 

challenge dataset (CAIL2018), a large-scale Chinese legal 

dataset constructed by the "China Law Research Cup" 

Judicial AI Challenge [22]. The dataset consists of public case 

documents from the China Judicial Documents website. Each 

sample case in the dataset contains information such as factual 

descriptions, applicable laws, crimes, and sentences. These 

experiments will construct inverted indexes for the 

CAIL2018-Small and CAIL2018-Large datasets released by 

the competition. The basic information of the datasets used in 

the experiments is given in Table IV. 

 
TABLE IV 

DATASETS USED IN THE EXPERIMENTS 

Dataset CAIL2018-Small CAIL2018-Large 

No. of documents 200000 1500000 

Average length 693 660 

Dataset size（MB） 131.56 941.37 

Type Long text Long text 

 

B. Experiment Results and Analysis 

1) Construction Time 

Table V shows the comparison experiment results of the 

time required to construct inverted indexes on different 

datasets by the three algorithms. It is clear from Table V that 

the inverted index construction for the CAIL2018-Small 

dataset takes 127.077s for FASTER-INV and 106.231s for 

AC-INV. The inverted index construction for the 

CAIL2018-Large dataset takes 969.254s for FASTER-INV 

and 776.331s for AC-INV. The FASTER-INV and AC-INV 

proposed in this paper outperform FAST-INV and improve 

the speed of inverted index construction. 

 
TABLE V 

EXPERIMENT RESULTS OF INVERTED INDEX CONSTRUCTION TIME 

Algorithm 
Algorithm Execution Time(s) 

CAIL2018-Small CAIL2018-Large 

FAST-INV 141.416 1101.347 

FASTER-INV 127.077 969.254 

AC-INV 106.231 776.331 
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Table Ⅵ shows the speedup (the ratio of FAST-INV to the 

execution time of the algorithm proposed in this paper) of 

FASTER-INV and AC-INV. On the CAIL2018-Small dataset, 

the speedup of FASTER-INV and AC-INV amount to 1.11 

and 1.33, respectively. On the CAIL2018-Large dataset, the 

speedup of FASTER-INV and AC-INV amount to 1.14 and 

1.43, respectively. It is worth noting that the AC-INV 

algorithm accelerates significantly, obtaining a maximum of 

41.9% acceleration. 

 
TABLE Ⅵ 

EXPERIMENT RESULTS OF SPEEDUP 

Algorithm 
Speedup 

CAIL2018-Small CAIL2018-Large 

FASTER-INV 1.11 1.14 

AC-INV 1.33 1.43 

 

To better analyze the algorithm performance of FAST-INV, 

FASTER-INV, and AC-INV. This paper conducted 

experiments on the time and speedup ratio cases of 

constructing inverted indexes at different data sizes, and the 

experimental results as shown in Fig. 7 and Fig. 8. 

 

 
Fig. 7.  Inverted index construction time at different data size. 

Fig. 7 shows the execution time variation of these three 

algorithms at different data sizes. The execution time of the 

three algorithms grows approximately linearly as the data size 

increases. The FASTER-INV and AC-INV algorithms take 

less time to construct the inverted index than FAST-INV, and 

AC-INV takes the least time. The reason is that the 

FASTER-INV algorithm eliminates the need to construct the 

CONPTR and the document vector loads file compared to the 

FAST-INV algorithm. The AC-INV algorithm replaces the 

CONPTR, loading table, and document vector loads file in 

the FAST-INV algorithm by the algorithmic feature of 

multi-pattern matching of AC automaton.it combined with the 

advantage of the hash function to find matching string 

information quickly. Thus AC-INV eliminates the time for 

constructing redundant information and achieving a time 

advantage over FAST-INV and FASTER-INV algorithms. 

Fig. 8 shows the variation of the algorithm speedup of 

FASTER-INV and AC-INV with the size of the data. The 

AC-INV and FASTER-INV speedup gradually increase with 

the increase of the data set, and the speedup of AC-INV is 

significantly more effective than that of FASTER-INV. 

Because FASTER-INV needs to traverse the data twice to 

construct the load table and con_entries array, the speedup is 

not as effective as the AC-INV algorithm. Therefore, the 

AC-INV algorithm proposed in this paper can guarantee good 

construction efficiency despite the large data size. 

 

 
Fig. 8.  Speedup for algorithms at different data size. 
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Fig. 9.  Comparison of memory occupation for constructing inverted index. 

 

2) Memory Occupation 

The algorithm calls memory during execution, and the less 

memory called for equal data indicates that the algorithm has 

better space complexity. The less memory increase during the 

increase of data set size suggests that the data has less impact 

on memory, and the algorithm scales better. Table Ⅶ shows 

the experimental results of the computer memory usage when 

the three algorithms construct inverted indexes on different 

data sizes. Fig. 9 visualizes the experimental results to enable 

a clearer analysis and comparison of the memory usage of the 

algorithm execution.  

From Table Ⅶ and Fig. 9, it is clear that the memory 

occupation of the FASTER-INV algorithm is smaller than 

that of the FAST-INV algorithm, reducing it by about 10%. 

Because the FAST-INV algorithm needs to generate four 

information files for mapping relationships to build inverted 

index files, this process consumes lots of memory. The 

FASTER-INV algorithm only needs to produce two 

information files, reducing the memory occupation. The 

memory occupation of the AC-INV algorithm is smaller than 

that of the FASTER-INV algorithm. The memory occupation 

of the AC-INV algorithm is reduced by about 35% compared 

to the FASTER-INV algorithm. Because the AC-INV 

algorithm reduces the memory occupation by eliminating the 

construction of two information files compared to the 

FASTER-INV algorithm. It shows that the AC-INV algorithm 

has the lowest space complexity, the FASTER-INV algorithm 

has better space complexity than the FAST-INV algorithm, 

and the FAST-INV algorithm has the worst space complexity. 

 
TABLE Ⅶ 

EXPERIMENT RESULTS OF MEMORY OCCUPATION 

Data Size(104) 
Algorithm Memory Occupation(MB) 

FAST-INV FASTER-INV AC-INV 

10 1017 994 735 

30 4061 3464 2259 

50 4812 4188 3527 

70 8198 6789 4820 

90 9049 8255 5688 

110 9634 9023 6770 

130 10811 10147 7894 

150 11293 10571 8823 

VI. CONCLUSION 

In this paper, we designed two new algorithms to construct 

inverted indexes for large-scale data: FASTER-INV and 

AC-INV. The FASTER-INV algorithm is an improved and 

optimized algorithm for the classical inverted index 

construction algorithm FAST-INV, which avoids unnecessary 

information documents and improves the construction time 

and space consumption. AC-INV is an algorithm for 

constructing an inverted index based on an AC automaton. 

The algorithm first builds a trie and fail pointers from the 

terms in the dictionary to form an AC automaton. Then, the 

encoded documents are pushed into the AC automaton one by 

one, and the information of the terms contained in each 

document is counted. At the same time, inverted index is 

constructed based on relevant constraints. Compared with the 

FASTER_INV algorithm, the AC-INV algorithm reduces the 

cost of significant I/O and merging overhead time. 

Theoretical analysis and experiments on real datasets 

demonstrated that the time and memory consumption of 

FASTER-INV algorithm constructing inverted indexes are 

smaller than FAST-INV. The speedup process of large-scale 

data improves by 1.11-1.14 times. However, when the 

number of documents is large, the memory consumption 

optimization of the FASTER-INV algorithm will be 

weakened. The AC-INV algorithm can save time and reduce 

space overhead. It can construct a much larger inverted index 

while consuming the same memory. The AC-INV algorithm is 

better than the FAST-INV and FASTER_INV algorithms in 

terms of performance because it is less affected by the length 

of the document and the number of them. Compared with the 

first two algorithms, AC-INV speedup of large-scale data 

processing improves by 1.33-1.43 times. 
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