



Abstract—With the exponential growth of the amount of

information on Internet web pages,the search efficiency and

accuracy of search engines become a serious challenge. Inverted

index as the core index structure of the search engines, its

organization and storage have a significant impact on the

performance of the search engines. To address the problem that

the classical fast inversion algorithm (FAST-INV) cannot build

inverted indexes quickly in the face of large-scale document data.

This paper proposes two new inverted index construction

algorithms: an improvement upon FAST-INV algorithm named

FASTER-INV and a new algorithm AC-INV based on

Aho-Corasick (AC) automaton for inverted index construction.

Firstly, aiming at the redundancy of four information

documents in FAST-INV, FASTER-INV is proposed to reduce

two unnecessary information documents to build an inverted

index. FASTER-INV cuts down redundant information while

optimizing the memory space cost. Then this paper further

proposes AC-INV, which combines the process of constructing

<Doc_ID, Term_ID> pairs and inverted indexing. AC-INV

saves significant memory occupation while ensuring the

integrity of information. In addition, it eliminates the time of

constructing information documents and improves the

algorithm's scalability. Finally, experiments have been

conducted on the Chinese AI and Law challenge dataset. The

experimental results show that FASTER-INV and AC-INV

proposed in this paper are better than FAST-INV.

FASTER-INV's speed has increased by 1.11~1.14 times, and the

memory has saved about 10%. AC-INV's speed has increased by

1.33~1.43 times, and the memory saved about 35%.

Index Terms—Search engine, Full-text index, Inverted index,

Fast inverted, Aho-Corasick automaton

I. INTRODUCTION

HE search engine is a general term for a class of system or

software, and its functions are to retrieve documents that

match information needs. Search engines can perform

full-text search in two ways, one by sequentially scanning all

Manuscript received June 11, 2022; revised October 31, 2022. This work

was supported in part by the University of Science and Technology Liaoning

under Grant LKDYC201917

He Wang is a postgraduate student at the School of Computer Science

and Software Engineering, University of Science and Technology Liaoning,

Anshan, 114051, China(e-mail: ustlwanghe@163.com).

Chengying Chi is a professor at the School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,

Anshan, 114051, China(e-mail: chichengying@ustl.edu.cn).

Xiumei Zhang is an associate professor at the School of Computer

Science and Software Engineering, University of Science and Technology

Liaoning, Anshan, 114051, China(corresponding author, phone:

86-186041281115; e-mail: aszxm2002@ustl.edu.cn).

Yunyun Zhan is an undergraduate student at the College of Science and

Health, Technological University Dublin, Dublin, D08 X622, Ireland(e-mail:

D16123420@mytudublin.ie).

documents and the other by indexing. Sequential scanning is

generally only suitable for processing a small number of

documents or cached documents. Therefore, it is essential for

search engine systems to build full-text indexes. The data

structure, construction, and compression algorithms used for

full-text indexes affect the search engine retrieval efficiency

[1-2]. Researchers have proposed different data structures to

support the construction of full-text indexes, such as signature

files [3], suffix trees [4], and inverted indexes [5]. Xiaozhu

Liu et al. [6] studied the performance of these three index

structures, they concluded that the inverted index is the fastest

and most scalable data structure for building full-text indexes

under the condition that the storage space is large enough.

Combining resources such as time, storage space, and

processor, most common search engine systems usually

construct indexes in an inverted way [7-10]. Therefore,

optimizing inverted index construction algorithms is a

research hotspot, such as reducing the time of building

inverted files and improving data storage performance.

Fig. 1 shows the structure of the inverted index. An

inverted index consists of a dictionary (a collection of terms)

and an inverted list (a collection of postings lists). The

postings list contains postings, and the posting contains

document ID, word frequency, and the position of the word

term in the document. Because the inverted index stores the

inverted list for each term, search engines can find the

documents associated with each term in a query through direct

access, and retrieve matching documents quickly [11].

Index

Construction

Algorithm

1 2 3

1 2

.

.

.

...

...

.

.

.

Dictionary Inverted List

Postings List

21 ...

Posting

Fig. 1. Structure of the inverted index.

Fast inverted algorithm (FAST-INV) [12] is a classic

inverted index construction algorithm, and it is suitable for

building inverted indexes on some large-scale data. However,

there is some redundancy between the information in the load

Inverted Index Construction Algorithms For

Large-Scale Data

He Wang, Chengying Chi, Xiumei Zhang, Yunyun Zhan

T

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

tables, files of concept postings/pointers (CONPTR) and

document vector loads files constructed by this algorithm.

Building the above three data tables requires significant input

and output (I/O) costs when facing large-scale data. Therefore,

this paper optimizes the information redundancy of

FAST-INV, new optimization algorithm is named faster

inverted index algorithm (FASTER-INV). FASTER-INV

eliminates the need to construct CONPTR and document

vector loads files, the construction of inverted index only

requires the input <Doc_ID, Term_ID> pairs and load tables

to obtain enough information. FASTER-INV saves time and

space compared to FAST-INV and eliminates the time

overhead of reading in and out of CONPTR and document

vector loads files.

As the number of dictionary terms increases continuously,

the cost for I/O of the texts also increases gradually. Therefore,

this paper proposes a novel AC automaton-based inverted

index construction algorithm (AC-INV).The AC automaton

algorithm is a string search algorithm proposed by Alfred V.

Aho and Margaret J. Corasick [13]. It is used to match

substrings in a finite dictionary in an input string and is an

exact matching algorithm. AC automaton is built based on the

trie structure combined with the ideas of KMP [14]. The

algorithm provides solutions to many real-world problems

and is one of the most fruitful algorithms in computer science

[15-16]. AC-INV uses a trie for preprocessing to construct

terms of the dictionary to achieve compression of the

dictionary. Then, build inverted indexes and fail pointers

based on the trie tree, thus constructing the AC automaton.

Finally, based on the characteristics of the AC automaton,

AC-INV can count all the terms in the dictionary by reading

the document once. At the same time, using the insertion

property of hash, the construction of the inverted index is

completed in O(logn) time complexity. AC-INV reduces the

time overhead in I/O compared with FASTER-INV. In the

construction of the lexicon and intermediate process, not only

dictionary term compression is performed, but also the

building of the load tables is canceled, so that the inverted file

can be constructed with less space overhead.

The contributions of the paper can be summarized as

follows:

 FASTER-INV reduces the information redundancy of

FAST-INV.

 AC-INV merges the process of constructing <Doc_ID,

Term_ID> pairs and inverted index, reducing substantial

time and space overhead.

 For large-scale data, this paper compares FASTER-INV

and AC-INV with the classical FAST-INV to verify the

performance of the algorithm.

II. RELATED WORK

The inverted index can be realized by structures such as

sorted arrays, B-trees, and Hashes [17]. The sorted array

structure is the simplest and easiest to implement. Manning et

al. [18] used sorted arrays to build the inverted index, and

input texts had to be parsed into a list of terms and the position

of the terms in the text. Sorted arrays need to be sorted

continuously during the index building process. For

large-scale document sets, there is not enough storage space

to keep both sorted and unsorted versions of this list of terms.

Gupta et al. [19] used B-tree to construct inverted indexes,

which are easier to update, faster to retrieve, and more

suitable for storing text indexes compared to sorted arrays.

However, implementing inverted documents using B-tree is

more complex than sorted arrays. Tan et al. [20] designed and

combined hash functions to implement an upgraded inverted

index to make the corresponding queries more accurate and

memory efficient. The construction of the fundamental

inverted index is improved, Heinz et al. [21] proposed the

single-pass in-memory indexing(SPIMI). SPIMI eliminates

the <term , document> pair mapping and sorting operations,it

uses the term instead of the term_ID, writes the dictionary for

each block to disk, and then starts a new dictionary for the

next block. SPIMI can index collections of any size but

requires sufficient available disk space. Fox et al. [12]

proposed FAST-INV, which uses multiple memory loads to

invert the file to use the disk optimally. FAST-INV provides

time and space optimizations over sorted arrays for building

inverted indexes, but there are still areas that can be optimized.

The overall scheme of the FAST-INV algorithm is shown in

Fig. 2.

Document

Vector File

Load Table

CONPTR

2.Separate

the vector

file into the

load table

1.Preparation

Document

Vector Loads

File

3.Invert

document

vector

loads file

Inverted

Index

Fig. 2. Overall scheme of the FAST_INV algorithm.

 FAST-INV is a fast inverted algorithm based on sorted

arrays. The algorithm uses mem ory in a near-optimal way and

processes the data through three operations. The input to

FAST-INV is a document vector file. This document vector

file contains the term_ID of each document, and each term

value points to the same term-document association table.

Notably, the document vector file is an ordered file, this file is

sorted based on the term_ID and then sorted based on the

doc_ ID, which is the key to the correct use of FAST-INV.To

better explain FAST-INV, the definitions of the relevant

terms used in the algorithm are listed below.

Definition 1. HCN is the total number of types of term ids

in the dictionary.

Definition 2. L is the length of the document vector file,

which is the length of the input.

Definition 3. M is the assumed memory size, which is the

available memory space. The actual index file to be processed

may require multiple disks for storage. Memory does not fit,

so a flexible conversion between memory and external

memory is required.

Definition 4. Assuming that HCNM  , CONPTR and

load table can be created in the main memory.

Definition 5. Assuming that LM  , multiple main

memory load spaces are needed to process the document

vector data.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

Definition 6. LL is the current load length, equal to the

number of <Doc_ID, Term_ ID> pairs.

Definition 7. S is the distribution of the number of terms

in the current load, equal to the difference between the ending

term_ID and the starting term_ID plus one.

Definition 8. The following constraint is imposed on the

load space: 8 bytes is the space needed for each

term_ID / weight pair. 4 bytes is the number of pointers to

store for each term. Therefore, to fit the loaded data into

memory, adding a term to the current load space must satisfy

the requirement of MSLL  *4*8 .

The pseudo code of the FAST-INV algorithm is shown in

Table I.

TABLE I

PSEUDO CODE OF FAST-INV

Algorithm 1: FAST-INV

Input: Compression matrix formed by <Doc_ID, Term_ ID> pairs

Output: Inverted_index

1. read_vector←Ø

2. Init(HCN , L , M)

3. for i in range(read_vector)

4. con_entries.push_back(i)

5. for i in con_entries

6. if (MSLL  *4*8)

7. post/points++

8. else post/point.push_back(i)

9. build_load(post_points)

10. for i in Load table , j in post/points

11. if (con < Load_table[i].EndCon)

12. D_V_L_F.push(Doc, Con)

13. else

14. D_V_L_F++

15. for i in Load table , j in post/points , k in D_V_L_F

16. if(con < Load_table[i].EndCon)

17. Inverted_index.push(Build(i, j, k))

18. else

19. Inverted_index.add;

20. return Inverted index

Algorithm 1 has five steps:

Step 1. [Algorithm initialization] (lines 1-4): The

initialization function stores the read <Doc_ID, Term_ID>

pairs and updates global variables such as HCN , L , and M .

Step 2. [Generate CONPTR] (lines 5-8): When looping

through <Doc_ID, Term_ID> pairs, if the number of terms

exceeds the constraint defined by the current load space, new

load space is created in the CONPTR. If the current bound is

satisfied, then add operation is performed in the load space of

the current CONPTR.

Step 3. [Generate load table] (line 9): Generate the starting

term_ID, ending term_ID, kind of term_ID, and number of

term_ID of load tables by the term_ID, starting address

number, number of existing documents, and load table

number of the CONPTR.

Step 4. [Generate document vector loads file] (line 10-14):

Loop through the generated load tables and the CONPTR.

Determine if the constraint of the current document vector

loads file is exceeded, and if it is in the current constraint,

push the current <Doc_ID, Term_ID> pairs into the

document vector loads file. Instead, apply a new document

vector loads file.

Step 5. [Generate inverted index] (line 15-20): Loop

through the generated CONPTR, load tables, and document

vector loads files. If the current term_ID does not exceed the

end term_ID of the load table, press all the generated data into

the inverted index. If not, request a new inverted index.

Finally, return the generated inverted index.

It can be seen that Algorithm 1 generates four intermediate

table documents and performs three times I/O. Let the number

of lexical items be W, the number of documents is D, and the

average document length is DL. The time complexity of

Algorithm 1 is O(W*D*DL), and the additional space

complexity of Algorithm 1 is O(W*D). The optimization of

Algorithm 1 will be given in the FASTER-INV algorithm

section in Section 3.

III. FASTER-INV ALGORITHM

A. Algorithm Description

The FASTER-INV is an optimized and improved

algorithm based on FAST-INV, which suffers from

information redundancy.FASTER-INV achieves temporal

and spatial optimization of the FAST-INV algorithm by

trimming down the CONPTR and the document vector loads

file in the process of building the inverted index. The pseudo

code of the FASTER-INV algorithm is shown in Table II.

TABLE II

PSEUDO CODE OF FASTER-INV

Algorithm 2: FASTER-INV

Input: Compression matrix formed by <Doc_ID, Term_ ID> pairs

Output: Inverted_index

1. read_vector←Ø

2. Init(HCN , L , M)

3. for i in range(read_vector)

4. con_entries.push_back(i)

5. for i in con_entries

6. if (MSLL  *4*8)

7. Load_table++

8. else

9. Load_table.push_back(i)

10. for i in con_entries j in Load_table

11. if (cies[i].con_entron < Load_table[j].EndCon)

12. Inverted_index.push_back(i, j)

13. else

14. Inverted_index.add

15. return Inverted index

Algorithm 2 has three steps:

Step 1. [Algorithm initialization] (lines 1-4): The

implemented function is the same as Algorithm 1.

Step 2. [Generate load table] (line 5-9): Loop through the

con_entries array to count document_ID and term_ID.

Determine whether the lexical items that join the current load

table conform to the space constraints, and update the

information of the load table when it meets the constraint. If

the constraint is not satisfied, apply a new load table.

Step 3. [Generate inverted index] (line 10-15): Loop

through the con_entries array and the load table. When the

term_ID is greater than the end term_ID of the current load

table, a new inverted index is applied. If it is smaller than the

end term_ID of the current load table, the read information is

added to the current inverted index. Finally, return the

generated inverted index.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

Doc_ID

1

2

3

4

5

1

3

5

13

14

2

5

10

11

2

3

5

12

13

1

10

14

3

6

13

14

2. Preparation

Load_No Star_ID End_ID
Type of

Terms

Number of

Terms

Load Table

1

2

3

1

5

12 14

4

11

3

3

4

7

7

7

3. Merge

load table and

con_entries array

Term_ID_in_Doc

Term_ID Doc_ID

1

2

3

1、4

2、3

1、3、5

Inverted Index 1

Term_ID Doc_ID

5

6

10

1、2、3

5

2、4

Inverted Index 2

Term_ID Doc_ID

12

13

14

3

1、3、5

1、4、5

Inverted Index 3

11 21. Initialize build

 con_entries array

Fig. 3. FASTER-INV algorithm to construct inverted index.

B. FASTER-INV Algorithm Example

The document ID set Doc_ID = {1, 2, 3, 4, 5} and these

five documents correspond to five lexical item ID vector files

Term_No_in_Doc = {{1, 3, 5, 13, 14}, {3, 5, 10, 11}, {2, 3, 5,

12, 13}, {1, 10, 13, 14}, {3, 6, 13, 14}} as an example to

illustrate the FASTER-INV to construct inverted index

process, the detailed process is shown in Fig. 3.

In the first stage, the FASTER-INV algorithm reads the

compression matrix constructed by the <Doc_ID, Term_ID>

pairs and initializes the variables according to the read data.

Then the FASTER-INV algorithm transforms the

compression matrix into an array of con_entries through the

data's relationship. Documents 1, 2, 3, 4, and 5 in Doc_ID

point to the 1st, 2nd, 3rd, 4th, and 5th vectors in

Term_ID_in_Doc. These documents' data denote the

information about the term_ID that appears in the documents.

In the next stage, the load table is constructed based on the

data of the con_entries array. The load table generates the

corresponding starting term_ID, ending term_ID, kind of

term_ID, and number of term_ID in each of the three load

tables based on the data of the con_entries array and the

constraints of the load table.

In the last stage, match the information in the con_entries

array and load table to generate the inverted indexes. The

information in load tables {1, 2, 3} is used to construct the

corresponding three inverted indexes.

C. Algorithm Complexity Analysis

FASTER-INV is optimized in constant space compared to

the FAST-INV algorithm. The FASTER-INV algorithm

performs I/O operations two times in constructing the

con_entries array and the load table. Thus the time complexity

of FASTER-INV is O(W*D*DL). Compared to the

FAST-INV algorithm, the FASTER-INV algorithm is

optimized in constant time. The additional space complexity

is O(W*D).

IV. AC-INV ALGORITHM

A. Algorithm Description

AC-INV is an algorithm for constructing an inverted index

based on the multi-pattern matching characteristics of AC

automaton. After the AC-INV algorithm uses the AC

automaton to count the information of terms, the AC-INV

algorithm uses the hash mapping to construct the

corresponding inverted index. AC-INV algorithm compares

with FASTER-INV algorithm, AC-INV algorithm saves the

process of building the con_entries array and load table. It

further reduces the waste of information redundancy. Thus, it

achieves better improvements in time and space than the

FASTER-INV algorithm. Before the description of the

AC-INV algorithm, definitions of relevant terms used in the

algorithm are given as follows:

Definition 9. P = {p1, p2, ..., pn} represents the set of

pattern strings. p1, p2, ..., pn denotes the encoded pattern string

of the term, where n denotes the number of pattern strings

entered.

Definition 10. Node = {S0, S1, ... Sm} represents the state

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

set of the AC automaton, where m denotes the number of

nodes of an AC automaton. EndNode = {S0, S1, ... Si}

represents the set of end states. EndNode is a subset of the

state set of the AC automaton.

Definition 11. Each node of the trie has ten subnodes, and

each node corresponds to a pointer that represents the integer

[0, 9] in the number.

The pseudo code of the AC-INV algorithm is shown in

Table III.

TABLE III

PSEUDO CODE OF AC-INV

Algorithm 3: AC-INV

Input: Terms to count and Documents to consult

Output: Inverted_index

1. read←Ø

2. for i in read:

3. s = make_word_to_figure(i)

4. insert(s)

5. while(!queue<Node*> P.empty())

6. cur = P.front(),P.pop()

7. for (int i = 0 ; i < 10 ; i++)

8. if (cur->Next[i])

9. cur->Next[i]->fail = root

10. cfail = cur -> fail

11. While (fail)

12. if (fail->Next[i])

13. cur->Next[i]->fail = cfail->Next[i]

14. break

15. P.push(cur->Next[i])

16. read_article←Ø

17. for i in read_article:

18. if (MSLL  *4*8)

19. inverted_index.push(Map<con,vector<Doc>>)

20. else

21. inverted_index.add

22. return inverted index

Algorithm 3 has three steps:

Step 1. [Construct terms into trie] (lines 1-4): Read terms

into memory sequentially, then iterate over the terms. Encode

terms into ASCII codes and push them codes into the trie.

Step 2. [Construct fail pointers] (lines 5-15): Determine

whether the node in the queue is empty, if the node is not

empty, perform the queue exit operation. Iterate through the

children nodes of the current node and determine whether the

ith pointer of the current node is empty or not. If it is not

empty, point the fail of the ith pointer of the current node to

the root node. And also, point the cfail pointer to the fail

pointer of the current node. When fail points to non-empty,

determine whether the ith pointer of the fail pointer is empty.

If not empty, point the ith pointer of the current node's fail

pointer to the ith pointer of the cfail pointer, and then jump out

of the loop. Finally, the ith pointer of the current pointer is

pushed into the queue.

Step 3. [Read documents and Construct inverted indexes]

(lines 16-22): Read documents to be queried in sequence.

Iterate through the read documents and constrain the memory

size occupied by the current inverted index. If the current

inverted index satisfies the constraint, a series of statistics of

the word items are stored in the inverted index ,the form is

mapping. If not, a new inverted index is requested. Finally,

return the generated inverted index.

B. AC-INV Algorithm Example

The following is an example of {"法律 (law)", "律师

(lawyer)", "大法官(grand justice)"} to illustrate the process

of constructing the inverted index by the AC-INV algorithm.

In the first stage, Encode {"法律(law)", "律师(lawyer)", "

大 法 官 (grand justice)"} as {"24781", "781620",

"14152436"}. A trie is constructed based on the encoding of

each term. The constructed trie is shown in Fig. 4.

1

S0

S1 S2 S3 S4 S5

S7 S8 S9 S10

S12 S13 S14 S15 S16 S17

S18

S6

S11

S19

8 1 6 2 0

2

7

4 7 8 1

4 1 5 2 4 3
6

Fig. 4. Trie constructed from {"24781", "781620", "14152436"}.

In the next stage, the AC-INV algorithm constructs fail

pointers to generate an AC automaton. Fig. 5 shows the

process of constructing fail pointers. This description of the

algorithm is ordered by dictionary.As shown in Fig. 5, if the

fail pointer of the parent node of the current node points to a

node with the same number as the current node ，the curent

node's fail pointer of the current node poiont to the node of the

fail pointer of the parent node of the current node, otherwise

the trie-tree make the point the fail pointer of the current node

to the root node. Follow this rule, the trie-tree builds fail

pointers to "14152436", "24781", and "781620" in turn.

1

S0

S1 S2 S3 S4 S5

S7 S8 S9 S10

S12 S13 S14 S15 S16 S17

S18

S6

S11

S19

8 1 6 2 0

2

7

4 7 8 1

4 1 5 2 4 3

6

Fig. 5. Construct fail pointers to generate AC automaton.

In the last stage, Fig. 6 shows the procedure for reading the

document and performing inverted index construction by the

AC-INV algorithm. The rule of multi-mode matching of AC

automata: According to the matching current node, if there is

a matching node, it goes to the next node. Otherwise, traverse

to the fail pointer pointing to the current node's parent node.

Repeat the rule until the match is successful, or iterate through

the fail pointers until the root node. As shown in Fig. 6(a) and

Fig. 6(b), "24781624781" and "7814152436" are patterns

matching the fragments in the document in turn. Finally, the

inverted index on the right side of the figure are formed in

turn.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

Doc_ID

1

2

Document_ Content

24781624781

7814152436

Term

法律
(law)

大法官
(grand justice)

Doc_ID TF

1

2

2

1

(a)

1

S0

S1 S2 S3 S4 S5

S7 S8 S9 S10

S12 S13 S14 S15 S16 S17

S18

S6

S11

S19

8 1 6 2 0

2

7

4 7 8 1

4 1 5 2 4 3

6

1

S1 S2 S3 S4 S5

S7 S8 S9 S10

S12 S13 S14 S15 S16 S17

S18

S6

S11

S19

7 8 1 6 2 0

2 4 7 8 1

4 1 5 2 4 3
6

S0

(b)

Fig. 6. AC-INV algorithm to construct inverted index.

C. Algorithm Complexity Analysis

Let N be the number of nodes of the AC automaton, then

the time complexity of the AC-INV algorithm is

O(3*W+10*N+3*D+W*log(W)). Because W*log(W) is the

smallest, its time complexity is negligible. Therefore the final

time complexity of the AC-INV algorithm is O(W+N+D).

The additional space complexity of AC-INV is O(W +D).

V. EXPERIMENTS

A. Experimental Setup and Dataset

The experiments in this paper focus on comparing the

space/time efficiency between our proposed algorithms and

the FAST-INV. Since the final construction of inverted

indexes by the three algorithms is the same, the evaluation

criteria of the experiments are as follows：

 Time for the algorithm to construct the inverted index

 Memory occupation of the algorithm

The basic configuration of the machine used for the

experiments is 11th Gen Intel(R) Core(TM) i7-1160G7 @

1.20GHz 2.11 GHz, 16.0 GB RAM, 0.5 TB hard disk, and

Window 10 operating system. All algorithms are

implemented in C++ and compiled by Dev-C++ 5.10

compiler.

The experimental dataset is the Chinese AI and Law

challenge dataset (CAIL2018), a large-scale Chinese legal

dataset constructed by the "China Law Research Cup"

Judicial AI Challenge [22]. The dataset consists of public case

documents from the China Judicial Documents website. Each

sample case in the dataset contains information such as factual

descriptions, applicable laws, crimes, and sentences. These

experiments will construct inverted indexes for the

CAIL2018-Small and CAIL2018-Large datasets released by

the competition. The basic information of the datasets used in

the experiments is given in Table IV.

TABLE IV

DATASETS USED IN THE EXPERIMENTS

Dataset CAIL2018-Small CAIL2018-Large

No. of documents 200000 1500000

Average length 693 660

Dataset size（MB） 131.56 941.37

Type Long text Long text

B. Experiment Results and Analysis

1) Construction Time

Table V shows the comparison experiment results of the

time required to construct inverted indexes on different

datasets by the three algorithms. It is clear from Table V that

the inverted index construction for the CAIL2018-Small

dataset takes 127.077s for FASTER-INV and 106.231s for

AC-INV. The inverted index construction for the

CAIL2018-Large dataset takes 969.254s for FASTER-INV

and 776.331s for AC-INV. The FASTER-INV and AC-INV

proposed in this paper outperform FAST-INV and improve

the speed of inverted index construction.

TABLE V

EXPERIMENT RESULTS OF INVERTED INDEX CONSTRUCTION TIME

Algorithm
Algorithm Execution Time(s)

CAIL2018-Small CAIL2018-Large

FAST-INV 141.416 1101.347

FASTER-INV 127.077 969.254

AC-INV 106.231 776.331

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

Table Ⅵ shows the speedup (the ratio of FAST-INV to the

execution time of the algorithm proposed in this paper) of

FASTER-INV and AC-INV. On the CAIL2018-Small dataset,

the speedup of FASTER-INV and AC-INV amount to 1.11

and 1.33, respectively. On the CAIL2018-Large dataset, the

speedup of FASTER-INV and AC-INV amount to 1.14 and

1.43, respectively. It is worth noting that the AC-INV

algorithm accelerates significantly, obtaining a maximum of

41.9% acceleration.

TABLE Ⅵ

EXPERIMENT RESULTS OF SPEEDUP

Algorithm
Speedup

CAIL2018-Small CAIL2018-Large

FASTER-INV 1.11 1.14

AC-INV 1.33 1.43

To better analyze the algorithm performance of FAST-INV,

FASTER-INV, and AC-INV. This paper conducted

experiments on the time and speedup ratio cases of

constructing inverted indexes at different data sizes, and the

experimental results as shown in Fig. 7 and Fig. 8.

Fig. 7. Inverted index construction time at different data size.

Fig. 7 shows the execution time variation of these three

algorithms at different data sizes. The execution time of the

three algorithms grows approximately linearly as the data size

increases. The FASTER-INV and AC-INV algorithms take

less time to construct the inverted index than FAST-INV, and

AC-INV takes the least time. The reason is that the

FASTER-INV algorithm eliminates the need to construct the

CONPTR and the document vector loads file compared to the

FAST-INV algorithm. The AC-INV algorithm replaces the

CONPTR, loading table, and document vector loads file in

the FAST-INV algorithm by the algorithmic feature of

multi-pattern matching of AC automaton.it combined with the

advantage of the hash function to find matching string

information quickly. Thus AC-INV eliminates the time for

constructing redundant information and achieving a time

advantage over FAST-INV and FASTER-INV algorithms.

Fig. 8 shows the variation of the algorithm speedup of

FASTER-INV and AC-INV with the size of the data. The

AC-INV and FASTER-INV speedup gradually increase with

the increase of the data set, and the speedup of AC-INV is

significantly more effective than that of FASTER-INV.

Because FASTER-INV needs to traverse the data twice to

construct the load table and con_entries array, the speedup is

not as effective as the AC-INV algorithm. Therefore, the

AC-INV algorithm proposed in this paper can guarantee good

construction efficiency despite the large data size.

Fig. 8. Speedup for algorithms at different data size.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

Fig. 9. Comparison of memory occupation for constructing inverted index.

2) Memory Occupation

The algorithm calls memory during execution, and the less

memory called for equal data indicates that the algorithm has

better space complexity. The less memory increase during the

increase of data set size suggests that the data has less impact

on memory, and the algorithm scales better. Table Ⅶ shows

the experimental results of the computer memory usage when

the three algorithms construct inverted indexes on different

data sizes. Fig. 9 visualizes the experimental results to enable

a clearer analysis and comparison of the memory usage of the

algorithm execution.

From Table Ⅶ and Fig. 9, it is clear that the memory

occupation of the FASTER-INV algorithm is smaller than

that of the FAST-INV algorithm, reducing it by about 10%.

Because the FAST-INV algorithm needs to generate four

information files for mapping relationships to build inverted

index files, this process consumes lots of memory. The

FASTER-INV algorithm only needs to produce two

information files, reducing the memory occupation. The

memory occupation of the AC-INV algorithm is smaller than

that of the FASTER-INV algorithm. The memory occupation

of the AC-INV algorithm is reduced by about 35% compared

to the FASTER-INV algorithm. Because the AC-INV

algorithm reduces the memory occupation by eliminating the

construction of two information files compared to the

FASTER-INV algorithm. It shows that the AC-INV algorithm

has the lowest space complexity, the FASTER-INV algorithm

has better space complexity than the FAST-INV algorithm,

and the FAST-INV algorithm has the worst space complexity.

TABLE Ⅶ

EXPERIMENT RESULTS OF MEMORY OCCUPATION

Data Size(104)
Algorithm Memory Occupation(MB)

FAST-INV FASTER-INV AC-INV

10 1017 994 735

30 4061 3464 2259

50 4812 4188 3527

70 8198 6789 4820

90 9049 8255 5688

110 9634 9023 6770

130 10811 10147 7894

150 11293 10571 8823

VI. CONCLUSION

In this paper, we designed two new algorithms to construct

inverted indexes for large-scale data: FASTER-INV and

AC-INV. The FASTER-INV algorithm is an improved and

optimized algorithm for the classical inverted index

construction algorithm FAST-INV, which avoids unnecessary

information documents and improves the construction time

and space consumption. AC-INV is an algorithm for

constructing an inverted index based on an AC automaton.

The algorithm first builds a trie and fail pointers from the

terms in the dictionary to form an AC automaton. Then, the

encoded documents are pushed into the AC automaton one by

one, and the information of the terms contained in each

document is counted. At the same time, inverted index is

constructed based on relevant constraints. Compared with the

FASTER_INV algorithm, the AC-INV algorithm reduces the

cost of significant I/O and merging overhead time.

Theoretical analysis and experiments on real datasets

demonstrated that the time and memory consumption of

FASTER-INV algorithm constructing inverted indexes are

smaller than FAST-INV. The speedup process of large-scale

data improves by 1.11-1.14 times. However, when the

number of documents is large, the memory consumption

optimization of the FASTER-INV algorithm will be

weakened. The AC-INV algorithm can save time and reduce

space overhead. It can construct a much larger inverted index

while consuming the same memory. The AC-INV algorithm is

better than the FAST-INV and FASTER_INV algorithms in

terms of performance because it is less affected by the length

of the document and the number of them. Compared with the

first two algorithms, AC-INV speedup of large-scale data

processing improves by 1.33-1.43 times.

REFERENCES

[1] A. Moffat, and J. Zobel, “Self-indexing inverted files for fast text

retrieval,” ACM Transactions on Information System, vol. 14, no. 4, pp.

349-379, 1996.

[2] E. Naufal and J. R. Tom, “IIU: Specialized architecture for inverted

index search,” in Proc. ASPLOS, New York, NY, USA, pp. 1233–1245,

2020.

[3] B. Carterette, and F. Can, “Comparing inverted files and signature files

for searching a large lexicon,” Information Processing &

Management, vol. 41, no. 3, pp. 613-633, 2005.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

[4] E. M. McCreight, “A space-economical suffix tree construction

algorithm,” Journal of the ACM, vol. 23, no. 2, pp. 262-272, 1976.

[5] J. Zobel, A. Moffat, ans K. Ramamohanarao, “Inverted files versus

signature files for text indexing,” ACM Transactions on Database

Systems, vol. 23, no. 4, pp. 453-490, 1998.

[6] Z. Zhang, P. Q. Jin, and X. K. Xie, “Learned Indexes: Current

Situations and Research Prospects,” Ruan Jian Xue Bao/Journal of

Software, vol. 32, no. 4, pp. 1129-1150, 2021.

[7] L. Wang, T. D. Zhou, and Z. F. Wang, “Search on encrypted electronic

medical records using inverted index based on bloom filter and

B+tree,” Computer Applications and Software, vol. 38, no. 4, pp.

276-280, 2021.

[8] N. Sousa, N. Oliveira, and I. Praça, “Machine Reading at Scale: A

Search Engine for Scientific and Academic Research,” Systems, vol.

10, no. 2, pp. 43, 2022.

[9] K. Figueroa, A. Camarena-Ibarrola, and N. Reyes, “Shortening the

Candidate List for Similarity Searching Using Inverted Index,” in Proc.

MCPR, Mexico City, Mexico, pp. 89-97, 2021.

[10] J. Lin, “A proposed conceptual framework for a representational

approach to information retrieval,” in Proc. SIGIR, New York, NY,

USA, pp. 1-29, 2022.

[11] X. Yu, “Construction and Application on Parallel Corpus for College

Japanese Translation Teaching,” in Proc. ICISCAE. Dalian, LN, China,

pp. 1706-1710, 2021.

[12] E. Fox, and W. Lee, “FAST-INV: A fast algorithm for building large

inverted files,” Tech. rep. TR 91-10, Virginia Polytechnic Institute and

State University, Blacksburg, VA, 1991.

[13] A. V. Aho, and M. J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.

333-340, 1975.

[14] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323-350,

1977.

[15] S. Hasib, M. Motwani, and A. Saxena, “Importance of aho-corasick

string matching algorithm in real world applications,” Journal of

Computer Science and Iinformation Technologies, vol. 4, no. 3, pp.

467-469, 2013.

[16] A. R. Chayapathi, “Survey and Comparison of String Matching

Algorithms,” Turkish Journal of Computer and Mathematics

Education , vol. 12, no. 12, pp. 1471-1491, 2021.

[17] A. Mohamed, M. Abdel-Fattah, and A. Khedr, “Challenges and

recommendationsin big data indexing strategies,” International

Journal of e-Collaboration, vol. 17, no. 2, pp. 22–39, 2021.

[18] C. Manning, P. Raghavan, and H. Schütze, “Introduction to

information retrieval,” Natural Language Engineering, vol. 16, no. 1,

pp. 100-103, 2010.

[19] A. Gupta, D.Yadav, “A novel approach to perform context‐based

automatic spoken document retrieval of political speeches based on

wavelet tree indexing,” Multimedia Tools and Applications, vol. 80, no.

14, pp. 22209-22229, 2021.

[20] C. C. Tan, B. Sheng, H. Wang and Q. Li, “Microsearch: A search

engine for embedded devices used in pervasive computing,” ACM

Transactions on Embedded Computing Systems, vol. 9, no. 4, pp. 1-29,

2010.

[21] S. Heinz, J. Zobel, “Efficient single‐pass index construction for text

databases,” Journal of the American Society for Information Science

and Technology, vol. 54, no. 8, pp. 713-729, 2003.

[22] C. Xiao, H. Zhong, Z. Guo, C. Tu, Z. Liu, M. Sun, et al. , “CAIL2018:

A large-scale legal dataset for judgment prediction,”

arXiv:1807.02478, 2018. Available: https://arxiv.org/abs/1807.02478.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_21

Volume 49, Issue 4: December 2022

__

