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Abstract—This research intended to create a control strate-
gies at each time step to optimize train regulation, and passen-
ger flows with existing constraints to improve the regularity of
headway and commercial speed on metro lines. Additionally,
inevitable disturbances on the metro lines are considered as
a periodic sine function, and the uncertainty of fluctuating
passenger arrival flow was handled using time-varying MPC.
The best solution was sought as a quadratic programming prob-
lem by using time-varying MPC to issues of train regulation
and passenger flow control in which the systems were time-
dependent. Moreover, time-varying MPC was utilized to predict
future outputs and calculate optimal inputs for the objective
function. Numerical examples were provided to illustrate the
effectiveness of the proposed method.

Index Terms—Train regulation; Passenger Flow Control;
Quadratic Programming; Time Varying MPC.

I. INTRODUCTION

DUE to their inherent characteristics of speed, efficiency,
and safety, metro systems have become an essential

source of public transportation for passengers in urban cen-
ters ([1],[2]). However, metro systems frequently experience
minor disruptions due to irregular occurrences of passenger
demand fluctuations, equipment failure, and crises. They can
significantly impact the service quality of service with a
short headway. Variations in passenger demand result in
an unanticipatedly crowded passenger arrival flow, which
impacts dwell time ([3],[4]). Specifically, as the number
of arriving passengers during peak hours increases, train
delays caused by random disruptions will spread from one
station to the next, making the system unstable. Periodic
passenger arrival can be assumed to be a disruption and
is considered a sine function [5]. Train regulation, which
involves changing the operating duration and dwell time of
each train, is necessary to recover from delays and prevent
unstable operations ([6],[7]).

Various train regulation mechanisms have been proposed
for metro lines. In order to guarantee system stability and the
reduction of a particular performance index, a state feedback
control strategy built on the linear quadratic controller was
used in [6]. In [8], a genetic algorithm was successfully
applied to the problem of optimal train regulation. How-
ever, train regulation, which controls each train’s operating
duration and dwells time, can not handle the overloaded
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passenger flow during peak hours. The joint dynamic train
regulation and passenger flow control design problem for
metro lines was established in [9] to enhance commercial
speed and headway regularity.

The amount of passengers boarding and departing each
train has an impact on dwell time [9]. It is assumed that the
number of passengers boarding the train is proportional to the
time between trains ([3], [10]) and that the passenger arrival
rate is uncertain ([11]), both of which are time-dependent.
Therefore, there should be a proportionate relationship be-
tween the number of passengers entering and exiting trains
[12], which depends on the time change. This study assumes
that the uncertain passenger arrival rate is different at each
station and train and that the sine-shaped passenger arrival
rate causes disturbances. This is more relevant to factual
problems. However, as the number of variables and con-
straints increases, the calculation time of conventional linear
and nonlinear programming methods increases, making them
unsuitable for calculating daily activity schedules.

One of the most promising subfields of modern control,
model predictive control (MPC), is capable of effectively
handling large-scale optimization problems with complex
constraints. [13]. There are numerous MPC types, such as
distributed MPC [18], time-varying MPC [15], SPF-MPC
[19], and Nonlinear MPC [20]. MPC is an effective solver for
real-time metro traffic regulation and passenger load due to
its high predictive ability. A linear programming-based MPC
approach was published in [14] to compute optimal train
schedules on metro lines, which can successfully generate
a daily timetable. In addition, [9] addressed a challenge in
predictive design for metro lines, including dynamic train
regulation and passenger flow control.

In addition, the unpredictability of passenger flow and pe-
riodic sinusoidal disturbances that cause train delays must be
consider. Time-varying MPC can solve problems involving
time-dependent parameters, such as uncertain passenger ar-
rival rates, sinusoidal disturbances, and proportional factors,
among others. Using time-varying algorithms, autonomous
cars have been developed [15]. In order to deal with unpre-
dictable changes in passenger flow, various proportional fac-
tors, and the sine disturbance, we examine the optimal train
regulation and passenger load control within the framework
of time-varying MPC.

Based on the time-varying MPC scheme, this research
suggests a novel approach to train regulation and passenger
flow management approaches in metro lines. A constrained
state space model was utilized to take safety, passenger, and
control constraints into account for the joint dynamic model
of train regulation and passenger flow on the metro lines.
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Furthermore, time-varying MPC regulates train operation and
passenger flow. Using dynamic models of train traffic and
passenger load on metro lines, time-varying MPC predicts
future outcomes. The train departure time and the passenger
load error are the system outputs. While passenger load error
refers to the difference between the factual and nominal
passenger load, train departure time error relates to the
factual and nominal departure time.

The suggested approaches convert the optimization prob-
lem into an easily-solvable convex quadratic programming
problem at each time step. In addition, the quadratic pro-
gramming issue might have constraints for control, load, and
safety headway. Therefore, the suggested technique offers
a less computationally expensive solution and is easier to
implement. This paper is organized as follow : the next
section discuses a coupled relationship between the dynamics
of train traffic and passenger load. The following sections
describe the time-varying model predictive control method
for train regulation and passenger flow. Numerical examples
to illustrate the effectiveness of the propose strategies is pre-
sented in the next section. Last section states the conclusion.

II. PROBLEM FORMULATION

We considered a metro-typetrain line with one terminal
station, N stations, and an ordered train set that stops
between stations to allow passengers to enter and leave.
Stations, trains, and passengers are components of the metro-
typerail system. The metro line’s mission is to transport every
passengers from their starting point to their final destination
safely and efficiently.

Disruptions, such as equipment failure or non-compliant
driver/passenger activity, are unavoidable in the real-time
operation of metro lines. The optimal train schedule was
no longer required when a disruption occurred, thus a train
control plan was necessary to implemented to decrease on
delays. Some stations typically have a high number of
passengers. Passenger demand is relatively high at several
stations, especially during peak hours. At such a station,
the number of passengers will exceed the train’s nominal
passenger load. If passenger flow is not controlled, train
delays will increase significantly. When a train deviates from
its usual schedule due to a disruption, a train regulation
and passenger flow control strategy must be implemented to
improve the safety and efficiency of the metro line systems.

A train traffic dynamics model and a train passenger load
dynamics model were created to solve this issue. This model
integrated the two relationships between train traffic and pas-
senger load dynamics to generate a train traffic and passenger
flow dynamics model. This study applied a dynamic model of
changes in passenger load between stations, as characterized
by the number of people entering and exiting the train at each
station. Previous research described passenger demand using
a time-dependent origin-destination (OD) matrix ([16],[17]).
The number of passengers boarding the train was thought to
be proportionate to the duration between trains ([3], [10]),
and the passenger arrival rate was unpredictable [1], both
of which were time-dependent. It was anticipated that the
number of people boarding and departing the train would
equal the number of passengers on board [12], which depends
on the time change. Few trains were affected by the system’s
disruption [9]. In this study, the disturbance was modeled

as a periodic sine function occurring on every train. It was
considered that the passenger arrival rate varied by train and
station and was uncertain.

A. Train traffic dynamic model

Based on [6], the dynamics of train traffic for high-
frequency metro lines were presented. Let tij was the de-
parture time of train i from station j. The departure time of
train i from station j + 1 was stated as

tij+1 = tij + rij + sij+1 (1)

where sij+1 was the dwell time for the train i at station j+1.
The running time for the train i from station j to station j+1,
rij was

rij = Rij + u1
i
j + w1

i
j (2)

where Rij was the nominal running time of train i from
station j to station j + 1, u1ij was the control to adjust the
running time of train i between station j to station j+1, and
w1

i
j were uncertain disturbances occured when the i train ran

from j station to j + 1 station. If u1ij > 0 it means that the
running time was increased, while if u1ij < 0 it means that
the running time was decreased.

Suppose that the dwell time of the trains at the station
was affected by both the number of entering and leaving
passengers [9]. According to this, the dwell time sij+1 was
modeled as

sij+1 = α
(
mi
j+1 + nij+1

)
+Dj+1 + u2

i
j + w2

i
j+1. (3)

where Dj+1 was the minimum dwell time at the station j+1
when there were no passengers, α is the delay rate which
represents the time it takes to get on or off the train when
the train stops , α ∈ [0.01.0.06]. The dwell time adjustment
of train i at station j + 1 denoted as u2ij . If u2ij > 0 it
means that the dwell time was increased, while if u2ij < 0
it means that the dwell time was decreased. Furthermore,
w2

i
j+1 was a disturbance occured when the train i stopped

at station j + 1. From the Equation (1)-(3), the train traffic
dynamic model is

tij+1 = tij +Rij +α
(
mi
j+1 + nij+1

)
+Dj+1 +uij +wij . (4)

with uij = u1
i
j + u2

i
j and wij = w1

i
j + w2

i
j+1.

B. The passenger load dynamic model

When a train arrives at a station, there are passengers enter
the train, and there are others leaving it. According to [9],
the dynamic change of the passenger load on the train at the
station was

lij+1 = lij +mi
j+1 − nij+1 + pij+1. (5)

where mi
j+1 and nij+1 were respectively the numbers of

passengers entering and leaving the train i at station j + 1,
and pij+1 was a control to increase the number of passengers
entering the ith train at the j + 1 station. This control was
implemented during peak hours or on holidays, especially
for the sudden arrival of passengers in which the value was
non-positive to reduce passenger load.
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The number of passengers entering train i at station j+ 1
or mi

j+1 was supposed to be proportional to the waiting time
between consecutive trains and it satisfies that

mi
j+1 = γij+1

(
tij+1 − ti−1j+1

)
(6)

where γij+1 was the passenger arrival rate at station j+1 for
train i. According to [10], the passenger arrival rate would
change with time and it was assumed that the value of γij+1

varies in a symmetrical range around γ with half the length
of d was

γij+1 = γ + λij+1d, −1 ≤ λij+1 ≤ 1 (7)

with λij+1 different in each station. For simplicity, the
parameter γ and half the length of d was assumed to be
similar for each station. In this study, the parameter of λij+1

varied at each station j+ 1 it was more general and realistic
compared [10] which assumed that the average passenger
arrival rate was the same for all stations. We might ensure a
maximum allowable passengers arrival rate by modifying the
parameter γ and the half-length d, which would satisfy the
trains limited capacity for transporting passengers. The pij+1

control approach minimized the number of people entering
the train in satisfying the train’s limited passenger capacity.
The passenger flow control, in particular, induced a change
in train dwell time from sij+1 to sij+1 was

sij+1 = α
(
mi
j+1 + nij+1 + pij+1

)
+Dj+1 + u2

i
j + w2

i
j+1.

(8)
The number of passengers leaving the train i at station j+1

was assumed to be proportional to the number of passengers
on the train which satisfy

nij+1 = βij+1l
i
j (9)

where lij was the passenger load of train i between stations j
and j+1, and βj+1 was a proportional factor for passengers
leaving the train. From the Equation (5)-(9), the dynamic
model of passenger load on the train was

lij+1 = lij + γij+1

(
tij+1 − ti−1j+1

)
− βij+1l

i
j + pij+1 (10)

which indicated that the dynamic model of passenger loads
on the train was influenced by the dynamic model of train
traffic.

C. The joint dynamic model

From the Equation (4) and (10), we obtained a joint
dynamic model of the factual departure time and passenger
load on the train ast

i
j+1 = tij +Ri

j + α
(
mi

j+1 + ni
j+1 + pij+1

)
+Dj+1

+ui
j + wi

j .

lij+1 = lij + γi
j+1

(
tij+1 − ti−1

j+1

)
− βi

j+1l
i
j + pij+1.

(11)

This demonstrated how the train’s factual departure time and
passenger load interact. Based on Equation (11), it was able
to determine that if one train is delayed, the train delay
would increase from one station to the next, as would be
the aggregation of passengers potentially causing metro line
instability.

By substituting Equation (6) and (9) to the first Equation
(11), and take xij =

[
tij , l

i
j

]T
and ūij =

[
uij , p

i
j+1

]T
we

acquired a joint dynamic model with departure time and load
passengers on the train was

xij+1 = Aijx
i
j +Bijx

i−1
j+1 + Cij ū

i
j +Gij

(
Dj+1 +Rij + wij

)
.

(12)
with

x0j = [0, 0]T , Aij =

 1

(1−αγi
j+1)

γi
j+1

(1−αγi
j+1)

αβi
j+1

(1−αγi
j+1)

(1− βij+1) +
αβi

j+1γ
i
j+1

(1−αγi
j+1)

 ,

Bij =

 −αγi
j+1

(1−αγi
j+1)

0

−γi
j+1

1−αγi
j+1

0

 , Cij =

 1
1−αγi

j+1

α
1−αγi

j+1

γi
j+1

1−αγi
j+1

1
1−αγi

j+1

 ,

Gij =

 1
1−αγi

j+1

γi
j+1

1−αγi
j+1

 .
Equation (12) was a standard model for metro lines system

operation management under disturbance and it described
the change in train departure time and passenger load.
Furthermore, the dynamic model for the nominal departure
time and passenger load of the nominal train was

T ij+1 = T ij+R
i
j+α

(
γij+1

(
T ij+1 − T i−1j+1

)
+ βij+1L

i
j

)
+Dj+1.

(13)
and

Lij+1 = Lij + γij+1

(
T ij+1 − T i−1j+1

)
− βij+1L

i
j . (14)

The constant time difference between two successive trains
determined the nominal departure time, denoted by H =
T ij+1 − T

i−1
j+1 . In terms of service demands, train capacity,

and passenger flow during operating hours, the H headway
schedule corresponded to operational hours. In particular,
headway scheduling was reduced during peak hours.

The error vector is eij =
[
tij − T ij , lij − Lij

]T
, from Equa-

tion (11), we found the error dynamics for the joint dynamic
model as

eij+1 = Aije
i
j +Bije

i−1
j+1 + Cij ū

i
j +Gijw

i
j (15)

with Aij , B
i
j , C

i
j , and Gij taken from Equation (12). For the

dynamic model error Equation (15), the difference between
the factual departure time and the nominal departure time
was represented by eij , as well as the difference between the
factual passenger load on the train and its nominal passenger
load. Minimizes eij referred to improving the metro lines
operating efficiency in order to recover train delays caused
by disturbances. Furthermore, if eij → 0 then tij → T ij and
lij → Lij which prevent instability on metro lines.

According to Equation (12), information for xij+1 was
generated from xij and xi−1j+1 for each train i and j station.
Let Xk is the state vector of the joint dynamic model with
Xk = [xk−11 , xk−22 , . . . , xkNN ]T , k > N which displayed the
factual departure time of the train and the passenger load on
the train at all stations. The dimension of the vector state
is 2N . It was assumed that every elements of the state Xk

vector lied in the same time interval. Furthermore, by using
Equation (12) we obtained the form state space for the joint
dynamic model as

Xk+1 = ĀkXk + B̄kUk + Ḡk (wk +Rk +D) (16)
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with X(k) as the state vector, the input vector
Uk =

[
ūk0 , ū

k−1
1 , . . . , ūk−N+1

N−1
]T

, the disturbance
vector wk = [wk0 , w

k−1
1 , . . . , wk−N+1

N−1 ]T , Rk =[
Rk0 , R

k−1
1 , . . . , Rk−N+1

N−1
]T

, D = [D1, D2, . . . , DN ]
T ,

and matrix Āk, B̄k, and Ḡk was

Āk =


Bk0 0 0 . . .

Ak−11 Bk−11 0 . . .
. . . . . . . . .

0 . . . Ak−N+1
N−1 Bk−N+1

N−1

 ,

B̄k =


Ck0 0 0 . . .

0 Ck−11 0 . . .
. . . . . . . . .

0 . . . . . . Ck−N+1
N−1

 ,

Ḡk =


Gk0 0 0 . . .

0 Gk−11 0 . . .
. . . . . . . . .

0 . . . . . . Gk−N+1
N−1


with the dimensions of matrix Āk, B̄k, and Ḡk were 2N ×
2N, 2N × 2N, and 2N ×N , respectively.

According to Equation (16), 2N was the number of
stations, not trains. The matrices Āk and B̄k represented
the dynamic relationship between train traffic and passenger
load, and Ḡk represented the system disturbance parameter.
Moreover, we obtained the state space model of the joint
error dynamic

Ek+1 = ĀkEk + B̄kUk + Ḡkwk (17)

with Ek =
[
ek−11 , ek−22 , . . . , ek−NN

]T
which consisted of the

departure time error and the passenger load error and with
the matrix Āk, B̄k and Ḡk was same as in Equation (16).

D. Objective Function and System Constraints
To address this issue, metro lines that integrate train regu-

lation and passenger flow control were designed to improve
commercial speed and headway regularity. The cost function
of the joint dynamic model of metro lines was defined to
solve this problem

J =
∑
i,j

{
eij
T
P ij e

i
j +

(
eij − ei−1j

)T
Qij
(
eij − ei−1j

)
+
(
ūij
)T
Rij ū

i
j

}
. (18)

with positive definite weighted matrix P ij , Q
i
j , R

i
j . The first

term in (18) was used to reduce train delays by comparing
factual and nominal timetables and passenger loads. The sec-
ond term improved headway regularity and reduced average
passenger waiting time by summing train headway deviations
from the nominal value. The third term saved cost. The
weight matrix P ij , Q

i
j , and Rij were related to departure time

deviations, headway deviations, and control action amplitude,
respectively.

From the state space for the joint dynamic model (17), the
objective function matrix (18) was formulated as

J =

kf∑
k=k0

{
ETk PEk + (Ek+1 − Ek)

T
Q (Ek+1 − Ek)

+UTk RUk
}

(19)

where k0 and kf were the initial and final stages, respectively.
P,Q, and R were positive definite weighted matrix.

In additon, to ensure safety on metro lines, we considered
the following constraints.

1) State constraints for the departure time
To ensure that a safe distance exists between two
adjacent trains is satisfied tij − ti−1j ≥ tmin, where
tmin represented the minimum allowed headway. Fur-
thermore, the state constraint for each train’s departure
time could be changed into an error state constraint for
each train’s departure time that satisfy(

tij − T ij
)
−
(
ti−1j − T i−1j

)
≥ tmin −H (20)

with tmin and H were provided. Furthermore, from
Equation (17) the constraint for departure time could
be written as

H1 (Ek−1 − Ek) ≤ (H − tmin)IN×1 (21)

with H1 as a matrix of dimension N × 2N where

H1 = [hij ], hij =

{
1, j = 2i− 1

0, otherwise.

2) State constraints for the passenger load
To meet the train’s capacity, the passenger load con-
straint was lij ≤ lmax, where lmax was the maximum
capacity of the train. To meet the capacity of the train,
the passenger load constraint was lij ≤ lmax, where
lmax was the train’s maximum capacity for passengers.
In addition, the state constraint for the train’s passenger
load could be transformed into the state error constraint
for the passenger load on each train that satisfy

lij − Lij ≤ lmaks − Lij (22)

with lmaks and Lij were provided. Furthermore, from
Equation (17) the constraint for passenger loads could
be written as

H2Ek ≤ Lk (23)

with H2 as a matrix dimension of N × 2N where

H2 = [hij ], hij =

{
1, j = 2i

0, otherwise

and Lk =
[
lmaks − Lk−11 , lmaks − Lk−22 , . . . ,

lmaks − Lk−NN

]T
.

3) The input constraint was

[umin, pmin]
T ≤ ūij ≤ [umax, pmax]

T
. (24)

where [umin, pmin] was the minimum allowed input
vector and [umax, pmax] is the maximum allowed input
vector. Furthermore, from Equation (17) the input
constraint could be written as

Umin ≤ Uk ≤ Umaks (25)

where Umax was a column vector of dimension 2N
whose odd row elements were equal to umax and even
rows were equal to pmax. Similarly, for Umin was
a column vector of dimension 2N whose odd row
elements were equal to umin and even rows were equal
to pmin.
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III. TIME-VARYING MPC DESIGN

In this section, we developed a time-varying MPC al-
gorithm for train regulation based on the model predictive
control (MPC) method. In time-varying MPC methods, the
optimal control input that minimized the specified cost func-
tion over a predetermined prediction horizon was calculated
at each k step. In this case, the value of state Ek calculated
along the Hp horizon prediction step (k + 1, . . . , k + Hp),
and the set of prediction sequences input was calculated
as Uk, Uk+1, . . . , Uk+Hp−1. The state Ek+i prediction was
calculated using the state change of the System (17). Only
the first element in control Uk was applied to the system
in order to calculate for changes in disturbance and system
parameters at each step of k. The process will be repeated
until the horizon prediction is reached.

The optimization issue across a particular prediction
horizon was solved directly at each step k based on the
dynamic model in the system by calculating the optimal
control sequence. According to the most recent information,
optimization was performed on the metro lines system to
determine control over the problem of train regulation and
passenger flow on the train in order to increase headway
regularity and commercial speed of high-frequency metro
lines with constraints.

The objective function for each step k optimization prob-
lem to determine the control input was

min
Uk+j

Hp−1∑
j=0

{
ETk+j+1PEk+j+1 + (Ek+j+1 − Ek+j)T Q

(Ek+j+1 − Ek+j) + UTk+jRUk+j
}

(26)

s.t. Ek+j+1 = Āk+jEk+j + B̄k+jUk+j + Ḡk+jwk+j ,

H1 (Ek+j − Ek+j+1) ≤ (H − tmin) IN×1,

H2Ek+j+1 ≤ Lk+j+1,

− Uk+j ≤ −Umin,
Uk+j ≤ Umaks, j = 0, 1, . . . ,Hp − 1.

For each step of k, the optimization problem in Equation (26)
could be converted into a quadratic programming problem.

Furthermore, let E =
[
ETk+1, E

T
k+2, . . . , E

T
k+Hp

]T
, U =[

UTk , U
T
k+1, . . . , U

T
k+Hp−1

]T
, and W =

[
wTk , w

T
k+1,

. . . , wTk+Hp−1

]T
at each step k for the prediction of state Ek

until the prediction horizon Hp was calculated from Equation
(26) as

E = FEk + ΦU + ΓW (27)

with

F =


Āk

Āk+1Āk
. . .

Āk+Hp−1Āk+Hp−2 . . . Āk

 ,

Γ =


Ḡk 0 0 . . .

Ãk+1Ḡk Ḡk+1 0 . . .
. . . . . . . . .

Z1Ḡk Z2Ḡk+1 . . . Ḡk+Hp−1


where Zj =

∏k+Hp−1
i=k+j Ãi, j was the column number in

matrix Γ.

The following theorem provided the corresponding
quadratic programming formulation at step k for the opti-
mization problem (26) associated with state prediction E.

Theorem 3.1: For E = FEk + ΦU + ΓW , the simplified
quadratic programming formulation at step k for the opti-
mization problem (26) was provided as

min
U

J =
1

2
UTHU + UT f + Ψ. (28)

s.t.


H3H4Φ
H6Φ
I2HpN

−I2HpN

U ≤


Z̄
Ō

Ūmaks
−Ūmin

 ,
where the weight matrix P̄ , Q̄, and R̄ could be directly found
from the objective function (26),

Ψ =ETk F
T
[
P̄ + Q̄

]
FEk +WTΓT

[
P̄ + Q̄

]
ΓW

+ EkF
T
[
P̄ + Q̄

]
ΓW +WTΓ

[
P̄ + Q̄

]
FEk

+ UTΦT
[
P̄ + Q̄

]
ΓW

constant.
Matrix
H = 2

[
ΦT P̄Φ + ΦT Q̄Φ + R̄

]
,

f = 2
[
ΦT P̄FEk + ΦT Q̄FEk

]
, and

Z̄ = (H − tmin) IHpN×1 −H3H4FEk −H3H4ΓW

−H3H5Ek.

Matrix
Ō = L−H6FEk −H6ΓW ,
L = [LTk+1, L

T
k+2, . . . , L

T
k+Hp

]T ,

Ūmaks =
[
UTmaks, U

T
maks, . . . , U

T
maks

]T
,

Ūmin = [UTmin, U
,
min . . . , U

T
min]T , and

matrix H3, H4, H5, and H6 respectively were

H3 = [hij ]HpN×2HpN , hij =

{
1, j = 2i− 1

0, otherwise
,

H6 = [gij ]HpN×2HpN
, gij =

{
1, j = 2i

0, otherwise
,

H4 =


−I2N 02N 02N 02N . . .
I2N −I2N 02N 02N . . .

. . . . . . . . .
02N . . . 02N I2N −I2N

 ,
and

H5 =


I2N
02N

...
02N

 .

Proof: Recalling E =
[
ETk+1, E

T
k+2, . . . , E

T
k+Hp

]T
,

U =
[
UTk , U

T
k+1, . . . , U

T
k+Hp−1

]T
, and W =

[
wTk , w

T
k+1,

. . . , wTk+Hp−1

]T
, the objective function (26) could be writ-
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ten as

ET P̄E + ET Q̄E + UT R̄U

= (FEk + ΦU + ΓW )T P̄ (FEk + ΦU + ΓW )

+ (FEk + ΦU + ΓW )T Q̄(FEk + ΦU + ΓW )

+ UT R̄U

= UT
[
ΦT P̄Φ + ΦT Q̄Φ + R̄

]
U + 2UT

[
ΦT P̄FEk

+ΦT Q̄FEk
]

+ ETk F
T P̄FEk + ETk F

T Q̄FEk

+WTΓT P̄ΓW +WTΓT Q̄ΓW

= UT
[
ΦT P̄Φ + ΦT Q̄Φ + R̄

]
U + 2UT

[
ΦT P̄FEk

+ΦT Q̄FEk
]

+ Ψ. (29)

Minimizing the objective function in (26) was equivalent
with minimize

min
U

J =
1

2
UTHU + UT f + Ψ. (30)

The first constraint of (26) was equivalent to

H3H4E +H3H5Ek ≤ (H − tmin) IHpN×1, (31)

with E = FEk + ΦU + ΓW , could be written as

H3H4ΦU ≤ (H − tmin) IHpN×1 −H3H4FEk

−H3H4ΓW −H3H5Ek. (32)

The second constraint of (26) was equivalent to

H6ΦU ≤ L−H6FEk −H6ΓW, (33)

Similarly, the last two constraint (26) were respectively,
identical with

I2HpNU ≤ Ūmaks, −I2HpNU ≤ −Ūmin. (34)

The proof has been complete.
According to Theorem 3.1, the primary method for joint

optimal train regulation and passenger flow control on metro
lines with sinusoidal disturbances was given below. Algo-
rithm 3.2 :
• The measured state Ek for the error joint dynamic

model (17) was calculated at each sample step k using
the updated system parameters Āk, B̄k, and Ḡk, as well
as disturbances.

• Calculate F and Φ for a selected prediction horizon Hp

and formulate the quadratic programming problem (28)
based on Theorem 3.1.

• The following Ek+1would be computed by solving
the quadratic programming problem efficiently (28),
computing the optimal train regulation and passenger
flow control U , and applying it to the joint dynamic
model (17).

• Steps 1-4 should be repeated based on the measured
value Ek+1 until the step horizon kf is reached.

In the time-varying MPC algorithm, the metro line sys-
tem’s stability was a complex function parameters, namely
P̄ , Q̄, R̄, Āk, B̄k, Lk, Umax, Umin. Based on [15], for the
proposed time-varying MPC algorithm in this study, we
constructed a Lyapunov function with state and control
constraints (26). For stability analysis, the following theorem
was utilized.

Theorem 3.3: Consider the joint error dynamic model (17),
which is based on the following optimization problem and
is subject to a time-varying MPC algorithm.

min
Uk+j

Hp−1∑
j=0

{
ETk+j+1PEk+j+1 + (Ek+j+1 − Ek+j)T Q

(Ek+j+1 − Ek+j) + UTk+jRUk+j
}

(35)

s.t. Ek+j+1 = Āk+jEk+j + B̄k+jUk+j + Ḡk+jwk+j ,

H1 (Ek+j − Ek+j+1) ≤ (H − tmin) IN×1,

H2Ek+j+1 ≤ Lk+j+1,

− Uk+j ≤ −Umin,
Uk+j ≤ Umaks, j = 0, 1, . . . ,Hp − 1.

Assume that the optimization problem k = k0 was feasible
from the start, that the system parameters Āk and B̄k were
provided, and that Ek+Hp = 0. Then, for all P > 0, Q > 0,
and R > 0, it held that limk→∞Ek = 0, implying that the
proposed time-varying MPC algorithm’s joint error dynamic
model (17) was stable at zero under constraints, and the
factual timetable converged to the nominal timetable.

Proof: First, for the joint error dynamic model of
Equation (17) under time-varying MPC, the function of
the optimization problem (35) is chosen as the lyapunov
function, i.e.

V (k) = J(U∗(k), Ek), (36)

with U∗(k) =
{
U∗k , U

∗
k+1, . . . , U

∗
k+Hp−1

}
as the optimal

control sequence for the problem (35). It is clear that V (k)
is non-negative.

The state vector for the optimal control solution U∗(k) will
be obtained in step k, E(k) =

[
ETk+1, E

T
k+2, . . . , E

T
k+Hp

]
.

The constraints are clearly satisfied by U∗(k)and
E(k). As a result, a control sequence U(k + 1) ={
U∗k+1, U

∗
k+2, . . . , U

∗
k+Hp−1, 0

}
was formed for the next

step k + 1. At step k + 1, it was obvious that U(k + 1) is
feasible for the problem (35). By substituting U(k+ 1) into
the objective function, we get J(U(k + 1), Ek+1). Then,
using the assumption that Ek+Hp = 0, we get

V (k + 1) = J(U∗(k + 1), Ek+1)

≤ J(U(k + 1), Ek+1)

= V (k)− ETk+1PEk+1

− (Ek+1 − Ek)TQ(Ek+1 − Ek)− UTk RUk
(37)

which means that V (k + 1) − V (k) ≤ 0, and V (k) is
decreasing and lower-bounded by 0. Then, using Lyapunov’s
theory of stability, it was claimed that limk→∞Ek = 0,
i.e. the joint error dynamic model (17) under the proposed
time-varying MPC algorithm was stable at zero subject to
the constraints, and the factual timetable converged to the
nominal timetable.

IV. NUMERICAL EXPERIMENT

Consider the problem of train regulation and passenger
flow on a metro lines consisting of 12 stations (N = 12)
and 20 trains (Z = 20). The disturbance occured on train j
at station i was denoted by wij and was assumed as a sine
periodic function, wij = asin(βγij) for i = 1, 2, . . . , Z, j =
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Fig. 1. The passengers arrival rate (γij )

1, 2, . . . , N , a > 0 constant. In this study, β = π
4 , a = 5,

and βij was different at each station.
Given a delay rate (α) 0.03, the passenger arrival rate at

station j for trains i or γij varied within a range of values
symmetrically around γ = 0.35 with half the length of d =
0.2 at each station. The passenger arrival rates at station j
for trains i or γij are presented in Table I.

TABLE I
PASSENGERS ARRIVAL RATE (γij )

Index j 1 2 3 4 5 6
i = 1 : 4 0.43 0.43 0.43 0.43 0.43 0.43
i = 5 : 8 0.45 0.45 0.45 0.45 0.45 0.47
i = 9 : 12 0.47 0.47 0.47 0.47 0.47 0.49
i = 13 : 16 0.45 0.45 0.45 0.45 0.45 0.47
i = 17 : 20 0.43 0.43 0.43 0.43 0.43 0.45
Index j 7 8 9 10 11 12
i = 1 : 4 0.45 0.47 0.43 0.49 0.47 0.43
i = 5 : 8 0.49 0.45 0.51 0.49 0.45 0.45
i = 9 : 12 0.51 0.47 0.53 0.51 0.47 0.47
i = 13 : 16 0.49 0.45 0.51 0.49 0.45 0.45
i = 17 : 20 0.47 0.43 0.49 0.47 0.43 0.43

Based on Table I, the passengers arrival rate increased
from time k = 1 to k = 8 and maximum at k = 9 to
k = 12, then decreased at k = 13 to k = 20. Furthermore,
the passengers arrival rate (γij) was illustrated in Fig. 1.

Due to the state constraint for the departure time on
the Inequality (21), the minimum allowable headway (tmin)
was 125s and headway scheduling (H) of 150 seconds,
therefore we obtained H − tmin = 25 seconds. Next, for
the constraint state passenger load on Inequality (23) the
maximum capacity of the train for passengers (lmax) was
2000 and it was assumed that lmax − Lij ≤ 50. Table
II contains the initial error for the departure time and the
passenger load. Table II shows the initial error fordeparture
time and passenger load. The maximum train delay and
maximum number of overloaded passenger are 30s and 40,

TABLE II
THE INITIAL CONDITIONS OF THE ERROR TIMETABLE AND PASSENGER

LOAD AT EACH STATION

Station i 1 2 3 4 5 6

Timetable 40 45 40 35 40 30

Passenger

Load
35 50 45 60 40 30

Station i 7 8 9 10 11 12

Timetable 50 40 40 30 50 30

Passenger

Load
60 50 50 0 25 40

respectively, both of which are greater than the maximum
timetable and passenger load capacity adjustments. Delays
require multiple stations to keep trains on a nominalschedule.

From the initial conditions in Table II, it can be simulated
the condition when the metro lines system was not regulated
or in other words ūij = 0. The error of train departure time at
stations 1-12 are illustrated in Fig. 2, which demonstrates that
the disturbance causes large fluctuations in the nominal state
and has a negative impact on passenger waiting times. The
passenger load error on the train at stations 1-12 is illustrated
in Fig. 3, which indicates that the passenger load fluctuated
greatly from the nominal state. The fluctuations in departure
time errors and passenger load errors have a negative impact
on reducing train operational efficiency and passenger service
levels.

In this study, time-varying MPC was performed with time
step T = 20. The simulation was carried out with the aim
that the departure time error and the passenger load become
zero, which means that there is no delay in train departure
time and passenger overload. The input control constraint
on Inequality (25) are umin = −20 and umax = 20 which
means it satisfies the constraint (24) . For given pmin = −25
and pmax = 0 which satisfies the constraint (24).

The weights P,Q, and R, respectively, were P =
diag {0.5, 0.5, . . . , 0.5} , Q = diag {0.5, 0, . . . , 0.5, 0}, and
R = diag {0.3, 0.3, . . . , 0.3}. Let Hu = Hp = 5. With MAT-
LAB, the simulation applied during the peak hour period at
07.00-09.00 with time interval is 6 minutes, therefore the
rush hour period was equivalent to a 20 time step.

Using the initial conditions of the departure time error,
parameter γij , and parameter βij , we acquired the simulation
results and input for the departure time error on each station
can be seen in Fig. 4-7.

From Fig. 4-7, it can be concluded that the error in the
departure time of the train at station 1 to station 12 converge
to zero in several steps , it means that the control provided
in the adjustment of waiting time and train travel time was
successfully implemented efficiently. The input in Fig. 4-7
at each station in the k time step is less than zero or uij < 0,
which means the running time and dwell time are reduced
to reduce train delays.

Furthermore, by using the initial conditions of the pas-
senger load error on the train, the parameters γij in Table I
and parameter βij . The simulation result and input for the
passenger load error at each station are displayed in Fig.
8-11.
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Fig. 2. The headway deviations of metro lines without train regulation.
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Fig. 3. The passenger load errors of metro lines without train regulation.
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Fig. 4. Train delay at different time k in station 1,2, and 3 under the time-varying MPC.

Fig. 5. Train delay at different time k in station 4,5, and 6 under the time-varying MPC.
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Fig. 6. Train delay at different time k in station 7,8, and 9 under the time-varying MPC.

Fig. 7. Train delay at different time k in station 10,11, and 12 under the time-varying MPC.
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Fig. 8. Passenger load error at different time k in station 1,2, and 3 under the time-varying MPC.

Fig. 9. Passenger load error at different time k in station 4,5, and 6 under the time-varying MPC.
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Fig. 10. Passenger load error at different time k in station 7,8, and 9 under the time-varying MPC.

Fig. 11. Passenger load error at different time k in station 10,11, and 12 under the time-varying MPC.
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From Fig. 8-11 , it can be concluded that the error of pas-
senger load on the train at station 1 to station 12 convergent
to zero in several time steps. It means the control provided
was successfully implemented efficiently. The input in Fig. 4-
7 at each station in the k time step is less than zero or pij < 0,
which indicates that there was a decrease in the number
of arriving passengers and that the train’s limited passenger
capacity was met. Furthermore, the optimization problem in
Equation (28), was solved using quadratic programming by
quadprog in MATLAB. The result of objective function was
630.131.

V. CONCLUSION

The joint optimum train control and passenger flow strat-
egy were investigated in this article to optimize headway
regularity and comercial speed. The time-varying MPC ap-
proach was used to design an optimal control problem for
the combined dynamic train regulation and passenger flow
management strategy, and it was addressed by considering
the headway regularity and commercial speed of the cost
function. The numerical solution of a set of quadratic pro-
gramming problems provided an optimal control strategy for
the joint dynamic train regulation and passenger flow control
method.

The suggested method offered a real-time train control and
management technique for passenger flow that could be ef-
ficiently applied to real-time metro lines. The recommended
joint optimum control strategy reduced train delays, passen-
ger load errors, and train headway deviations, according to
numerical experiments. Additionally, it improves passenger
service standards and train operating efficiently.
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