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Abstract—In this paper, a discontinuous Galerkin-spectral
deferred correction (DG-SDC) scheme for the advection equa-
tion with variable coefficients is presented. In spatial discretiza-
tion, we consider the discontinuous Galerkin (DG) method to
discrete the variable coefficients advection equation. In time
discretization, we introduce the spectral deferred correction
(SDC) method to obtain the full-discrete scheme. The proposed
scheme can reach arbitrary higher-order accuracy in space
and time. However, in the process of numerical calculation,
the advection equation produces numerical oscillations near
the strong discontinuities. To prevent the onset of spurious
oscillations, we introduce two kinds of vertex-based slope
limiters to modify the full-discrete scheme. Therefore, we can
get a more stable and efficient numerical scheme. Finally,
some numerical tests are illustrated to confirm the validity and
higher-order accuracy of the proposed scheme.

Index Terms—Discontinuous Galerkin method, Spectral de-
ferred correction method, Slope limiter, Variable coefficients
advection equation, Higher-order scheme.

I. Introduction

THE DG method is one of the most popular numerical
methods, especially for Hyperbolic conservation law.

This method was first proposed by Reed and Hill for solving
hyperbolic equations in [21]. DG method has lots of advan-
tages, such as high parallelizability, localizability and easy
handing of complicated geometries. Therefore, DG method
has been widely used in solving various types of PDEs (see,
e.g., [2], [8], [16], [17], [19]). However, the solutions of
the advection equation might contain strong discontinuities
on boundary layers. The DG method can capture weak dis-
continuities without further modification. But for problems
with strong shocks or contact discontinuities, the numerical
solution might have significant spurious oscillations near the
strong shocks or contact discontinuities [28]. Thus, to prevent
the onset of spurious oscillations, various limiters have been
introduced into numerical calculation. For example, Tran

Manuscript received May 6, 2022; revised October 17, 2022. This
work was supported in part by the the NSF of China (No. 11861054),
Natural Science Foundation of Guangxi (No. 2020GXNSFAA297223),
Innovation Project of Guangxi Guaduate Education(No. JGY2021028),
English curriculum construction project of Guangxi Normal University (No.
2021XJQYW04) and Innovation Project of Guangxi Graduate Education
(No. YCSW2022185).

Jing Wang is a graduate student of the College of Mathematics and
Statistics in Guangxi Normal University, Guilin 541006, P.R. China (e-
mail:jingwang@stu.gxnu.edu.cn).

Chunya Wu is a graduate student of the College of Mathematics and
Statistics in Guangxi Normal University, Guilin 541006, P.R. China (e-
mail:chunyawu00@stu.gxnu.edu.cn).
∗Lingzhi Qian is an professor of the College of Mathematics and Statistics

in Guangxi Normal University, Guilin 541006, P.R. China, Department of
Mathematics, College of Sciences, Shihezi University, Shihezi 832003, P.R.
China (corresponding author, e-mail: qianlz@mailbox.gxnu.edu.cn).

proposed a slope-reconstruction methodology to perform
second-order enhancement by using slope-limiters for the
simultaneous linear advection of several scalar variables in
[25]. Zhu and Shu proposed the Runge-Kutta DG scheme
with multi-resolution weighted essentially non-oscillatory
(WENO) limiters, this scheme was applied to solve steady
Euler equations in [29]. In order to solve compressible Euler
equations in two dimensions, Yu et al. proposed the Hermite-
WENO DG method to obtain a higher-order accuracy scheme
in [19]. In this paper, we introduce two types of limiter to
suppress spurious oscillation in spatial discretization. The
slope limiter mainly passes through restricting some of the
degrees of freedom to certain bounds so that eliminates over-
and undershoots. All slope limiters attempt to modify the
discrete solution in a suitable way while preserving higher-
order accuracy as much as possible. Based on this idea,
various slope limiters have been applied to various numerical
solutions (see, e.g., [7], [20], [23], [16]).

The SDC method was developed by Dutt in [6] to solve
the cauchy problem for ordinary differential evolution prob-
lem. Then it is extended by Kress and Gustafsson to the
initial boundary value problems in [12]. In recent years,
the SDC method has been applied to solve the various
partial differential equations (PDEs) to obtain the higher
order time scheme for these system of PDEs. For example,
Weng et al. used operator splitting method and SDC method
to solve the molecular beam epitaxy equation in [27]. Guo
and Xu proposed invariant energy quadratization approach
and SDC method to solve Phase field problems, and obtained
a decoupled, unconditionally energy stable and higher-order
accuracy scheme in [9]. To capture the complex processes
involved in atmospheric flows over long periods of time,
Hamon et al. proposed implicit-explicit splitting method
and SDC method to solve shallow water equations in [10].
Similarly, we introduce the SDC method to obtain a time
discrete scheme with arbitrary higher-order accuracy in this
paper. The basic ideal of SDC method is to reduce the
error of the low-order time stepping scheme by iteratively
solving the Picard integral equation in an iterative framework
to achieve any convergence order (see, e.g., [5], [6], [14],
[4], [24]). In this procedure, the lower-order scheme sweeps
repeatedly through subintervals to update the provisional
solution. Finally, the time discrete scheme can achieve the
desired accuracy.

In this paper, we propose a numerical scheme that com-
bines the advantages of DG and SDC methods for the
variable coefficients advection equation, which can simulta-
neously achieve arbitrary higher-order accuracy in space and
time. Meanwhile, to prevent the onset of spurious oscillations
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near the strong discontinuities, we introduce two kinds of
slope limiters to obtain a more stable and efficient numerical
scheme. The arbitrary higher-order accuracy of the proposed
scheme and the performance of slope limiters are verified by
numerical examples.

The outline of the paper is organized as follows: We recall
the classical advection equation with variable coefficients and
introduce the spatial semi-discrete scheme in Section 2. In
Section 3, the full-discrete numerical scheme is presented
based on the SDC method. In addition, we introduce the
detailed slope limiting algorithms to obtain a modified full-
discrete scheme which can prevent the onset of spurious
oscillations near the strong discontinuities in Section 4.
Various numerical tests are given to validate the higher-order
accuracy, efficiency and stability of the proposed numerical
schemes in Section 5. Some conclusions and future research
are drawn in Section 6.

II. Spatial semi-discrete scheme

Let J := [0, tEnd] be a finite time interval and Ω ⊂ R2

be a polygonally bounded domain with boundary ∂Ω. The
initial and boundary value problem of advection with variable
coefficients is defined as follows:

∂tc(t,x) + ∇ · (u(t,x)c(t,x)) = f (t,x) in J ×Ω,
c = cD on J × ∂Ωin(t),

c = c0 on {0} × Ω,
(1)

where the unknown c(t,x) denotes the solute concentration,
u(t,x) represents the velocity of fluid which is variable, and
f (t,x) accounts for generation or degradation of c(t,x). The
inflow boundary is denoted by ∂Ωin(t) =

{
x ∈ ∂Ω | u(t,x) ·

v(x) < 0
}

, v(x) is the outward unit normal. The outflow
boundary is represented by ∂Ωout = ∂Ω/∂Ωin(t). The c0 and
cD are initial and Dirichlet boundary data, respectively.

The classical DG method is introduced to discretize the
advection equation with variable coefficients in spatial. It’s
worth noting that the velocity of fluid u(t,x) does not use
discrete representation in the boundary integral, because the
L2-projection on elements may have poor approximation
quality on edges and generally produce different values on
both sides of the edges [22].

Let Th =
{
T
}

denote a regular family of non-overlapping
partitions of Ω into K closed triangles T of characteristic
size h such that Ω = ∪T . For T ∈ Th, vT is the unit normal
on ∂T exterior to T. Let Γint denote the set of interior edges,
Γout is the set of boundary edges, and ∂Th := Γint∪Γout =

{
E
}

is the set of all edges. For an interior edge E ∈ Γint shared by
triangles T− and T+, the one-side values of a scalar w = w(x)
on E is defined by

w−(x) = lim
ε→0+

w(x − εvT−)

and

w+(x) = lim
ε→0+

w(x − εvT+), for ∀ε > 0.

But for the boundary edge E ∈ Γout, only the definition on the
left is meaningful. Finally, the definition of the inner product
is introduced as follows:(

w, v
)
T =

∫
∂T

wv dx and
⟨
ζ, ρ

⟩
E =

∫
E
ζρ ds. (2)

To get variational formulation, we multiply (1) by a
smooth test function w and integrate by parts over element
T ∈ Th. The variational formulation is given by(

w, ∂tc(t,x)
)

T
−

(
∇w · u(t,x), c(t,x)

)
T

+

⟨
w
(
u(t,x) · vT

)
, c(t,x)

⟩
∂T
=

(
w, f (t)

)
T
. (3)

We denote Pp(T ) by the space of polynomials of degree at
most p on T ∈ Th. Let Pp(T ) :=

{
wh : Ω → R;∀T ∈ Pp(T )

}
denote the broken polynomial space on the triangulation T .
For the spatial semi-discrete scheme, we assume that the
coefficient functions are approximated by uh ∈

[Pp(Th)
]2

and fh(t), c0
h ∈ Pp(Th). Incorporating the boundary condition

in (1), the semi-discrete formulation is given as follows:
For t ∈ J, ∀Tk ∈ Th and ∀wh ∈ Pp(Th), we can find

ch(t) ∈ Pp(Th) which holds(
wh, ∂tch(t,x)

)
Tk

−
(
∇wh · uh(t,x), ch(t,x)

)
Tk

+

⟨
w−h

(
uh(t,x) · vTk

)
, ĉh(t,x)

⟩
∂Tk

=

(
wh, fh(t)

)
Tk

,
(4)

where the boundary integral is calculated by the following
upwind-side value,

ĉh(t)
∣∣∣
∂Tk
=


c−h (t,x), if u(t,x) · vTk ≥ 0 (outflow from Tk)

c+h (t,x), if
u(t,x) · vTk < 0
∧ x < ∂Ωin (inflow into Tk)

c+D(t,x), if x ∈ ∂Ωin (inflow into Tk over)

Then, we denote a finite element basis function φki : Ω→
R , which is only supported on the triangle Tk ∈ Th and
defined arbitrarily. The finite element space Pp(Tk) is denoted
by

Pp(Tk) = span
{
φki

}
i∈{1,··· ,N}, for ∀k ∈ {

1, · · · ,K}
, (5)

where N is the number of local degrees of freedom.
Thus, the local concentration ch and local velocity uh can

be represented in terms of the local basis
{
φki

}
i∈{1,··· ,N}:

ch(t,x)
∣∣∣
Tk
=

N∑
j=1

Ck j(t)φk j(x),

uh(t,x)
∣∣∣
Tk
=

N∑
j=1

2∑
m=1

Um
k j(t)emφk j(x),

where em denotes the m-th unit vector in R2. We assume that
there is a uniform polynomial degree p for every element Tk.

Therefore, the semi-discrete formulation (4) with wh = φki

for i ∈ {
1, · · · ,N}

yields a time-dependent system whose
contribution from Tk reads

N∑
j=1

∂tCk j(t)
(
φki, φk j

)
Tk

−
N∑

j=1

Ck j(t)
N∑

l=1

2∑
m=1

Um
kl(t)

(
∂xmφkiφkl, φk j

)
Tk

+

⟨
φk−i(u(t) · vk−), Ĉh(t)

⟩
∂Tk

=

N∑
j=1

Fkl(t)
(
φki, φkl

)
Tk

,

(6)
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where the numerical flux Ĉh(t) is defined as follows

Ĉh(t)
∣∣∣
∂Tk
=



n∑
j=1

Ck− j(t)φk− j, if u(t,x) · vTk ≥ 0

n∑
j=1

Ck+ j(t)φk+ j, if
u(t,x) · vTk < 0
∧ x < Γint

c+D(t,x), if x ∈ Γint

(7)

The system (6) can be written in matrix form as

M∂tC +
(
−G1 −G2 + R

)
C = L − KD, (8)

with the representation vector

C(t) = [C11(t) · · ·C1N(t) · · ·Ck1(t) · · ·CKN(t)]T .

The block matrices and the right-hand side vectors of
equation (8) are described as follows:

The mass matrix M is made of K local matrix MTk , i.e.,
M = diag

(
MT1 , · · · ,MTK

)
with

MTk =

(φk1, φk1)Tk
· · · (φk1, φkN)Tk

· · · · · · · · ·
(φkN , φk1)Tk

· · · (φkN , φkN)Tk

 .
Similar to the structure of matrix M, the matrices Gm =

diag
(
Gm

T1
, · · · ,Gm

TK

)
(m ∈ {1, 2}) are block matrix with local

matrices

Gm
Tk
=

N∑
l=1

Um
kl(t)


(
∂xmφk1φkl, φk1

)
Tk
· · · (

∂xmφk1φk1, φkN
)
Tk

· · · · · · · · ·(
∂xmφkNφk1, φk1

)
Tk
· · · (

∂xmφkNφk1, φkN
)
Tk

 .
The vector L(t) is obtained by M times the representation

vector of fh(t), i.e.,

L(t) = M [F11(t) · · · F1N(t) · · · · · · Fk1(t) · · · FKN(t)]T .

Then, considering the integral over the interior edges Γint

and the boundary edges Γout, the matrix R is given by R =
Rint +Rout. On the interior edges, considering a fixed triangle
Tk = Tk− with an interior edge Ek−n− ∈ ∂Tk− ∩ Γint = ∂Tk− ∩
Tk+ (n− ∈ {1, 2, 3}), we obtain entries in the diagonal or off-
diagonal blocks of Rint from (7). The diagonal blocks of the
component-wise are given by

[Rint](k−1)N+i,(k−1)N+ j =
∑

Ekn∈∂Tk∩Γint

⟨
φki(u · vkn)δu·vkn≥0, φk j

⟩
Ekn

,

with

δu·vkn≥0 :=
 1, if u(t,x) · vTk ≥ 0

0, if u(t,x) · vTk < 0

 .
Entries in off-diagonal blocks of Rint are possibly non-zero

only for pairs of triangles Tk− ,Tk+ with ∂Tk− ∩ ∂Tk+ , ∅, we
have

[Rint](k−−1)N+i,(k+−1)N+ j =

⟨
φk−i(u · vkn)δu· vk−n−<0, φk+ j

⟩
Ekn

with δu· vk−n−<0 := 1 − δu· vk−n−≥0.

Similarly, the consist of entries in the block diagonal
matrix Rout is given as follows

[Rout](k−1)N+i,(k−1)N+ j =
∑

Ekn∈∂Tk∩Γout

⟨
φki(u · vkn)δu· vkn≥0, φk j

⟩
Ekn

,

and the right-hand side vector KD is denoted by

[KD](k−1)N+i =
∑

Ekn∈∂Tk∩Γint

⟨
φki(u · vkn)δu· vkn≥0, cD(t)

⟩
Ekn

.

III. Full-discrete scheme

The spatial semi-discrete system (8) is equivalent to

M∂tC = V(t) − A(t)C(t) := S (C(t), t) , (9)

where A(t) = −G1(t)−G2(t)+R(t) and right-hand side vector
V(t) = L(t)−KD(t). We discretize system (9) in time by using
the SDC method, which can obtain an arbitrary higher-order
accuracy time discrete scheme [3].

Let 0 = t1 < t2 < · · · < tEnd be a not necessary equidistant
decomposition of the time interval J and ∆tn = tn+1−tn denote
the length of the interval [tn, tn+1]. We subdivide the interval
[tn, tn+1] into M substeps tn = tn

1 < tn
2 < · · · < tn

M = tn+1, and
∆tn

m = tn
m+1− tn

m (m ∈ {1, · · · ,M}) denotes the length of the m-
th subinterval. In addition, Cn

m denotes the discrete solution
vector in t = tn

m, i.e., Cn
m = C(tn

m). Let Cn,[k]
m represent the

provision solution Cn
m updated after k iterations and IC[k](t)

denote the corresponding Lagrange interpolation polynomial
which is constructed by Cn,[k]

m . So the SDC time discrete
scheme is given as follows.

In the prediction process, Euler method is used to solve a
set of initial provision solutions at each substep. The initial
approximation Cn,[0]

m is obtained by the following scheme to
traverse the interval [tn, tn+1]

Cn,[0]
m = Cn,[0]

m−1 + Hm−1(C[0]), m = 1, · · · ,M, (10)

where C0,[0]
0 = C0, C0,[k]

0 = C0 and Hm−1(C) is an approxima-
tion of

∫ tn
m

tn
m−1

M−1S (C(t), t) dt. Considering the explicit Euler
method, the predictor is yielded by

Cn,[0]
m = Cn,[0]

m−1 + ∆tn
mM−1S

(
Cn,[0]

m−1 , t
n
m−1

)
. (11)

In the process of correction, our goal is to reduce the errors
of the provisional solutions by a correction equation. In this
paper, we introduce the Lagrange interpolation polynomial
of provisional solutions to construct correction equation [6],
which is defined as

δ[k](t) = C(t) − IC[k](t). (12)

Further, the residual function is introduced by

ε[k](t) = C0 +

∫ t

t0
M−1S

(
IC[k](τ), τ

)
dτ − IC[k](t). (13)

Subtracting (12) from (13) and then differentiating it, the
error equation is given as follows

∂t(δ[k](t) − ε[k](t)) = ∂tC(t) − M−1S
(
IC[k](t), t

)
. (14)

Using equations (9) and (12), the error equation (14) can
be rearranged as follows

∂t(δ[k](t) − ε[k](t)) =M−1S
(
IC[k](t), t

)
+ δk(t) − M−1S

(
IC[k](t), t

)
.

(15)

To solve the error equation (15) by a time integration
scheme in the subintervals, we obtain the following differ-
ence equation by explicit Euler method

δn,[k]
m =δn,[k]

m−1 + ε
[k](tn

m) − ε[k](tn
m−1) + Hm−1(C[k] + δ[k])

− Hm−1(C[k]), m = 1, · · · ,M,
(16)

where δn,[k]
m represents the approximation of δ[k](tn

m).
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Finally, substituting (12) and (13) to (16) and defining the
new approximate solution by Cn,[k+1]

m = Cn,[k]
m + δn,[k]

m , we get
the following update equation

Cn,[k+1]
m =Cn,[k]

m−1 + Hm−1(C[k+1]) − Hm−1(C[k])

+

∫ tn
m

tn
m−1

M−1S
(
IC[k](τ), τ

)
dτ,

(17)

the S (IC[k](τ), τ) in equation (17) is usually approximated
by its Lagrange interpolation polynomial IS [k](τ), i.e.,∫ tn

m

tn
m−1

M−1S
(
IC[k](τ), τ

)
dτ ≈

∫ tn
m

tn
m−1

M−1IS [k](τ) dτ := S k
m,

(18)

Then the integration (18) is approximated by a numerical
quadrature formula, i.e.,

S k
m = ∆tn

m

M∑
m=0

wk
n,mM−1IS [k] (C(tn

m), tn
m
)
, (19)

where wk
n,m is equivalent to the integral of the k-th La-

grange interpolation polynomial M−1IS [k](t) over subinterval
[tn

m−1, t
n
m] and then normalized it with ∆tn

m.

IV. Modified full-discrete scheme
Based on the obtained full-discrete scheme in Section 3,

we restrict some of the degrees of freedom in each element
to prevent the onset of spurious oscillations near the strong
discontinuities by the slope limiters, which generates a more
stable modified full-discrete scheme.

A. Taylor basis representation

Due to most of limiting procedures rely on some fun-
damental properties of a certain choice of basis. Similar to
[13], the Taylor basis is introduced in this paper. Considering
the representation of local solutions ch ∈ Pp(Tk) on two-
dimensional Taylor basis, we have

ch(x) =c̄hϕk1 +

(
(
∂ch

∂x1 )(xkc)∆(x1
k)
)
ϕk2(x)

+

(
(
∂ch

∂x2 )(xkc)∆(x2
k)
)
ϕk3(x)

+

Np∑
i=4

(∂ai ch(xkc)(∆xk)ai ) ϕki(x) on Tk ∈ Th,

(20)

where ϕki represents the Taylor basis function, they are
defined as follows:

ϕk1 = 1, ϕk2 =
x1

k − x1
kc

∆(x1
k)
, ϕk3 =

x2
k − x2

kc

∆(x2
k)
,

ϕki =
(x − xkc)ai − ¯(x − xkc)ai

ai!(∆xk)ai
for i ≥ 4,

and xkc = [x1
kc, x

2
kc]T is the centroid of the Tk. The scaling is

giving by ∆xk = [∆(x1
k),∆(x2

k)]T with

∆(x j
k) =

(x j
k,max − x j

k,min)

2
, for j ∈ {1, 2},

where x j
k,max and x j

k,min are the minimum and maximum
values of the corresponding spatial coordinates on Tk, i.e.,

x j
k,max = max

i∈{1,2,3}
x j

ki and x j
k,min = min

i∈{1,2,3}
x j

ki.

In addition, the multi-indices a, b and xa are defined as
follows:

a + b = [a1 ± b1, a2 ± b2]T , |a| = a1 + a2, a! = a1!a2!,

xa = (x1)a1
(x2)a2

, ∂a = ∂|a|/∂(x1)a1
∂(x2)a2

.

We employ the L2-projection to transform function ch from
the model basis representation into Taylor basis representa-
tion, i.e., for ∀wh ∈ Pp(Tk)(

wh,

N∑
j=1

Ck j(t)φk j

)
Tk

=

(
wh,

N∑
j=1

CTaylor
k j (t)ϕk j

)
Tk

. (21)

Choosing wh = φki (i ∈ {1, · · · ,N}), the transform equation
(21) is rewritten as

N∑
j=1

Ck j(t)
(
φki, φk j

)
Tk

=

N∑
j=1

CTaylor
k j (t)

(
φki, ϕk j

)
Tk

. (22)

Then the equation (22) can be written in matrix form as

MTk [C]k,: = MTaylor
Tk

[CTaylor]k,:, (23)

where the local basis transformation matrix MTk is given as
follows

MTaylor
Tk

=


(
φk1, ϕk1

)
Tk
· · · (

φk1, ϕkN
)
Tk

· · · · · · · · ·(
φkN , ϕk1

)
Tk
· · · (

φkN , ϕkN
)
Tk

 .
Using MTaylor = diag(MTaylor

T1
, · · · ,MTaylor

TK
) and representa-

tion vectors C and CTaylor, we obtain the following linear
transformation system

MC = MTaylorCTaylor. (24)

B. Linear vertex-based limiter

Linear vertex-based limiter is one of the most effective
methods to control the numerical oscillations, which is im-
proved by Kuzmin [12], [13] and Aizinger [11] from Barth-
Jespersen limiter [1]. The goal of this limiter is to determine
the maximum admissible slope by a linear reconstruction

ch(x) = ckc + αke∇ch(xkc) · (x − xkc), for 0 ≤ αke ≤ 1,
(25)

where the function value ckc = ch(xkc) in the centroid xkc.
We choose the correction factor αke so that above linear
reconstruction (25) is bounded in all vertices xki ∈ TK by
the minimum and maximum centroid values of all elements
containing xki, i.e.,

cmin
ki ≤ ch(xki) ≤ cmax

ki , for ∀Tk ∈ Th, ∀i ∈ {
1, 2, 3

}
, (26)

with cmin
ki = min

{Tl∈Th | xki∈Tl}
clc, cmax

ki = max
{Tl∈Th | xki∈Tl}

clc.

To ensure the establishment of (26), the correction factor
αke is defined as follows [12], i.e., for ∀Tk ∈ Th, we have

αke = min
i∈{1,2,3}


(cmax

ki − ckc)/(cki − ckc), ifcki > cmax
ki

1, if cmin
ki ≤ cki ≤ cmax

ki

(cmin
ki − ckc)/(cki − ckc), if cki < cmax

ki

 ,
(27)
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where cki is determined by the linear reconstruction (25) in
xki, i.e., cki = ckc + ∇ch(xkc) · (xki − xkc). Then, the limited
counterpart of DG solution is given as follows

ch(x) =chϕk1 + αke

[ (
∂ch

∂x1 (xkc)∆(x1
k)
)
ϕk2(x)

+

(
∂ch

∂x2 (xkc)∆(x2
k)
)
ϕk3(x)

]
.

(28)

C. Hierarchical vertex-based limiter

In order to limit the nonlinear term rather than simply
dropping it, we introduce the higher order Hierarchical
vertex-based slope limiter from [12], the main idea is to
multiply all derivatives of order q by a common correction
factor α(q)

ke .
Let Aq =

{
a ∈ N2

0

∣∣∣|a| = q
}

be the set of all two-
dimensional multi-indices of order q. The correction factor
α

(q)
ke for each order q ≤ p is determined by computing

formula (27). The linear vertex-based limiter is applied to
all linear reconstructions of derivatives of order q − 1, i.e.,
for ∀a ∈ Aq−1, we have

ck,a,i =cTaylor
k,I(a) ϕk1(xki) + cTaylor

k,I(a+[1,0]T )ϕk2(xki)

+ cTaylor
k,I(a+[0,1]T )ϕk3(xki), on Tk ∈ Th,

(29)

where I(a) = |a|(|a|+1)
2 +a2+1. Formally, the correction factor

α
(q)
ke is defined as

α
(q)
ke = min

a∈Aq−1
α

(q)
ka , (30)

where the factor α(q)
ka is given by

α
(q)
ka := min

i∈{1,2,3}


(cmax

k,a,i − ck,a,c)/(ck,a,i − ck,a,c), if ca,i > cmax
a,i

1, if cmin
k,a,i ≤ ck,a,i ≤ cmax

k,a,i

(cmin
k,a,i − ck,a,c)/(ck,a,i − ck,a,c), if ck,a,i < cmax

k,a,i

Thus, the limited DG solution becomes

ch(x) =chϕk1 + α
(1)
ke

(
∂ch

∂x1 (xkc)∆(x1
k)
)
ϕk2(x)

+ α(1)
ke

(
∂ch

∂x2 (xkc)∆(x2
k)
)
ϕk3(x)

+

N∑
i=4

α(|ai |)
ke (∂ai ch(xkc)(∆xk)ai ) ϕki(x).

(31)

D. Slope limiting in time-dependent problems

For the given full-discrete scheme in Section 3, the slope
limiter is applied to each discrete solution Cn,[k]

m which can
obtain a more stable modified numerical scheme. However,
due to an implicit coupling between the spatial derivatives
and the time derivatives is existing [22], we apply the slope
limiter not only to the provisional solutions of each substep,
but also to the time derivative Ċ = ∂tC.

Let ΦTaylor represent the slope limiting operator that applies
any of the above slope limiting procedures to a global
representation vector CTaylor(t) of a solution ch(t) in Taylor
basis representation. The semi-discrete system (9) can be
written in a Taylor basis,

Mc∂tCTaylor(t) = S Taylor
(
CTaylor(t), t

)
. (32)

Then, the time derivative under Taylor basis is denoted as
follows

ĊTaylor,(i) := ∂tCTaylor(ti) = M−1
c S Taylor

(
CTaylor(ti), ti

)
.

(33)
Under the action of the slope limiting operator, we have

ML∂tCTaylor(t) =S Taylor
(
ΦTaylorCTaylor(t), t

)
+ (ML − Mc)ΦTaylor(t)∂tCTaylor(t),

(34)

where Mc =
{
mi j

}
, ML = diag

{
mii

}
.

The modified derivative is defined by

C̃Taylor,(i) =∂tCTaylor(ti) = M−1
L

[
S Taylor

(
ΦTaylorCTaylor(ti), ti

)
+ (ML − Mc)ΦTaylor(ti)∂tCTaylor(ti)

]
.

(35)
To eliminate the implicit coupling, we reformulate the

modified time derivative in Taylor basis as

C̃Taylor,(i) =ΦTaylorĊTaylor,(i)

+ M−1
L Mc

(
ĊTaylor,(i) − ΦTaylorĊTaylor,(i)

)
.

(36)

Using (24) and (32), we rearrange the equation (36) to get
the follow equation

C̃(i) =M−1MTaylor
[
ΦTaylorĊTaylor,(i)

+ M−1
L Mc

(
ĊTaylor,(i) − ΦTaylorĊTaylor,(i)

) ]
,

(37)

where ĊTalor,(i) := (MTaylor)−1MĊ(i). Therefore, under the
modification of slope limiters, we have ∂tCTaylor(t) = C̃(i).
Then, the modified full-discrete scheme is given as follows

Predictor:

Cn,[0]
m = Φ

[
Cn,[0]

m−1 + H̃m−1

(
C̃[0](tn

m−1)
) ]
, m = 1, · · · ,M, (38)

with H̃m−1

(
C̃[0](tn

m−1)
)
= ∆tn

mC̃[0](tn
m−1),

Corrector:

Cn,[k+1]
m =Φ

[
Cn,[k]

m−1 + H̃m−1

(
C̃[k+1](tn

m−1)
)

− H̃m−1

(
C̃[k](tn

m−1)
)
+

∫ tn
m

tn
m−1

IC̃[k](τ)dτ
]
,

(39)

where the slope limiting operator Φ defined as

Φ = M−1MTaylorΦTaylor
(
MTaylor

)−1
M.

Similar to the formula (19), the last term in (39) is approxi-
mated by

S̃ k
n :=

∫ tn
m

tn
m−1

IC̃[k](τ)dτ = ∆tn
m

M∑
m=0

ws
n,mIC̃[k](tn

m). (40)

The convergence order of modified full-discrete scheme
can up to 2M + 1 at the final time tEnd of a single interval
and 2M when repeated the stepping through a sequence of
multiple interval, every sweep, ideally, elevates the order
by one, until reaching the maximum order [24]. However,
the stiff terms, boundary conditions and slope limiters may
affect convergence such that more iterations are required the
optimal order.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_25

Volume 49, Issue 4: December 2022

 
______________________________________________________________________________________ 



TABLE I: The orders of convergence in space for different
polynomial degrees (p = 1, 2) and limiter types.

limiter p 1 1 2 2
j ∥ec∥ order ∥ec∥ order
0 5.56e-2 - 9.26e-3 -
1 1.46e-2 1.92 7.59e-4 3.61

None 2 3.73e-3 1.97 7.99e-5 3.24
3 9.34e-4 1.99 9.46e-6 3.07
4 3.33e-4 2.01 1.16e-6 3.02
0 2.24e-1 - 2.21e-1 -
1 5.04e-2 2.15 5.22e-2 2.08

Linear 2 9.42e-3 2.42 1.03e-2 2.34
3 1.46e-3 2.68 1.41e-3 2.87
4 2.84e-4 2.36 2.13e-4 2.73
0 2.24e-1 - 2.95e-1 -
1 5.04e-2 2.15 2.65e-1 0.17

Hier.vert.based 2 9.42e-3 2.42 1.11e-1 1.25
3 1.46e-3 2.68 7.71e-3 3.86
4 2.84e-4 2.36 8.12e-4 3.25

V. Numerical experiments

A. Analytical convergence test

In order to prove that the proposed modified DG-SDC
scheme can achieve higher-order accuracy in time and space,
the analytical convergence tests will be carried out. For two-
dimensional advection equation with variable coefficients, we
choose the exact solution of the concentration

c(x, t) = cos(7x1)cos(7x2) + e−t, t ∈ [0, 2π], Ω = (0, 1)2,

and velocity field

u(x, t) = [exp(x1 + x2)/2, exp(x1 − x2)/2].

The data cD and f are derived analytically by inserting
c(x, t) and u(x, t) into (1). In this paper, the discrete error
between the discrete solution ch(t) and the analytical solution
c(t) is calculated by ∥ec∥ = ∥ch(t) − c(t)∥L2(Ω).

To calculate the order of spatial convergence, the element
sizes are h j =

1
3·2 j , j = 0, · · · , 4 and time step is t = 2π

3000 .
The specific numerical results are shown in Table 1, where
p is the polynomial of degree. It’s worth noting that the
Hierarchical vertex-based limiter is equivalent to linear lim-
iter when the model basis is linear polynomial (p = 1). In
addition, when the model basis is quadratic polynomial (p
= 2), the proposed scheme achieve higher-order accuracy in
spatial, and produce overconvergence under the action of the
Hierarchical vertex-based limiter.

To calculate the order of time convergence, we select
appropriate element size and carry out analytical convergence
test for different time steps. In this paper, the element size is
h = 1

16 and the time steps are τ j = 200+40×2 j, j = 1, · · · , 5.
The convergence order of the different the number of subin-
tervals M and corrections sweeps K are shown in Table 2.
For simplicity, the number of subintervals is equal to the
corrections sweeps, i.e., M = K = 2, 3, 4. In Table 2, with
the increase of the number of subintervals and corrections
sweeps of SDC method, the order of time convergence
increases accordingly. When M = K = 1, the SDC discrete
scheme is equivalent to the Euler discrete scheme. When
M = K = 3, the order of time convergence of the proposed
scheme up to order 3. Further, when M = K = 4, the order
of time convergence of the proposed scheme up to order 6.

TABLE II: The orders of convergence in time for different
the number of subintervals M and corrections sweeps K.

M(= K) 2 2 3 3 4 4
j ∥ec∥ order ∥ec∥ order ∥ec∥ order
1 1.03e-2 - 4.45e-1 - 9.54e-1 -
2 6.89e-3 1.61 1.49e-1 4.32 3.97e-1 6.32
3 3.65e-3 1.72 3.96e-2 3.62 8.73e-2 6.03
4 1.32e-3 2.11 6.81e-3 3.67 1.44e-2 4.91
5 6.72e-4 1.21 1,12e-3 3.19 1.30e-3 5.01

B. Solid body rotation

To test the performance of two kinds of slope limiters,
we use solid body rotation test proposed by LeVeque [15],
which is a classical numerical example to investigate limiters
performance. It consists of a slotted cylinder, a sharp cone,
and a smooth hump that are placed in a square domain Ω =
[0, 1]2 and transported by a time-independent velocity field
u(x) = [0.5−x2, x1−0.5]T in a counterclockwise rotation over
J = (0, 2π). With r = 0.0225 and G(x,x0) = 1

0.15 ∥x − x0∥2,
we choose the initial data satisfying

c0(x) =



1, if
(x1 − 0.5)2 + (x2 − 0.75)2 ≥ r

∧ (x1 ≤ 0.475 ∨ x1 ≥ 0.525 ∨ x2 ≥ 0.85)

1 −G(x, [0.5, 0.25]T ), if
(x1 − 0.5)2

+ (x2 − 0.25)2 ≤ r

1
4

(
1 + cos

(
π G(x, [0.25, 0.5]T )

))
, if

(x1 − 0.25)2

+ (x2 − 0.5)2

≤ r

0, otherwise

The cD = 0 and f = 0 are boundary data and right-hand
side term, respectively. The specific numerical results are
shown in Figure 1-4. The numerical scheme produces very
obvious spurious oscillation in Figure 2. But the linear and
the hierarchical limiters appear well perform in Figure 3 and
Figure 4, it is proved that the two kinds of limiters can
effectively control the spurious oscillation. In addition, the
hierarchical vertex-based limiter could maintain the higher-
order accuracy and effectively control the numerical oscilla-
tion.
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1

0.6

0.8

Exact solution 
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0.8

0.5 0.6

x1
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0.4
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Fig. 1: Exact solution.
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Fig. 2: Numerical solution of DG-SDC scheme.
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1
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0.8

1

1
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1.2
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0.5 0.6

x1
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Fig. 3: Numerical solution of DG-SDC scheme modified by
linear limiter.
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Fig. 4: Numerical solution of DG-SDC scheme modified by
Hier. vert. limiter.

VI. Conclusion

In this paper, a numerical scheme based on DG-SDC
method is proposed for the advection equation with variable
coefficients. In addition, in order to prevent the onset of
spurious oscillations, two kinds of slope limiters are applied
to correct this novel numerical scheme. This novel numerical
scheme can achieve arbitrary higher-order convergence in
space and time simultaneously. Furthermore, the higher-
order accuracy, efficiency and stability of the presented
scheme are demonstrated through numerical examples. Next,
we consider applying the presented scheme to solve more
complex models.
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