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Abstract—The Liquid Resin Infusion (LRI) is a process
that has the greatest development and cost reduction potential
for the manufacture of large complex parts which made of
composite materials. The viscosity/temperature pair is the
essential criterion for the smooth running of the infusion in
order to obtain composite parts of quality. However, humidity
is a threatening factor for composite materials. Therefore, aging
factors and a predictive model of durability were investigated
on a new polymer B and second time on A-150, A-185 polymer
systems already certified for use in the aircraft and aerospace
industry. Tensile tests were carried out at temperatures T =
−40◦C, 25◦C, 70◦C. In this paper, an initial small experimental
dataset of 33 samples is used to analyze the strain of polymers
systems as a function of aging time, temperature, Young
modulus and the breaking stress. In the view of the very small
dataset, the strain of polymers systems is predicted by training
LevenbergâMarquardt (LM), Bayesian regularization (BR), and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with a
regularized cost function algorithms. The best results have been
obtained with the two regularized artificial neural network from
very small data set.

Index Terms—Artificial Neural Network, Bayesian Regular-
ization, Small dataset, Traction-aged Polymer

I. INTRODUCTION

Estimating the lifetime of a composite material is a major
scientific and technological challenge. Humidity and extreme
temperatures are a threat factor for composite materials. This
paper is an extended version of [1], we study the aging factor
of the composite and we formulate a predictive model of
sustainability thanks to artificial neural networks. The pur-
pose of the aging study of polymer systems is to determine
what are the irreversible consequences of temperature and
water penetration on their chemical structure and on their
mechanical properties. Three polymer systems are considered
in this study : a new system B, system A polymerized
at T = 150◦C for two hours with a conversion rate of
89% (noted A-150), system A polymerized at T = 185◦C
for two hours with a conversion rate of 98% (noted A
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185). To meet long-term sustainability criteria, an aging
study of these polymer systems is necessary. The type of
aging is chosen according to the environmental conditions or
the constraints with which the material may be confronted
during its commissioning. So water and temperature are two
environmental factors that polymer systems are sensitive.
Consequently, aging is of the hygrothermal type and the
exposure conditions adopted are a temperature of T = 70◦C.
and a humidity rate of 85%.

In our article we are interested in the characterization
of polymer systems aged in traction resulting from the
experimental study at the LGP (Laboratoire GÃ©nie de
Production) of Tarbes. In particular, the data from this study,
for polymer B, will serve as a basis for training an Artificial
Neural Network (ANN).

In many studies, different modes of aging appear:
wet aging by plasticization (Colombini et al. 2002 [8]),
by degradation of the polymer by hydrolysis (Ennis et al.
1989 [11]); (Xiao et al. 1998 [35]), by differential swelling
linked to concentration gradients (Merdas et al. 2002) [24]
but also by damage. The various studies show an influence
of hygrothermal aging as a function of the exposure time.
Generally, during the hygrothermal aging the mechanical
properties of polymers decrease (Dyakonov et al. 1996 [10]);
(Popineau et al. 2005 [29]). For short exposure times, a re-
versible plasticization appears while for long times, swellings
and cracks can be identified.

One of the phenomena linked to the penetration of
water into the polymer is plasticization, which has conse-
quences on the mechanical and physico-chemical properties
of the polymer. The visible changes in mechanical properties
are a decrease in elastic modulus and stress accompanied
by an increase in elongation at break. Several techniques
have contributed to the evaluation of these physico-chemical
effects linked to water absorption within polymer systems:
the analysis of water diffusion kinetics, rheometry, impact
resistance and traction. The experimental study therefore
relates to the tensile tests of polymer system B in order
to assess the degradation of their mechanical properties
over time. In a second time we take these experimental
data to establish a predictive model of the behavior of the
polymers B aged in traction. This problem is non-linear and
an analytical solution is not always easy to obtain. Thus,
for reasons of simplicity, advanced identification techniques
based on artificial neural networks have been used.

The aim is to develop a neural architecture for predicting
the strain of the polymer system through the use of multilayer
perceptron (MLP) type with gradient backpropagation. Much
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research has proven the usefulness of ANN in modeling, and
predicting mechanical properties. Among the many models
of ANN, the multilayer perceptron is the most widely applied
because it can define the non-linear and complex relation-
ships of the mechanical behavior of composite materials.
This type of ANN can produce a relationship between the
discrete data and the output values. The non-linear effects
of the parameters are automatically captured in the network
parameter via the synaptic weights and the threshold.

In recent years, many researchers have used artificial
neural networks in the field of composite materials to predict
their behavior Zhang (2003) [38] and Goh (1995) [14].
Qingbin et al. (1996) [27] constructed a feedforward neural
network with two hidden layers, temperature, effective strain,
and strain rate were the inputs, and stress was the output
of the neural network. It was able to approximate the con-
stitutive relation for a thermal viscoplastic material. Huber
and Tsakmakis (2001) [15] show that the ANN identified
physically sets of parameters of the material composite.
And it correctly predicted experimentally observed material
behavior. ANN make it possible to estimate, at lower digital
cost, the level of damage to a composite without resorting
to exact calculation.

Mahmoudi (2017) [20] used ANN modeling allowing a
good localization and estimation of the damage as well
as the prediction of the dynamic response of composite
structures totally or locally, damaged while reducing the cost
of calculation.

Burgaz et al. (2014) [7] employed ANN method with
a feedforward back propagation algorithm for the predic-
tion of thermal stability, crystallinity and thermochemical
properties of polyethylene (oxide)/clay nanocomposites. The
ANN results confirm that nanocomposites thermal stability
increases with the decrease of enthalpy of melting and
relative crystallinity.

Doblies et al. (2019) [9] used ANN and Fourier-transform
infrared spectroscopy (FTIR)- to predict the mechanical
properties, as well as the thermal exposure time and temper-
ature of epoxy resin and composite. It is a novel approach
to combine Fourier-transform infrared spectroscopy (FTIR),
data processing, and machine-learning (ML) to estimate the
material state. The ANN has been trained and has shown the
feasibility of predicting the coupled degradation parameters,
time and temperature, individually, using only the FTIR
spectra.

An ANN was performed by Barbosa et al. (2019) [5]
to model the temperature-frequency dependence of dynamic
mechanical of thermoplastic polymers of advanced compos-
ites. They studied a new EliumÂ® acrylic matrix developed
by Arkema to evaluate the accelerated test methodology
based on time-temperature superposition principle of Carbon
Fiber/EliumÂ® 150 composites. The learning rule employed
by the ANN was Levenberg-Marguardt algorithm, with the
gradient descent transfer function into the network. The
temperature and frequency dependence were chosen as input
parameters and the output parameters provides information
about the material properties of the carbon fiber.

Very recently, Adesina et al (2020) [2] examine the
potential of ANN for the prediction of mechanical proper-
ties, namely density and hardness of graphene nanoplatelet
(GNP)/polylactic acid (PLA) nanocomposite developed un-

der various operating conditions of spark plasma sintering
(SPS) technique. They employed back-propagation archi-
tecture and LevenbergâMarquardt algorithm to predict the
mechanical performance in terms of density and hardness
property of GNP/PLA nanocomposites.

ANN is inspired by the way the brain processes
information. It is defined as a computational model whose
design is very schematically similar to the basic operating
concept of biological neurons ANN developments have gone
through three periods of activity. The first period in the
1940s was due to the work of McCulloch and Pitts (1943)
[22]. The second occurred in the 1960s with Rosenblatt’s
perception theorem of perceptual convergence (1962) [32]
and the work of Minsky and Papert (1969) [26] showing the
limits of a simple perceptron. Theirs findings have showered
the enthusiasm of most researchers, particularly those in the
IT community. After a period of silence that lasted almost
20 years, in the early 1980s, the ANNs regained the interest
of researchers. This resurgence made it possible to develop
the back-propagation learning algorithm for multilayer per-
ceptrons.

The use of a neural network normally requires a large
database in order to obtain the best credible model. But the
set of experimental data in the field of materials, in particular
polymers, is generally limited. In this study, we use an
initial small experimental dataset, however ANNs can exhibit
problem behaviour in performance with over-fitting and the
impossibility of generalization of the neural network. One
method for improving network generalization and avoiding
over-fitting is to use a technique called regularization. To
solve these problems, regularization techniques have been
applied. In view of our tiny dataset collected from the poly-
mer B, it has been attempted to provide a strain predicting
model based on the Bayesian regularization in combination
with Levenberg-Marquardt algorithm and a penalized cost
function in combination with BFGS algorithm.

Bayesian regularization provides an interesting
performance because Bayesian regularization does not
require that a validation data set be separate from the training
data set. BFGS algorithm requires more computation in
each iteration and more storage than the conjugate gradient
methods, but it generally converges in fewer iterations.
The BFGS method makes it possible to avoid constructing
the Hessian matrix explicitly and to construct instead an
approximation of the inverse of the second derivative of the
function to be minimized.

Bayesian regularization has been employed to study vari-
ous problems such as constitutive modeling : in [19] (2003)
M. Lefik and B.A. Schreer. proposed a BRANN as a tool
for numerical modelling of the constitutive behaviour of a
physically non-linear body, or to study magnetic shielding
in [17] 2010, where analytical, finite element and BRANN
methods was compared to calculate the shielding efficiency
of a cylindrical ferromagnetic shield. In [33] Singh et al.
(1998) used a Bayesian neural network to predict the yield
and tensile strength of rolled steel sheets as a function
of chemical composition and processing parameters. Zhang
et al. [16] (2002) employed Bayesian regularization neural
networks to predict storage and loss modului of short fiber
reinforced composites as a function of material composition
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and temperature. Gavard et al. [13] (1996) used BRANN to
study formation of austenite during continuous heating of
steels. The goal being to predict austenite start and finish
temperatures as a function of chemical composition and
heating rate. Recently, in Babuska et al.[4] (2016) BRANN
predicted fatigue parameters of 75S-T6 aluminum alloys by
using strain-life (S-N) curve data. Arzaghi et al. [3] (2017)
presents a dynamic risk-based methodology for maintenance
scheduling of subsea pipelines subjected to fatigue cracks
using Bayesian network inference.

More recently, Pruksawan et al. [31] (2019) proposed the
optimization of a very high strength adhesive material based
on an active learning model and Bayesian optimization.
This combination makes it possible to rely on a small
number of experimental data, without having to use data
from the literature. They selected the 5 target values closest
to experimental reality and then injected them into the initial
data set.

Regarding the BFGS algorithm (2017) [6] used six
different training artificial neural network algorithms such as
f Bayesian regularization, LevenbergâMarquardt and BFGS
to predict the failure loads of bonded pultruded composite.

Recently, M. Wiciak-PikuÅa et al. deals in [37] with
the phenomenon of tool wear prediction in face milling
of aluminum matrix composite materials (AMC), class as
hard-to-cut materials. For this purpose, the MLP networks
is considered with different activation functions based on
cutting force and vibration acceleration measures in the time
domain. The BFGS algorithm, which is considered one of
the most effective, is selected for training 13 imputs.

Our study has three steps. First, mechanical and physico-
chemical characteristic of the polymer B and systems A-
150, A-185 were extracted from the thesis work of Laurence
Poussines [30]. They are summarized below. Second, tensile
tests were performed at three imposed temperatures by the
industrialist, −40◦C, 25◦C and 70◦C. And thirdly, ANN
was carried out to train with the B system and to predict the
mechanical properties of the polymer B and systems A-150,
A-185 for different aging times.

The aim of our study is to present the prediction of
the deformation of polymer as function of temperature,
Youg modulus, stress and aging time using ANN. On the
basis of a small experimental data of polymer system B,
we tried to predict, using regularized algorithms, the strain
measurements for different aging time.

This paper is organized as follows: section II presents
the experimental procedure. Section III concerns the ANN
configuration, followed by results and discussion in section
IV which concluded the paper.

II. MATERIAL AND METHODS

A. Material

In Laurence Poussines work [30], carbon/epoxy compos-
ites have been processed by Liquid Resin Infusion (LRI).
This process involved selecting a polymer system suited
to the parameters imposed by the infusion process. This
process makes it possible to impregnate a stack of dry fabrics,
without a rigid counter-mold and without autoclaving, only
by vacuum pulling. Low viscosity around 100mPa.s and
temperature are the essential criteria for the success of the

infusion in order to obtain composite parts of quality. The
function that these parts must provide is reliability in the
environment because the fuselage structure is subject to
temperature variations between 60◦C and +90◦C and this
temperature range must be ensured even after aging.

Two epoxy/amine systems are used in this work. System A
was developed primarily for the injection and reinforcement
infusion processes. According to [Kiuna 2002] [18], The
system A is a monocomponent. It consists of a stoichio-
metrics blends of a tetrafunctional epoxy prepolymer, the
tetraglycidyl methylene dianiline (trademark TGMDA) and
two hardeners, The 2,6-diethylaniline and le 2-isopropyl-6-
methylaniline. The respective chemical structures of epoxy
prepolymer and hardener are given in Scheme 1and 2.

Figure 1. Chemical structur of TGMDA.

Figure 2. Chemical structure of hardeners present in system A.

The polymer system B is used for the training phase of the
ANN and to predict strain of the polymer for different aging
time. The system B is composed of a resin and a hardener
purchased by Sicomin. Based on supplier data, the resin is
a mixture between Bisphenol A DiGlycidylEther (DGEBA)
and N, N-Diglycidylaniline, Figure 3

Figure 3. Molecules present in resin B.

Two elements make up the hardener: 4,4-
methanediyldicyclohexanamine and 3- (aminomethyl)
-3, 5, 5-trimethylcyclohexanamine, the structures are shown
schematically in Figure 4:

B. Cured polymersâcharacterization before aging

The infusion of system A begins with preheating the
resin to 80◦C. This then passes through a heating system
maintained at 110◦C to lower viscosity of system A up to
80 mPa.s then to diffuse in the preformed room maintained
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Figure 4. Chemical structure of the substances present in the hardener.

at 130◦C in an oven or simply by heating lamps. Finally, the
polymerization takes place at 150◦C with these same heating
systems for 2 hours. Adapting system A [30] to the infusion
process generates this polymerization temperature that must
not be exceeded. In this case, the polymer system obtained
is incompletely crosslinked with a rate of conversion of 89%
measured by Infra-Red Spectrometry (IRTF).

An optimized polymerization cycle (2h at 185◦C after
a rate at 3◦C /min) made it possible to obtain a rate of
high conversion of 98% measured by IRTF as well as a
glassy temperature Tg, determined by Differential Scanning
Calorimetry (DSC), of 211 ± 3◦C. These properties are
obtained with oxidation on the extreme surface of the sam-
ples produced. For the infusion of system B, an optimized
polymerization cycle (2h at 100◦C + 3h at 140◦C at 1◦C/min
between isotherm) made it possible to obtain a high con-
version rate of 98% measured by IRTF as well as a Tg of
135± 3◦C measured by DSC. These properties are obtained
without oxidation on the surface of the samples.

Tensile tests are carried out on 2x12x45mm3 rectangular-
shaped samples. For each testing temperature and each
polymer, 3 test pieces were tested using an INSTRON type
machine, equipped with a 5000 N load cell and an INSTRON
extensometer, at a speed of 0.2mm/min. The study of elastic
modulus and breaking stresses, strain at break by tensile
tests at the three temperatures imposed by the manufacturer
(40◦C, 25◦C, 70◦C) showed a worthy difference in behavior
between the two polymers, see Table I :

Table I
MECHANICAL CHARACTERISTICS OF THE TWO SYSTEMS AT DIFFERENT

TEMPERATURES.

Polymer system Temperatures Young’s modulus (Mpa) Stress (Mpa) Strain (%)

A-185 T = −40◦C 3390 ±143 43 ±11 1,5 ±0, 3
A-185 T = 25◦C 2743 ±32 69,8 ±11 3,6 ±0, 8
A-185 T = 70◦C 2269 ±113 59,2 ±3 3,3 ±0, 3
B T = −40◦C 3643 ±127 62,7 ±22 2,06 ±0, 9
B T = 25◦C 2947 ±223 73,9 ±5 4,53 ±0, 5
B T = 70◦C 2062 ±407 49,5 ±7 6,79 ±1, 8

System B behaves brittle at low temperatures and ductile
at high temperatures whereas system A185◦C behaves brittle
whatever temperature. Indeed, elongation at break for system
A are lower values compared these of system B. The Youngâs
modulus is similar between the two cured epoxy systems
and decreases as the temperature rises. The breaking stresses
reach a maximum at ambient temperature but see their values
decrease at 40◦C and 70◦C.

C. Experimental data set

A total of 3 data sets with 33 points used for
the development of the neural network model were
collected from experimental values of the system B.

Each data point consisted of the following variables
measured in the experiment : stress, percent strain and
modulus of elasticity for the aging time sequence: t =
{0, 24, 48, 168, 336, 720, 2160, 4320, 6480, 8640, 10800}
hours and the temperatures of −40◦C, 25◦C and 70◦C.
The experimental data obtained from tensile tests for the B
system studied at different temperatures and different aging
times are shown in Figures 5, 6 and 7.

Figure 5. Evolution of the elastic modulus of system B as a function of
the aging time and the test temperature.

Tests carried out at room temperature show a slight
decrease in Young’s modulus up to one month of aging,
then, after that, a slight increase in it. Its stress and strain
are constant except for uncertainties during the first month
and then decrease beyond. The samples undergo from the
first stages of aging plasticization due to the penetration of
water but which remains relatively low and which leads to a
reduction in the Young’s modulus. But at longer times, the
system becomes rigid and the network is irreparably affected
following the hydrolysis in operation. infrared evidence.

Rigid as supported by increase again of elastic modulus
and decrease of stress and strain at break.

Figure 6. Evolution of the breaking stress of system B as a function of
the aging time and the test temperature.

The tests carried out at −40◦C weaken the polymer
network even more, which sees its Young’s modulus increase
and its stress and strain at break decrease. On the other
hand, at 70◦C, the modulus of elasticity and the tensile
stress are lower and the deformation is higher than the values
taken at 25◦C. The test pieces seem more ductile but a
certain brittleness is notable due to the lower values of the
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Figure 7. Evolution of the deformation of system B as a function of the
aging time and the test temperature.

tensile stress. Let us note all the same an increase in the
breaking stress and the strain for aging times greater than
9 months. Indeed, the test temperature is close to the zone
of macromolecular mobility. The material is therefore in its
ductile zone which generates an increase in stress and strain.

At longer aging times, the network is irreparably affected
by oxidation as evidenced by IRTF (support informations)
and hydrolysis with chains scissions leading to a mass loss
during desorption test in oven at 70◦C .

Figure 8. Desorption curve at 140◦C for the three systems.

Figure 9. Absorbance spectra of system B at the surface as a function of
the number of waves (cm−1) and as a function of the aging time.

Also noteworthy is the appearance, increase and decrease
of several absorption bands. Several phenomena are at the

origin of these modifications. Infrared analysis shows a
decrease in the concentration of CH bonds (between 2700
and 3000 cm−1) and an increase in the absorption bands of
C = O at 1650 and 1600 cm−1 characteristic of amides. The
chemical reaction leading to the formation of amide under
the action of oxygen is shown in Figure

Figure 10. Reaction mechanism of amide formation (Pei 2011) [28].

D. Presentation of the database

In this study, an ANN was implemented with two different
algorithms for regularization conditions and compared first
to Levenberg-Marquardt algorithm without regularization. As
the data set is small we need all the information to feed the
neural network. We know that when the tensile tests a certain
value of stress is applied on pieces and percent strain is the
expected result. A feed-forward network with one layer of
hidden neurons was builded to represent the complexity the
nonlinear nature of the problem.

The input layer consisted of four inputs: the stress, Young’s
modulus, aging time and temperatures : thus the total data
set of system B consists of 4x33 matrix defining four
attributes for 33 different measurements. The targets are the
33 measurements of the corresponding strains of the polymer.
The feed-forward neural network model maps the functional
relationship between the four parameters and the strain. An
optimal number of neurons in hidden layer is selected by
testing different choice of neurons number. The data are
summarized in the attached table:

Table II
VARIATION RANGE OF THE POLYMER B.

Time (months) T ◦C E (MPa) σ(MPa) ε(%)

0 - 15 -40, 25, 70 2000 - 5000 10 - 75 0.1 - 6.9

The model parameters are adjusted during the model
calibration phase in order to minimize the error between the
value obtained by the network and that normally obtained. In
this study, in order to avoid overfitting of the trained ANN,
two regularization methods were applied and compared.
The first method of regularization consists in modifying the
performance function which is the mean sum of squares of
the network errors by adding a term that consists of the mean
of the sum of squares of the network weights. This method
is in combination with BFGS algorithm. The second method
consists of Bayesian regularization which determines the
optimal regularization parameters in an automated fashion
coupled with Levenberg-Marquardt algorithm.

E. Prediction of the strain based on neural network for
polymer systems

First, the ANN model was developed and its performance
assessed on a dataset of 33 samples of the original dataset.
In our case, the database being very small we need as many
data as possible for training. Then we divided randomly
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the data in two sets, given the small data set, everything
is done so that BR trains on the maximum amount of data
: a separate training set and a testing set. We take the
ratio 90% of the data dedicated to training the network
and 10% of the data dedicated to testing the network. Then
we compare the performance of the three algorithms BR,
BFGS regularized and Levenberg Marquardt. We will see
that the two regularized algorithms offer better results than
Levenberg Marquardt. After this, for the following we will
only use these two regularized algorithms BR and BFGS.

Then, to assess the predictive quality of the neural net-
work, we provide the last measurement of polymer B for
the temperature of 70◦C after an aging time of 15 months
and secondly a smaller dataset with 28 samples and strain
predictions for aging time t = {3, 6, 9, 12, 15} months.

Having said that, we implement the ANN modeling using
Deep Learning Toolbox of MATLAB (R2020a edition), with
the Matlab commands : trainlm, trainbr, tansig, mapminmax
and trainbfg. The function "trainbr" that performs Bayesian
regularization backpropogation disables validation stops by
default because the validation is usually used as a form of
regularization, but "trainbr" has its own form of validation
built into the algorithm. In other words, the Bayesian error
is not just based on how well the model is performing on
the dataset, it is also based on how large the weights are.
The larger the weights, the higher the error. In fact, during
training, validation may never allow the network to explore
larger weights, see [21]. "trainbfg" is a network training
function that updates weight and bias values according to the
BFGS quasi-Newton method and "trainlm" for Levenberg-
Marquardt method.

Before training, it is useful to scale the inputs and targets
so that they always fall within a specified range. This is
necessary to avoid premature saturation of the activation
function and allows synaptic coefficients to be kept within
relatively small intervals. And it is also about reducing all
the inputs of the same order of magnitude which improves
the convergence of the algorithm. MATLAB automatically
rescaled all input and output variables using the âmapmin-
maxâ function such that they resided in the range [â1, +1]. So
each variable is normalized in this range using the equation
to improve the accuracy and efficiency of calculation:

xn = (x−xmin)
(xmax−xmin)

(1)

where xn is the normalized value of the corresponding x,
xmax and xmin are the maximum and minimum values of
x respectively.

III. ARTIFICIAL NEURAL NETWORKS CONFIGURATION

A. ANN architecture

The most widely used ANN in the community is the mul-
tilayer perceptron (MLP), also called feedforward backprop-
agation. In Figure 11, we see the fully connected network
which is divided into layers. In our study, the input layer
corresponds in p=4 independent variables and covariates. The
input variables are associated with each of N neurons in a
hidden layer by using weights (wkj , k = 1, 2, , N) and a

bias specific to each neuron. The number of hidden layer
depends the training process. The input vector of independent
variables pi = p1, p2, p3, p4 is related to the output yi.

Figure 11. Artificial neural network design with 4 inputs

Step 1

For N neurons in hidden layer of the ANN and appropriate
biases: b(1)1 , b

(1)
2 ...b

(1)
N , then input values for neuron k prior

to activation is expressed linearly as b
(1)
k +

∑4
j=1 wkjpj .

We applied values to the input in each neuron an activation
function which is defined by:

fk(b
(1)
k +

4∑
j=1

wkjpj). (2)

Step 2
Now, the actived output from the hidden layer is sent to
the output layer as

∑N
ki=1 w

′
kfk(b

(1)
k +

∑4
j=1 wkjpj) + b(2)

with the weights specific to each neuron wk and the bias
parameters b(1) and b(2) respectively in the hidden and output
layers. And at the end, the quantity is activated with the
function g(.) which is g[

∑N
ki=1 w

′
kfk + b(2)] = a2 = y′, and

becomes the predicted value y′i of the target variable in the
training set as:

y′i = g[
∑N

ki=1 w
′
kf(b

(1)
k +

∑R
j=1 wkjpj) + b(2)],

j = 1, 2...., R k = 1, 2, ..., N.
(3)

where w′
k = {wkj}.

In our case, we used the sigmoidal activation function such
as tangent hyperbolic and logit in the hidden layer. This
property shows the interest of neural networks compared
to other approximators such as polynomials whose output
is a linear function of adjustable parameters: for the same
number of inputs, the number of adjustable parameters to
be determined is lower for a neural network only for a
polynomial. The activation function at the output layer g is
linear.

B. Orverfitting and Regularization

As part of machine learning, there are different learning
techniques, including supervised learning. We will find a
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function f susceptible, at best according to a criterion to be
defined, to reproduce y having observed p. The main goals
of ANN is to find the predictive algorithm that will provide
the best performance from the data available. Performance
measurement techniques assess the extent to which predic-
tions obtained through a model approach actual data. Since
it is impossible to use new and unperceived data to make
a comparison, the available data is divided into training and
test subsets. The training subset contains data from which the
model is built or trained. We do not focus on the networkâs
ability to be optimal on training data. We want to see the
performance of the network on unknown data. This is the
whole point of the test subset which is used to assess these
performances. There is also a need to improve the model by
adjusting its hyperparameters such as the number of hidden
layers or the number of neurons. If we make an adjustment
of these hyperparameters on the test subset, there is a risk of
overfitting the model. If the function learned by the ANN is
too finely adjusted to the data, it learns the peculiarities of the
training base to the detriment of the underlying model: the
neural network is over-adjusted. Over training can be seen
as the fact that the model will be more efficient on known
data, and much less efficient on new data.

There are two families of methods to prevent overfitting:
passive methods and active methods. The philosophies of
these two families of methods are different.

• Passive methods try to detect a posteriori overfitting to
remove bad models. Among the most classic methods
are the use of a validation base during learning, and
measures of information criteria.

• Active methods intervene during the training phase
to prevent the model from overfitting. Regularization
methods such as premature termination or penalization
fall within this framework.

Regularization methods are called active because they do
not seek to limit the complexity of the network, but they
control the value of the weights during learning. It becomes
possible to use models with a high number of weight and
therefore a complex model, even if the number of learning
examples is small. Several regularization methods exist in the
literature, in our case, we use active method such as Bayesian
Regularization which we compare to another method of
regularization which modifies the performance function with
BFGS (BroydenâFletcherâGoldfarbâShanno) algorithm.

In the Bayesian approach, all the parameters, in particular
the network weights, are considered as random variables
from a probability distribution, the weights are assigned
a probability fixed a priori, and, once the training data
have been observed, this a priori probability is transformed
into posterior probability thanks to Bayes’ theorem. In the
following section we review Bayesian techniques, applying
by (MacKay 1992 [23]; Dan. Foresee and Hagan 1997 [12])
to optimize regularization.

1) Bayesian Regularization: The training process is car-
ried out by minimizing a function F named cost function,
computing the distance between real and predicted data, this

function determines the objective to be reached. The function
writes:

F = ED(D|w,M) =
1

N

n∑
i=1

(ei)
2 =

1

N

n∑
i=1

(y′i − yi)
2 (4)

where ED is the mean sum of squares of the network error,
D is the training data set and M is the specific functional
form of the neural network architecture.

In Bayesian Regularization (BR), an extra term, Ew, is
added by the neural network to the objective function which
penalizes large weights in anticipation to reach a better
generalization and smoother mapping. A gradient-based opti-
mization algorithm is then applied to minimize the function:

F = βED(D|w,M) + αEw(w,M) (5)

where Ew(w,M) is the sum of squares of architecture
weights, M is the ANN architecture and α and β the
regularization parameters or hyper-parameters. The second
term on the right hand side of equation, ± Ew,is the
weight decay and with ±, the weight decay rate, favors
small values of w and decreases the tendency of a model
to overfit. Large values of α lead to posterior densities of
weights that are highly concentrated around zero, so that
the weights effectively disappear discounting connections in
the network. If α << β then the training algorithm will
make the errors smaller. If α >> β, training will emphasize
weight size reduction at the expense of network errors, thus
producing a smoother network response [12].

After the data is taken, the density function for the weights
can be updated according to Bayesâ rule. The posterior
distribution of w given α, β, D, and M is:

P (w|D,α, β,M) =
P (D|w, β,M).P (w|α,M)

P (D|α, β,M)
(6)

where D is the training data set and M is the specific
functional form of the neural network architecture consid-
ered. P (w|D,α, β,M) is the posterior probability of w
and P (D|w, β,M) the likelihood function which is the
probability of the occurrence, giving the network weights.
P (w|α,M) is the prior distribution of weights under M,
P (D|α, β,M) is a normalization factor or evidence for
hyperparameters α and β.

We assume that the noise in the training set data is
Gaussian and that the prior distribution for the weights is
Gaussian, then probability densities write:

P (D|w, β,M) = (βπ )
n/2 exp(−βED),

P (w|α,M) = (απ )
N/2 exp(−αEw),

(7)

where n and N are the number of observations and total
number of network parameters, respectively. We substitute
these two probabilities in the equation 6, we obtain:

P (w|D,α, β,M) =
( β
π )n/2.(α

π )N/2 exp(−(βED+αEw))

P (D|α,β,M)

= 1
ZF (α,β) . exp(−F (w))

(8)
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Maximizing the posterior probability P (w|D,α, β,M) is
equivalent to minimizing the regularized objective function
F = βED(D|w,M) + αEw(w,M).

Considering the joint posterior density by:

P (α, β|D,M) =
P (D|α, β,M)P (α, β,M)

P (D|M)
(9)

Now the equation 6 is, according to Mckay 1992 [23] :

P (D|α, β,M) = P (D|w,β,M).P (w|α,M)
P (D|α,β,M)

= ZF (α,β)

( β
π )n/2.(α

π )N/2
. exp(−βED−αEw)

exp(−F (w))

= ZF (α,β)

( β
π )n/2.(α

π )N/2

(10)

where ZF (α, β) can be estimated by Taylor series expansion:
see (Foresee et al 1997 [12]). The objective function F (w)
has the shape of a quadratic in the neighborhood of the
minimum point, then F (w) is expanded around the minimum
point of the posterior density, where the gradient is zero.

ZF (α, β) ≈ (2π)N/2(det((HMP )−1))1/2 exp(−F (wMP ))
(11)

where H = β∇2ED + α∇2Ew, the Hessian matrix of the
objective function. Values of regularization parameters, α and
β are calculated as:

αMP =
γ

2Ew(wMP )
and βMP =

n− γ

2ED(wMP )
(12)

with γ = N − 2αMPTr(HMP )−1, the effective number of
parameters, and N the total number of parameters in the
network. The Bayesian optimization of the regularization
parameters requires the computation of the Hessian matrix of
the function F (w) at the minimum point wMP [12]. Mackay
1992 proposes an approach in [23]: the Gauss-Newton ap-
proximation to the Hessian matrix can be used if the Leven
berg-Marquardt optimization algorithm is employed to locate
the minimum point.

2) Levenberg-Marquardt optimization: The Levenberg-
Marquardt algorithm is a robust numerical optimization
technique for mapping as well as function approximation.
We define the least squares cost function J(w) by

J(w) =
1

2

n∑
i=1

(y′i − yi)
2 (13)

its gradient is therefore defined by the vector

∇J(w) = (
∂J

∂w1
,
∂J

∂w2
, ...

∂J

∂wn
)T (14)

The Hessian matrix of the cost function, and has the form:

H =


∂2J(w)
(∂w1)2

∂2J(w)
∂w1w2

... ∂2J(w)
∂w1wn

... ... ... ...
∂2J(w)
∂wnw1

∂2J(w))
∂wnw2

... ∂2J(w)
(∂wn)2


The Levenberg-Marquardt algorithm, which also belongs to
the class of quasi-Newtonian methods, obeys the following
formula for updating the parameters at l iteration:

wl+1 = wl − [H(wl) + µl+1I]
−1∇J(wl) (15)

where µl+1 is Levenberg’s damping factor, which is adjusted
at each iteration and guides the optimization process, and I
is the identity matrix. We will find in [34] a popular alter-
native.to the Gauss-Newton method of finding the minimum
of a function.

From a practical point of view, the Bayesian approach
to neural networks brings important improvements: as all
calculations are done from the training base, it is no longer
necessary to have a validation base. It is therefore possible
to use all the data available to estimate the weights of the
network.

3) Regularized cost function and BFGS algorithm: An-
other method of regularization consists in modifying the
performance function, we add a penalizing term consisting
of the mean of the sum of squares of the network weights
to the cost function.

F = 1
2 (

1
N

∑n
i=1(y

′
i − yi)

2) + 1
2 (

1
n

∑n
i=1 w

2
i ). (16)

We implement with this regularized function the BFGS
algorithm.

This algorithm (named after its inventors Broyden,
Fletcher, Glodfarb and Shanno) is based on an approximation
of Newton’s method. The parameter update rule is defined
as follows:

wl+1 = wl − µl+1Ml+1∇F (wl) (17)

where Ml+1 is an iteratively calculated approximation of
the inverse of the Hessian matrix. The approximation of the
inverse of Hessian is modified at each iteration according to
the following rule:

Ml+1 = Ml + (1 +
γT
l Mlγl

δTl γl
)
δTl δl
δTl γl

− δlγ
T
l Ml+Mlγlδ

T
l

δTl γl

(18)
where γl = ∇F (wl)−∇F (wl−1) and δl = wl −wl−1. The
initial value of the matrix M is generally the identity matrix,
value to which Ml+1 will also be reset during the algorithm
if it turns out to be no longer definite positive.

The interest of the BFGS algorithm lies in that it makes
it possible to be freed from the computation of the inverse
of the Hessian matrix (which can itself prove to be delicate
in certain cases), by iteratively estimating an approximation
of this inverse matrix according to formula (13). This quasi-
Newtonian method is only effective near the minimum of the
cost function.

IV. RESULTS AND DISCUSSIONS

The objective is therefore to find a compromise between
the quality of learning and the capacity for generaliza-
tion. Also first, we evaluate training performance of the
Levenberg-Marquardt(LM) algorithm without regularization,
compared with two regularization algorithms. This part
presents the results of the different stages of the modeling:
a phase of calculation carried out in order to determine the
architecture of the optimal ANN and its validation before
moving on to predictions. Secondly, regularized ANN were
employed to predict strain of the polymer B and thirdly the
polymers A-150, A-185.
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A. Implemention of ANN

We trained the LM, BR and BFGS networks, multiple
times with 33 vectors by changing the number of hidden
layer neurons and selected the one which gave best results
for prediction. For the Bayesian Regularization Artificial
Neural Network (BRANN), the regularization parameters
(β, α) were optimized following Equ 5. The validation set
is not essentially required in the case of the regularization
methods.

To evaluate the performance of the three networks,
mean squared error (MSE) and correlation coefficient R are
estimated. The MSE measures the deviation between original
values and predicted ones, and R provides information on the
strength of correlation between them. They are defined by the
equations below:

MSE = 1
N

∑N
i=1(yi − y′i)

2 (19)

R =
∑N

i=1(yi−y)(y′
i−y′)√∑N

i=1(yi−y)2
∑N

i=1(y
′
i−y′)2

(20)

where yi is the observed value and y′i is the network output
value. y′ and y′ are respectively the average of the real value
and the network output value, and N is the sample number.
The MSE and the number of neurons in the hidden layer are
investigated to construct the optimal structure of the neural
network.

The MSE depending on iteration (epochs) of the BRANN
is shown in the Figures above. In red, the error on the test set,
in green the error on the validation set. In blue, the learning
error. If the validation and test error increase while the
training error continues to decrease then there is overfitting.
The training stopped when the MSE value was achieve.
A negligible value of the MSE indicates the high degree
of correlation among input variables. Training stops when
any of these conditions occurs: 1) the maximum number of
epochs is reached, 2) performance of the network with the
number of neurons has met a suitable level, 3) performance is
minimized to the goal 4) the gradient was below a suitable
target 5) µ exceeds µmax = 1010. In conclusion, we see
the effectiveness of the regularization methods. Indeed, we
clearly observe in the left figure 13 of the supervised training
performance an overfitting.

The two figures of histograms represent the errors between
target values and predicted values after training ANN. These
error values indicates how predicted values are differing from
the target values. Y-axis represents the number of samples
from dataset, which lies in a particular bin. For example for
the BRANN, we have a bin corresponding to the error of -
0.0031 and the height of that bin for training dataset lies near
to 11, the height of bar in the bar plot means how many data
points are near the bin value. It means that 11 samples from
training dataset have an error lies in the following range.
Zero error line corresponds to the zero error value on the
X-axis. We can see on the left histogram that the errors are
much more dispersed: the difference is between -1.95 and
1.05, the majority of errors correspond to 7 samples with an
error of -0.057.

The figures of the regression coefficient show us a better
performance of R for the BRANN with regularization whose

Figure 12. Performance of the feedforward neural network without
regularization

Figure 13. Performance of the Bayesian neural network

R is close to 0.95 against 0.92 for the NN without regular-
ization. For the BRANN, the outputs are correlated with the
corresponding target values for training and testing, the R
value is 0.9599 for the total response. There is a relatively
linear relationship between outputs and targets. These results
show a good fit at the level of training and testing. It was
shown that there is a good correlation between the predicted
values of BRANN and the experimental values. After several
tests the optimal neural architecture is composed of 12
neurons with the performance equal to 0.1857.

Now the optima structure and the performance parameters
of the three networks are summerized Table III.

Table III
MEAN SQUARED ERROR AND EPOCHS FOR DIFFERENT ARCHITECTURES.

Network models Network structures MSE Epochs

LM 4 - 5 - 1 0.4642 8
BFGS 4 - 12 - 1 0.1861 300
BR 4 - 12 - 1 0.1803 369

The models training is performed with 4 to 15 hidden
neurons. By increasing the neural network structure of one
neuron each time and comparing the mean square error, it
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Figure 14. Error histogram for the neural network without regularization

Figure 15. Error histogram for the Bayesian regularization neural network

attains a minimum for the BRANN model with 12 neurons.
The minimum values are obtained for the two regularized
models. So, the model can be explained well with small
data set when Bayesian Regularization is used for training
the networks. Once the BRANN model has learned well, it
interpolates the data according to an implicit function of the
following form:

ε = f(t, T, E, σ) (21)

B. ANN prediction results for the polymer B.

Now, we are going to make all of our predictions in our
work with the BR and BFGS algorithms.

In this section, first we trained the models with a dataset
containing 32 samples (at 33 samples we remove the last
value for aging time t=15th month for T = 70◦C) of the
polymer B. After having selected for each model the optimal
structure we predicted the following value for T = 70◦C and
aging time t = 15th month.

In order to verify the ability of the models to predict
data outside the database, some following data for aging
time t=15 months. The prediction results and the statistical
parameters are presented in Table IV. It can be seen that
the regularized models have good performance. This means

Figure 16. Regression of the neural network without regularization

Figure 17. Regression of Bayesian regularization neural network

that the regularized models have a good ability to predict
the unknown data and a better performance compared to the
unregulated model.

According to the performance calculations for the strain
prediction for T = 70◦C, and aging time t=15 months,
Bayesian regularization gives the best result with a mean
square error of 0.0036 against 0.0043 for BFGS.

Secondly, a case with even smaller subset of the data
was considered with 28 samples (at 33 samples we remove
the last five samples for aging time 3th, 6th, 9th, 12th and
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Table IV
STATISTICAL PARAMETERS OF THE PREDICTED STRAIN OF THE

POLYMER B FOR T = 70◦C , T=15 MONTHS.

Network models ε(%) predicted ε(%) MSE

BFGS 1.45 1.38 0.0043
BR 1.45 1.51 0.0036

15th months for T = 70◦C) and we predicted strain values
for aging time the 3th, 6th, 9th, 12th and 15th months and
T = 70◦C.

Figure 18. Prediction by the BR algorithm of the deformation of the
polymer B, for the last five terms of the experiment

Figure 19. Prediction by the BFGS algorithm of the deformation of the
polymer B, for the last five terms of the experiment

As shown in Fig. 19, with the BFGS algorithm, the last five
values predicted of strain are close to the desired outputs re-
sults, in particular within the interval of uncertainties. These
results show that the BFGS regularization is accurate even
with a small dataset. However, for BRANN the predicted
strain values show deviation from the desired target result
and three points do not belong to the uncertainty interval.
The MSE corresponding are given Table V and it confirms
that the performance of BRANN is a little worse than that
of BFGS:

Table V
PREDICTION OF THE STRAIN OF THE POLYMER B FOR T = 70◦C , AND

AGING TIME T= 3, 6, 9, 12 AND 15 MONTHS.

Network models MSE

BFGS 0.108
BR 0.356

From the cases, we observed that the predictions of
BRANN model are closer to the experimental target values
even with a small training data set. But in the last case where

a prediction of the strain is requested for many aging times
t=3, 6, 9, 12 and 15 months, BFGS performs better than
BR. The accuracy of the regularized models decrease when
increasing the number of points to predict. Both regularized
algorithms are able to predict, despite a small data set, for
aging times depending on the mechanical characteristics of a
polymer. This means that during experimental work a neural
network is able to predict for the next three, six, nine months.

This type of prediction, with a quality of precision even
for small datasets which is often the case in the field of
materials, can make it possible to continue and complete
experiments. It allows to reduce the time and the cost in
long experiments, for the study of the durability of polymers.
Monitoring the aging of polymers over several months is
costly and restrictive. ANNs can be an effective tool, even
on small samples, to test the behavior and performance of
materials.

C. Prediction of the strain for the polymers A-150 and A-
185.

Now, an already trained neural network is used to make
predictions on new data with variables that have been gener-
ated by the same underlying processes and relationships as
the original dataset that was used to train the model. The
possibility of generalization is an essential characteristic of
neural networks. We tested Bayesian methods and regular-
ized BFGS methods on other polymer systems at the same
conditions that the system B. We explore characterization of
polymer systems aged in traction on systems A-185 and A-
150. The entire sample of polymer B was used to train the
neural network. Time aging, temperature, elasticity modulus
and stress was used as inputs contained 33 experimental data
and the strain as output. Then, the trained neural network on
polymer B was requested to predict the points of the strain
for T = 70◦C of polymers A - 150, A- 185. A comparison
is then made between the forecast values obtained with
the experimental data. Figures 20, 21, 22 and 23 below
next illustrate this comparison. The red point represents the
expected results according to the network formed and the
blue point represents the experimental results.

Figure 20. The comparison of experimental and predicted strain for
polymer A-150 with Bayesian regularization

The table below gives MSE corresponding of the predic-
tion of the ANNs on these polymer systems.

A perfect match between the experimental values and
the predicted values of the polymers A was not expected.
According to the results of Table VI, the performance of the
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Figure 21. The comparison of experimental and predicted strain for
polymer A-150 with BFGS algorithm

Figure 22. The comparison of experimental and predicted strain for
polymer A-185 with Bayesian regularization

Figure 23. The comparison of experimental and predicted strain for
polymer A-185 with BFGS algorithm

Table VI
PREDICTION OF THE STRAIN FOR T = 70◦C OF THE POLYMERS A-150

AND A-185.

Network models MSE (A-185 70◦C) MSE (A-150 70◦C)

BFGS 2.35 0.86
BR 2.4 2.45

network are a little worse than the prediction on polymer
B, with however a larger number of points to be predicted.
We note, on the one hand, that the BFGS algorithm gives
better results than BR for the two polymers A. On the other
hand, predictions are better for the long times and much
more accurate than on short times. Here we therefore reach
the limits of the neural network training on a small set of
data. However, we note that the predicted strains have the
same tendency as the experimental strains.

D. Experimental data of the strain for the polymers A-150
and A-185 and comparison with predicted data.

Regarding the properties of polymers A-185, from the
experimental data, we see Figure 24 evolution of the de-
formation which seems to take place in three stages. First,
a decrease in properties during the first week, then they
increase for up to 1 month to decrease until the end of aging

Figure 24. Evolution of the deformation of the A-185 system as a function
of the aging time and the test temperature.

The initial oxidation of the samples seems to lower the
properties at first, then the strong water absorption plasticizes
the network and improves the mechanical properties up to
1 month of aging. Subsequently, oxidation is predominant,
totally weakening the test pieces and the polymer network
loses completely its mechanical properties. Tests carried out
at −40◦C weaken the structure even more due to the drop
in properties, while tests at 70◦C show the same evolution
as at room temperature with a slightly more ductile network.

Figure 25. Evolution of the deformation of the A-150 system as a function
of the aging time and the test temperature.

Figure 25 shows the evolution of the deformation of the
A-150 system as a function of the duration of aging and the
test temperature, respectively. The values of the deformation
constantly oscillate between 0 and one month. With regard
to elongation at break, no trend was noted up to 3 months
of aging. Then, the values decrease during aging. As the
polymer A-150 contains a soluble phase, during the first
stages of aging, there is a competition between the diffusion
of water and the loss of low masses by leaching observed
during the rheological study. So the superposition of these
two phenomena generate opposite consequences: a water
intake leads to a reduction in stresses and an increase in
deformations while a loss of small masses, which play the
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role of plasticizer, leads to an increase in stresses and a
reduction in deformations because we have rigidification of
the structure. Beyond one month of aging, the oxidation
highlighted above weakens the polymer network, which sees
its properties drop, but the values reached are still higher
than those obtained for polymer A-185. We find a brittle
system at −40◦C and ductile at 70◦C with values of stress
and strain at break always higher than those of A-185.

The study of the variation of the mechanical properties in
traction and by determination of the resilience, shows during
the first month of aging, a plasticization of systems B and
A-185. There follows a collapse of the mechanical properties
after 3 months of aging due to the weakening of the systems
generated by oxidation and hydrolysis during aging. It is
all the same interesting to note that despite a non-optimized
crosslinking, the mechanical characteristics of the polymer
A-150, which were initially lower, are superior to those of
the two other systems after 1 year of aging.

V. CONCLUSION

In with work, Bayesian Regularization and BFGS with
modified performance function models are employed to
predict the strain of traction-aged polymer systems. In the
first stage, regularized ANN and ANN model without regu-
larization were built using a very small dataset of 33 samples.
The training phase of the ANNs is performed taking into
consideration several parameters, such as the aging time,
temperature, tensile stress and Young’s modulus. The optimal
architecture model which contains a sigmoid function and an
output layer which contains a linear function, is evaluated us-
ing mean square error (MSE) and the regression value R. It is
concluded that the Bayesian regularization training algorithm
and BFGS regularized algorithm show better performance
than the LevenbergâMarquardt algorithm without regularisa-
tion. Regularized algorithm can solve the overfitting problem
which is not the case of LevenbergâMarquardt algorithm for
a small data set.

In a second stage, regularized ANN models, with three
datasets of 32, 30 and 28 samples, are used to predict the per-
cent strain of the system B for several aging times. BRANN
showed higher performance for one aging time, three aging
times predictions. Finally in a third stage, these regularization
methods are also used for two different polymer systems :
the polymers A-150 and A-185 that were not in the training
dataset. Considering the limitations of the model, due to the
small dataset, the neural network can more accurately predict
the results of the two polymers for long times than for short
times. However, the network successfully predicted the strain
trend for both polymers.

This allows us to conclude that these two regularized ANN
are reliable despite small data. These ANN approaches can
be used to predict the trend for the next few months, which
saves time and cost in the experimental field.
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