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Abstract—In this paper, based on the combination of the
Jacobi elliptic equation and the concept of the simple equation
method, we introduce a new approach for solving fractional
partial differential equations, where the fractional derivative is
defined in the sense of the conformable fractional derivative. By
use of a nonlinear transformation, the proved chain rule and
the properties of fractional calculus, certain fractional partial
differential equation can be converted into another ordinary
differential equation of integer order. With general solutions
of the Jacobi elliptic equation, a series of exact solutions for
the ordinary differential equation can be obtained subsequently
based on the homogeneous balance principle and with the aid
of mathematical software. As for applications of this approach,
we apply it to seek exact solutions for the space fractional (2+1)-
dimensional breaking soliton equations and the space-time
fractional BBM equation. As a result, abundant solitary wave
solutions, periodic wave solutions, rational function solutions
and Jacobi elliptic function solutions are successfully found.
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I. INTRODUCTION

The nonlinear phenomena exist in all the fields including
either the scientific work or engineering fields, such as
fluid mechanics, plasma physics, optical fibers, biology, solid
state physics, chemical kinematics, chemical physics, and
so on [1-4]. It is well known that many nonlinear partial
differential equations are widely used to describe these
complex phenomena. Fractional differential equations are
generalizations of classical differential equations of integer
order. Recently, Fractional differential equations have been
the focus of many studies due to their frequent appearance in
various applications in physics, biology, engineering, signal
processing, systems identification, control theory, finance and
fractional dynamics. In particular, fractional derivative is
useful in describing the memory and hereditary properties
of materials and processes. To illustrate better the physical
phenomena denoted by fractional differential equations, it
is necessary to obtain analytical or numerical solutions for
fractional differential equations. Many efficient methods have
been proposed so far to obtain numerical solutions and exact
solutions of fractional differential equations. For example,
these methods include the finite difference method [5,6], the
(G

′

G ) method [7-11], the variational iterative method [12-15],
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the fractional Nikiforov-Uvarov Method [16], the modified
Kudryashov method [17-21], the exp method [22,23], the first
integral method [24,25], the sub-equation method [26-29],
the coupled fractional reduced differential transform method
[30], the Bernstein polynomials method [31], the residual
power series method [32], the Jacobi elliptic function method
[33] and so on.

In [34], Pandir and Duzgun developed a new version of F-
expansion method based on the modified Riemann-Liouville
derivative, which is defined as Dα

t f(t) =
1

Γ(1− α)
d
dt

∫ t

0
(t−

ξ)−α(f(ξ) − f(0))dξ for 0 < α < 1. By the chain rule for
fractional calculus, which is denoted by ∂αu

∂tα
= σ′ ∂u

∂s
∂αs
∂tα

,
where σ′ denotes the sigma index, fractional differential e-
quations can be converted into ordinary differential equations
of integral order. Based on the Jacobi elliptic equation, a lot
of exact solutions with Jacobi elliptic function forms were
obtained.

However, we note that for different expressions of u(t),
the sigma indexes σ′ are also different. For example, for
u(t) = t, after one proposed transformation s = tα

Γ(1 + α)
,

where 0 < α < 1, we get that u(t) = [Γ(1 + α)s]
1
α = t.

By use of the definition of the modified Riemann-Liouville
derivative, one can obtain that ∂αu

∂tα
= t1−α

Γ(2− α)
, while

∂u
∂s

∂αs
∂tα

=
t1−αΓ(1 + α)

α . So σ′ = α
Γ(2− α)Γ(1 + α)

.

Otherwise, if we take u(t) = t2, By use of the definition
of the modified Riemann-Liouville derivative, one can obtain

that ∂
αu
∂tα

= 2t2−α

Γ(3− α)
, while ∂u

∂s
∂αs
∂tα

=
2t2−αΓ(1 + α)

α . So

σ′ = α
Γ(3− α)Γ(1 + α)

. Thus one can see that the sigma
index is not always the same constant, which shows that the
reduction from fractional differential equations to ordinary
differential equations of integral order is of little flaw, and
needs further improvement. In fact, the chain rule can not
be effective any longer in the case of the modified Riemann-
Liouville derivative.

Motivated by the analysis above, in this paper, we in-
troduce a new approach to seek exact solutions for space-
time fractional partial differential equations based on the
combination of the simple equation method and the following
Jacobi elliptic equation

(G′)2 = e2G
4 + e1G

2 + e0, (1)

where e0, e1, e2 are arbitrary constants. The fractional
partial differential equations are defined in the sense of the
conformable fractional derivative, which is defined as follows
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Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε ,

and satisfies the following properties:

(i). Dα
t [af(t) + bg(t)] = aDαf(t) + bDαg(t).

(ii). Dα
t (t

γ) = γtγ−α.

(iii). Dα
t [f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t).

(iv). Dα
t C = 0, where C is a constant.

(v). Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t).

(vi). Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)
g2(t)

.

(vii). Dα
t f(t) = t1−αf ′(t).

The properties above can be easily proved due to the
definition of the conformable fractional derivative. Under a
given transformation ξ = tα

α , by use of (ii) and (v) one

can obtain that ∂αu
∂tα

= ∂u
∂ξ

∂αξ
∂tα

= ∂u
∂ξ

. So the chain rule
holds, and then the fractional derivative can be converted
into integer order case.

The main point of the present method lies in that by a non-
linear transformation for ξ, one certain fractional partial dif-
ferential equation expressed in the variables t, x1, x2, ..., xn

can be turned into another ordinary differential equation of
integer order in ξ, the solution of which are supposed to

have the form U(ξ) =
m∑
i=0

ai[
G′(ξ)
G(ξ)

]i, where the integer m

can be determined by the homogeneous balancing principle,
and G = G(ξ) satisfies the Jacobi elliptic equation (1).
By the general solutions of Eq. (1), we can deduce the

expression for (
G′(ξ)
G(ξ)

), and then the exact solutions for
the original fractional partial differential equation can be
deduced subsequently.

The rest of this paper is organized as follows. In Section II,
we give the description of the proposed method for solving
fractional partial differential equations. In Section III, we
apply this method to establish exact solutions for the space
fractional (2+1)-dimensional breaking soliton equations and
the space-time fractional BBM equation. In Section IV, we
extend the present method in Section II in three aspects, and
give the main points for these extensions. In Section V, some
concluding comments are presented.

II. SUMMARY OF THE METHOD

In this section we give the description of the present
method for solving fractional partial differential equations.

Suppose that a fractional partial differential equation in
the independent variables t, x1, x2, ..., xn is given by

P (u1, ...uk, Dα
t u1, ..., D

α
t uk, D

β
x1
u1, ..., D

β
x1
uk, ...

, Dγ
xn
u1, ..., D

γ
xn
uk, ...) = 0, (2)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown
functions, P is a polynomial in ui and their various partial
derivatives including fractional derivatives.

Step 1. Execute a certain nonlinear fractional complex
transformation for ξ

ui(t, x1, x2, ..., xn) = Ui(ξ), ξ = ξ(t, x1, x2, ..., xn), (3)

such that Eq. (2) can be turned into the following ordinary
differential equation of integer order with respect to the
variable ξ:

P̃ (U1, ..., Uk, U ′
1, ..., U

′
k, U

′′
1 , ..., U

′′
k , ...) = 0. (4)

In fact, take Dα
t u1 for example, one can suppose a

nonlinear fractional complex transformation ξ = c t
α

α , and
then using the properties (ii) and (v) one can obtain Dα

t u1 =
U ′
1(ξ)D

α
t ξ = cU ′

1(ξ).
Step 2. Suppose that the solution of (4) can be expressed

by a polynomial in (G
′

G ) as follows:

Uj(ξ) =

mj∑
i=0

aj,i(
G′

G
)i, j = 1, 2, ..., k, (5)

where aj,i, i = 0, 1, ...,mj , j = 1, 2, ..., k are constants
to be determined later, aj,mj ̸= 0, the positive integer mj

can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms
appearing in (4), G = G(ξ) satisfies the Jacobi elliptic
equation (1).

Step 3. Substituting (5) into (4) and using (1), we convert
the left-hand side of (4) into another polynomial in GiG′j .
Collecting all coefficients of the same power and Equating
them to zero, one can obtain a set of algebraic equations for
aj,i, i = 0, 1, ...,mj , j = 1, 2, ..., k.

Step 4. Solving the equations system in Step 3, and using
the general solutions of Eq. (1), we can construct a variety
of exact solutions for Eq. (2).

Some general solutions of Eq. (1) are listed as follows.

G(ξ) =



sn(ξ), e2 = m2, e1 = −(1 +m2), e0 = 0,
cn(ξ), e2 = −m2, e1 = 2m2 − 1, e0 = 1−m2,
dn(ξ), e2 = −1, e1 = 2−m2, e0 = m2 − 1,
cs(ξ), e2 = 1, e1 = 2−m2, e0 = 1−m2,
sd(ξ), e2 = m2(m2 − 1), e1 = 2m2 − 1, e0 = 1,
dc(ξ), e2 = 1, e1 = −(m2 + 1), e0 = m2,
−√

e1sech(
√
e1ξ), e2 = −1, e1 > 0, e0 = 0,

−√
e1csch(

√
e1ξ), e2 = 1, e1 > 0, e0 = 0,√

−e1sec(
√
−e1ξ), e2 = 1, e1 < 0, e0 = 0,

1
ξ + C0

, e2 = 1, e1 = 0, e0 = 0,

where sn(ξ), cn(ξ), dn(ξ) denote the Jacobi elliptic sine
function, Jacobi elliptic cosine function, and the Jacobi
elliptic function of the third kind respectively, m is the
modulus of Jacobi elliptic functions, and

cs(ξ) =
cn(ξ)

sn(ξ)
, sd(ξ) =

sn(ξ)

dn(ξ)
, dc(ξ) =

dn(ξ)

cn(ξ)
,

sc(ξ) =
1

cs(ξ)
, ds(ξ) =

1

sd(ξ)
, cd(ξ) =

1

dc(ξ)
,

nd(ξ) =
1

dn(ξ)
, ns(ξ) =

1

sn(ξ)
, nc(ξ) =

1

cn(ξ)
.

Furthermore, one has

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_27

Volume 49, Issue 4: December 2022

 
______________________________________________________________________________________ 



(
G′(ξ)

G(ξ)
) =



cn(ξ)ds(ξ), e2 = m2,
e1 = −(1 +m2), e0 = 0,

−sn(ξ)dc(ξ), e2 = −m2, e1 = 2m2 − 1,
e0 = 1−m2,

−m2sn(ξ)cd(ξ), e2 = −1, e1 = 2−m2,
e0 = m2 − 1,

− dc(ξ)
sn(ξ)

, e2 = 1, e1 = 2−m2,

e0 = 1−m2,
cs(ξ)
dn(ξ)

, e2 = m2(m2 − 1),

e1 = 2m2 − 1, e0 = 1,

(1−m2)
sd(ξ)
cn(ξ)

, e2 = 1,

e1 = −(m2 + 1), e0 = m2,
−√

e1tanh(
√
e1ξ), e2 = −1, e1 > 0, e0 = 0,

−√
e1coth(

√
e1ξ), e2 = 1, e1 > 0, e0 = 0,√

−e1tan(
√
−e1ξ), e2 = 1, e1 < 0, e0 = 0,

− 1
ξ + C0

, e2 = 1, e1 = 0, e0 = 0.

(6)

III. APPLICATION OF THE PRESENT METHOD TO SOME
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

In this section, we present some applications for the
method described in Section II to seek exact solutions for
some fractional partial differential equations.

A. Space fractional (2+1)-dimensional breaking soliton e-
quations

Consider the space fractional (2+1)-dimensional breaking
soliton equations [1]

ut + a ∂2α+βu
∂xα∂xαyβ + 4au∂

αv
∂xα + 4a∂

αu
∂xα v = 0,

∂βu
∂yβ = ∂αv

∂xα ,
,

0 < α, β ≤ 1, (7)

where the contained fractional derivative is defined as the
conformable fractional derivative.

The corresponding integer order equation to Eqs. (7) can
be found in [35-38]. In [1], the authors solved Eqs. (7) by a
fractional sub-equation method based on the known (G’/G)
method, and obtained some exact solutions including hyper-
bolic function solutions, trigonometric function solutions, ra-
tional function solutions and so on. In the following, we will
apply the described method in Section II to solve Eqs. (7). To
begin with, we suppose u(x, y, t) = U(ξ), v(x, y, t) = V (ξ),
where ξ = ct + k1

α xα + k2
β
yβ + ξ0, k1, k2, c, ξ0 are all

constants with k1, k2, c ̸= 0. Then by use of the properties
(ii) and (v), we obtain that

Dα
xu = Dα

xU(ξ) = U ′(ξ)Dα
x ξ = k1U

′(ξ),
Dβ

yu = Dβ
yU(ξ) = U ′(ξ)Dβ

y ξ = k2U
′(ξ),

ut = cU ′(ξ),
(8)

and then Eqs. (7) can be turned into the following form:{
cU ′ + ak21k2U

′′′ + 4ak1UV ′ + 4ak1V U ′ = 0,
k2U

′ = k1V
′.

(9)

Suppose that the solution of Eqs. (9) can be expressed by
U(ξ) =

m1∑
i=0

ai(
G′

G )i,

V (ξ) =
m2∑
i=0

bi(
G′

G )i,
(10)

where G = G(ξ) satisfies the Jacobo elliptic equation (1).
Balancing the order of U ′′′ and UV ′ in the first equation

in (9), U ′ and V ′ in the second equation in (9) we obtain
m1 = m2 = 2. So U(ξ) = a0 + a1(

G′

G ) + a2(
G′

G )2,

V (ξ) = b0 + b1(
G′

G ) + b2(
G′

G )2.
(11)

Substituting (11) into (9), using (1) and collecting all the
terms with the same power of GiG′j together, equating each
coefficient to zero, we obtain a set of algebraic equations.
Solving these equations, we get that

a0 = a0, a1 = 0, a2 = −3

2
k21,

b0 = −−8ak21k2e1 + c+ 4aa0k2
4ak1

, b1 = 0, b2 = −3

2
k1k2,

where a0 is an arbitrary constant.
Substituting the result above into Eqs. (11), and combining

with (6), we can obtain the following exact solutions in the
forms of the Jacobi elliptic functions for Eqs. (7), where
ξ = ct+ k1

α xα + k2
β
yβ + ξ0.

Family 1: when e2 = m2, e1 = −(1 +m2), e0 = 0, the
following Jacobi elliptic function solutions can be obtained:


u1(x, y, t) = a0 − 3

2k
2
1[cn(ξ)ds(ξ)]

2,

v1(x, y, t) = −8ak21k2(1 +m2) + c+ 4aa0k2
4ak1

−3
2k1k2[cn(ξ)ds(ξ)]

2.

(12)

Family 2: when e2 = −m2, e1 = 2m2−1, e0 = 1−m2,


u2(x, y, t) = a0 − 3

2k
2
1[sn(ξ)dc(ξ)]

2,

v2(x, y, t) = −−8ak21k2(2m
2 − 1) + c+ 4aa0k2
4ak1

−3
2k1k2[sn(ξ)dc(ξ)]

2.
(13)

Family 3: when e2 = −1, e1 = 2−m2, e0 = m2 − 1,


u3(x, y, t) = a0 − 3

2k
2
1m

4[sn(ξ)cd(ξ)]2,

v3(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

−3
2k1k2m

4[sn(ξ)cd(ξ)]2.
(14)

Family 4: when e2 = 1, e1 = 2−m2, e0 = 1−m2,


u4(x, y, t) = a0 − 3

2k
2
1[
dc(ξ)
sn(ξ)

]2,

v4(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

−3
2k1k2[

dc(ξ)
sn(ξ)

]2.

(15)
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Family 5: when e2 = m2(m2−1), e1 = 2m2−1, e0 = 1,


u5(x, y, t) = a0 − 3

2k
2
1[
cs(ξ)
dn(ξ)

]2,

v5(x, y, t) = −−8ak21k2(2m
2 − 1) + c+ 4aa0k2
4ak1

−3
2k1k2[

cs(ξ)
dn(ξ)

]2.

(16)
Family 6: when e2 = 1, e1 = −(m2 + 1), e0 = m2,


u6(x, y, t) = a0 − 3

2k
2
1(1−m2)2[

sd(ξ)
cn(ξ)

]2,

v6(x, y, t) = −8ak21k2(m
2 + 1) + c+ 4aa0k2

4ak1

−3
2k1k2(1−m2)2[

sd(ξ)
cn(ξ)

]2.

(17)

One can also obtain corresponding solitary wave solutions,
periodic wave solutions and rational function solutions as
follows, where ξ = ct+ k1

α xα + k2
β
yβ + ξ0.

Family 7: when e2 = −1, e1 > 0, e0 = 0, the following
solitary wave solutions with hyperbolic function forms can
be obtained:


u7(x, y, t) = a0 − 3

2k
2
1e1 tanh

2(
√
e1ξ),

v7(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

−3
2k1k2e1 tanh

2(
√
e1ξ).

(18)
In Figs. 1-2, the solitary wave solutions

u7(x, y, t), v7(x, y, t) in (18) with some special parameters
are demonstrated.

Family 8: when e2 = 1, e1 > 0, e0 = 0,


u8(x, y, t) = a0 − 3

2k
2
1e1 coth

2(
√
e1ξ),

v8(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

−3
2k1k2e1 coth

2(
√
e1ξ).

(19)
Family 9: when e2 = 1, e1 < 0, e0 = 0, the following

trigonometric function solutions can be obtained:


u9(x, y, t) = a0 +

3
2k

2
1e1tan

2(
√
−e1ξ),

v9(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

+3
2k1k2e1tan

2(
√
−e1ξ).

(20)
In Figs. 3-4, the periodic wave solutions

u9(x, y, t), v9(x, y, t) in (20) with some special parameters
are demonstrated.

Family 10: when e2 = 1, e1 = 0, e0 = 0, the following
rational function solutions can be obtained:


u10(x, y, t) = a0 − 3

2k
2
1(

1
ξ + C0

)2,

v10(x, y, t) = −−8ak21k2(2−m2) + c+ 4aa0k2
4ak1

−3
2k1k2(

1
ξ + C0

)2.

(21)

B. Space-time fractional BBM equation

Consider the space-time fractional BBM equation

∂αu

∂tα
+ u

∂βu

∂xβ
+

∂βu

∂xβ
− µ

∂2β+αu

∂xβ∂xβtα
= 0, 0 < α, β ≤ 1,

(22)
which is a variation of the following BBM equation of integer
order:

ut + uux + ux − µuxxt = 0. (23)

In order to apply the present method described in Section

II, suppose u(x, t) = U(ξ), where ξ = ctα
α + kxβ

β
+ ξ0,

k, c, ξ0 are all constants with k, c ̸= 0. Then similar to
above, by use of the properties (ii) and (v), we obtain{

Dα
t u = Dα

t U(ξ) = U ′(ξ)Dα
t ξ = cU ′(ξ),

Dβ
xu = Dβ

xU(ξ) = U ′(ξ)Dβ
xξ = kU ′(ξ),

(24)
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and then Eq. (22) can be turned into the following form:

cU ′ + kUU ′ + kU ′ − µck2U ′′′ = 0. (25)

Suppose that the solution of Eq. (25) can be expressed by

U(ξ) =

n∑
i=0

ai(
G′

G
)i, (26)

where G = G(ξ) satisfies the Jacobo elliptic equation (1).
By Balancing the order between the highest order derivative
term and nonlinear term in Eq. (25), we can obtain n = 2.
So we have

U(ξ) = a0 + a1(
G′

G
) + a2(

G′

G
)2. (27)

Substituting (27) into (25), using (1) and collecting all the
terms with the same power of GiG′j together, equating each

coefficient to zero, we obtain a set of algebraic equations.
Solving these equations, we get that

a0 = −k + c+ 8µck2e1
k

, a1 = 0, a2 = 12µck.

Substituting the result above into Eq. (27), and combining
with (11), we can obtain the following exact solutions in the
forms of the Jacobi elliptic functions for Eq. (22), where

ξ = ctα
α + kxβ

β
+ ξ0.

Family 1: when e2 = m2, e1 = −(1 +m2), e0 = 0,

u1(x, t) = −k + c+ 8µck2e1
k

+12µck[cn(ξ)ds(ξ)]2, (28)

Family 2: when e2 = −m2, e1 = 2m2−1, e0 = 1−m2,

u2(x, t) = −k + c+ 8µck2e1
k

+12µck[sn(ξ)dc(ξ)]2, (29)

Family 3: when e2 = −1, e1 = 2−m2, e0 = m2 − 1,

u3(x, t) = −k + c+ 8µck2e1
k

+ 12µckm4[sn(ξ)cd(ξ)]2.

(30)
Family 4: when e2 = 1, e1 = 2−m2, e0 = 1−m2,

u4(x, t) = −k + c+ 8µck2e1
k

+ 12µck[
dc(ξ)

sn(ξ)
]2. (31)

Family 5: when e2 = m2(m2−1), e1 = 2m2−1, e0 = 1,

u5(x, t) = −k + c+ 8µck2e1
k

+ 12µck[
cs(ξ)

dn(ξ)
]2. (32)

Family 6: when e2 = 1, e1 = −(m2 + 1), e0 = m2,

u6(x, t) = −k + c+ 8µck2e1
k

+ 12µck(1−m2)2[
sd(ξ)

cn(ξ)
]2.

(33)

Remark. Combining with other general solutions of the
Jacobi elliptic equation (1) where e2, e1, e0 taken different
values, one can obtain corresponding hyperbolic function so-
lutions, trigonometric function solutions and rational function
solutions for space-time fractional BBM equation, which are
omitted here for the sake of simplicity.

IV. FURTHER EXTENSIONS OF THE PRESENT METHOD

In this section, we extend the present method in Section
II in three aspects.

First, if we change the form of the polynomial in G(ξ) in
(5), such as

Uj(ξ) =

mj∑
i=0

[aj,i(
G′

G
)i + bj,i(

G′

G
)−i], j = 1, 2, ..., k, (34)

where aj,i, bj,i, i = 0, 1, ...,mj , j = 1, 2, ..., k are constants
to be determined later, aj,mj ̸= 0, then following a similar
process as Sections II and III, one can obtain some more new
exact solutions for the space fractional (2+1)-dimensional
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breaking soliton equations and the space-time fractional
BBM equation.

Second, if we change the form of (5) to

Uj(ξ) =

mj∑
i=0

aj,i(
DαG

G
)i, j = 1, 2, ..., k, (35)

or

Uj(ξ) =

mj∑
i=0

[aj,i(
DαG

G
)i + bj,i(

DαG

G
)−i], j = 1, 2, ..., k,

(36)
where G satisfies the following fractional Jacobi elliptic
equation

(DαG)2 = e2G
4 + e1G

2 + e0, (37)

then combing the properties of the conformable fractional
derivative and (1), one can obtain the solutions of (37), and
furthermore following a similar process as Section III, we
can obtain other new exact solutions for the space fractional
(2+1)-dimensional breaking soliton equations and the space-
time fractional BBM equation.

At last, if we select other different sub-equations from (1),
we can obtain other exact solutions of new forms for the two
fractional differential equations.

V. CONCLUSIONS

In this paper, we have introduced a new approach for
solving fractional partial differential equations in the sense
of the conformable fractional derivative. The most important
point here lies in that certain fractional partial differential
equation can be converted into another ordinary differential
equation of integer order by use of a nonlinear transformation
for ξ, and the exact solutions of the converted ordinary
differential equation can be determined by use of a combi-
nation of the simple equation method and the Jacobi elliptic
equation. For illustrating the validity of this method, we
apply it to seek exact solutions for the space fractional
(2+1)-dimensional breaking soliton equations and the space-
time fractional BBM equation, and as a result, a series of
exact solutions in various forms including the Jacobi elliptic
function solutions, hyperbolic function solutions, trigono-
metric function solutions and rational function solutions for
the two fractional partial differential equations have been
successfully found. We also extend the present method in
three aspects to get more new exact solutions.

REFERENCES

[1] T. Xue, X. Chen, and X. Fan, “Solvability of Fractional Functional
Boundary Value Problems with p-Laplacian Operator at Resonance,”
IAENG International Journal of Applied Mathematics, vol. 51, no. 1,
pp. 100-108, 2021.

[2] Suad Y. Al-Mayyahi, Mohammed S. Abdo, Saleh S. Redhwan, and
Basim N. Abood, “Boundary Value Problems for a Coupled System
of Hadamard-type Fractional Differential Equations,” IAENG Interna-
tional Journal of Applied Mathematics, vol. 51, no. 1, pp. 142-151,
2021.

[3] Sunday O. EDEKI, Olabisi O. UGBEBOR and Enahoro A.
OWOLOKO, “Analytical Solution of the Time-fractional Order Black-
Scholes Model for Stock Option Valuation on No Dividend Yield
Basis,” IAENG International Journal of Applied Mathematics, vol. 47,
no. 4, pp. 407-416, 2017.

[4] Y. Yang, and D. Ji, “Positive Solution for m-point Phi-Riemann-
Liouville Fractional Differential Equations with p-Laplacian Operator,”
IAENG International Journal of Applied Mathematics, vol. 51, no. 1,
pp. 169-174, 2021.

[5] S.X. Zhou, F.W. Meng, Q.H. Feng and L. Dong, “ A Spatial Sixth
Order Finite Difference Scheme for Time Fractional Sub-diffusion
Equation with Variable Coefficient,” IAENG International Journal of
Applied Mathematics, vol. 47, no. 2, pp. 175-181, 2017.

[6] Q.H. Feng, “Compact difference schemes for a class of space-time
fractional differential equations,” Engineering Letters, vol. 27, no. 2,
pp. 269-277, 2019.
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