
 

  

Abstract—With the rapid development of artificial 

intelligence algorithms, using heuristic search optimization 

algorithms to solve optimal reactive power dispatch (ORPD) 

problem has become a hot topic for current research. ORPD is a 

multi-polar, non-convex and non-linear problem with a large 

number and type of constraints as well as discrete nature of 

control variables. This paper proposed a multi-strategy 

improved Aquila optimization (IAO) algorithm to solve the 

ORPD, which introduces a probabilistic perturbation strategy 

to improve the balance between global exploitation and local 

exploration, introduces a Cauchy operator to increase the 

population diversity of Aquila, introduces an elite group 

navigation strategy to further avoid falling into a local optimum, 

and analyzes the performance of IAO. To verify the validity of 

the proposed method in solving the ORPD problem, firstly, the 

simulation experiments of single-objective ORPD (SOORPD) 

are carried out on four test systems of different sizes, 

IEEE14-bus, IEEE30-bus, IEEE57-bus and IEEE118-bus, 

respectively. Then, to further verify the validity of the method, 

the simulation experiments of multi-objective ORPD 

(MOORPD) are carried out on the test system of IEEE30-bus 

with the method and other classical algorithms. Finally, 

Comparing the results of the proposed method, with the results 

of other classical optimization algorithms and the results of 

existing literature, the comparative analysis of the simulation 

results confirms the reliability and validity of the proposed 

method toward solving the ORPD problem. 

 
Index Terms—Multi-strategy; single-objective; intelligence 

algorithm; multi-objective 
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I. INTRODUCTION 

N past studies, optimal reactive power dispatch (ORPD) 

has played a vital role in modern power system planning as 

an effective way to improve power quality and enhance the 

safety and stability of grid operation. Therefore, it has 

received the attention of many researchers working in the 

power system industry. The ORPD problem is a complex 

optimization problem with both discrete and continuous 

variables, nonlinear inequality and equality constraints, and a 

nonlinear objective function. In theory, the ORPD is to adjust 

the reactive power flow by adjusting the generator terminal 

voltage, the reactive power output of reactive power 

compensation equipment and transformer tap ratio to finally 

find the most reasonable distribution of reactive power [1]. 

And the most rational distribution means regulating the 

reactive power at each branch in the system so that one or 

several indicators of the grid are optimized, while ensuring 

that the state variables are within the specified limits. More 

importantly, rational reactive power distribution has a direct 

impact on the voltage operating level [2]. Voltage, as an 

evaluation criterion for the power quality of the power system 

and an important indicator for safe and economic operation, 

is influenced by the reactive power distribution. For instance, 

the low voltage will lead to the failure of full-load output and 

thus affect the stability of the power system, while high 

voltage will lead to equipment damage and thus affect the 

power generation. Therefore, it is the eventual aim of the 

ORPD that the stability of system voltage is ensured, the 

network losses are reduced, and the safety, stability, and 

economy of the power system are improved [3-6]. 

As one of the branches of the optimal power flow, the 

ORPD is considered a nonlinear optimization problem. In the 

past, many traditional optimization methods are applied in 

solution of the ORPD, like quadratic interior point method 

[7], and mixed integer programming [8], etc. However, the 

traditional approaches require demanding conditions to solve 

the ORPD, such as the derivability of the objective function 

and the continuity of the variables. To address these 

drawbacks, many researchers have applied artificial 

intelligence algorithms to solve the ORPD. It does not require 

any properties of the variables and the objective function and 

can easily find the global optimal solution, which 

successfully compensates for the shortcomings of traditional 

optimization methods. In recent years, the intelligent 

optimization algorithms have been used to solve the ORPD 

including particle swarm algorithm (PSO) [9], beetle 

antennae search algorithm (BAS) [10],  pigeon-inspired 

algorithm (PIO) [11], non-dominated sorting genetic 
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algorithm II (NSGA-II) [12], manta ray foraging 

optimization algorithm (MRFO) [13], artificial bee colony 

algorithm (ABC) [14], whale optimization algorithm (WOA) 

[15], imperialist competitive algorithm (ICA) [16], harmony 

search algorithm (HAS) [17], and gravitational search 

algorithm (GSA) [18], etc. However, these methods also 

suffer from the drawbacks of premature convergence, 

parameter dependence on random distribution and the 

tendency to fall into local optimum in solving complex 

high-dimensional ORPD problems [19]. Similarly, The 

Aquila optimization (AO) algorithm also suffers from 

insufficient population diversity and possibly dropping into a 

local optimum. In this paper, the proposed IAO and the 

classical algorithm are used to conduct power system 

SOORPD simulation experiments based on MATLAB 

software. The objective targets minimize active power loss 

(Ploss), minimize voltage deviation (Vd) and minimize voltage 

stability index (Lindex) of the grid, respectively. And 

simulation systems include four test systems of different 

sizes, IEEE14-bus, IEEE30-bus, IEEE57-bus and 

IEEE118-bus. The results of the experiments showcase the 

validity of the improved strategy and the superiority of IAO. 

Moreover, in specific practical engineering applications, 

MOORPD is of great practical significance in solving real 

power system problems. Therefore, if any two of the three 

objective functions are simultaneously optimized, and 

simulation experiments of the MOORPD are conducted in a 

moderately sized IEEE 30-bus test system, the experimental 

results indicate the feasibility of the proposed method, and 

well-distributed Pareto fronts and better Pareto solutions can 

be obtained. This method was first applied to the ORPD. 

The remaining framework of this paper is structured as 

follows. Section Ⅱ gives the formulation definition of the 

ORPD and constraint handling strategy. Section Ⅲ reviews 

the standard AO and proposes corresponding improve 

strategies for its shortcomings and analyzes the performance 

of IAO. Section Ⅳ describes how to apply IAO to the ORPD 

of power systems and analyzes and discusses its simulation 

results. Finally, Section V gives the conclusion. 

II. PROBLEM FORMULATION 

The ORPD serves to optimize the operation of the power 

system to improve the reliability, economy and safety of the 

grid operation by adjusting the reactive power flow through 

the voltage at the generator terminals, the reactive power 

output of the reactive power compensation equipment and the 

transformer tap ratio. 

The ORPD can be divided into two main parts: objective 

function and constraints [20]. Thus, its mathematical 

expression can be described as follows: 

(i)SOORPD is defined by the following formula: 

   ( , ) ( , ),   1,2,iMin F x u f x u i n= =  (1) 

(ii)MOORPD is defined by the following formula: 

 
1 2  ( , ) { ( , ), ( , ), ( , )}nMin F x u f x u f x u f x u=  (2) 

(iii)Both SOORPD and MOORPD are subject to the 

following constraints: 

 
( , ) 0,   1,2,

( , ) 0,   1,2,

i

j

h x u i hn

g x u j gn

= =

 =
 (3) 

 
 

 
min max

min max

,

,

x x x

u u u




 (4) 

where f1(x,u), f2(x,u) and f3(x,u) denote the objective function 

to be optimized; n denotes the number of objective functions; 

h and g denote the equality constraints and inequality 

constraints in the reactive power flow equation, respectively; 

hn and gn denote the maximum number of equality 

constraints and inequality constraints, respectively. Hence, 

the vector x of control variables and the vector u of state 

variables are denoted as follows: 

 
1 1 1

[ , , ]
NPV NT NG

T

G G B B R Rx V V T T Q Q=  (5) 

 
1 1 1

[ , , ]
NPQ NPV NS

T

L L G G AB ABu V V Q Q S S=  (6) 

as known from the above equations, the control variables x 

include: the voltage at the generator bus (VG), the tap ratio at 

the transformer (TB), and reactive power output of reactive 

power compensation equipment (QR); the state variables u 

include: the voltage at the load bus (VL), the reactive power 

output at the generator (QG), and the apparent power at the 

transmission line between buses A and B (SAB); NPV is the 

number of PV buses, NT is the number of transformers, NG is 

the number of reactive power compensation devices , NPQ is 

the number of PQ buses, and NS is the number of network 

tributaries. 

A. Objective Functions 

This section discusses the objective functions for the three 

different optimization objectives used in this study: minimum 

Ploss, minimum Vd, and Lindex. 

1) Minimization of Ploss 

Considering the economics of power system operation, the 

Ploss as the most classical objective in the ORPD, aims to 

minimize the to minimize the active power loss in the 

transmission system, whose mathematical model can be 

expressed as follows: 

 ( )( )2 2

1  ( , ) 2 cosloss k i j i j i j

k NS

Minimize f P x u G V V VV  


 
= = + − − 

 
  (7) 

where Gk is the admittance of branch k; Vi and Vj denote the 

voltage amplitudes of bus i and bus j, respectively; and δi and 

δj denote the phase angles of bus i and bus j, respectively. 

2) Minimization of Vd 

As an important indicator of power quality, voltage 

determines the balance and distribution capacity of the power 

system. Reasonable configuration and optimized operation of 

reactive equipment can improve voltage quality effectively 

and ensure system voltage stability. From the perspective of 

the safety of power system operation and improvement of 

system voltage distribution, minimization of Vd can also be 

used as the optimization objective of the ORPD problem, 

whose formula can be defined as follows: 

 2

1

  
NPQ

d i ref

i

Minimize f V V V
=

 
= = − 

 
  (8) 

where Vi denotes the voltage value of the ith PQ bus; and Vref 

is the ideal voltage with the minimum value of 1 p.u. . 

3) Minimization of Lindex 

Voltage stability is closely related to the reactive power of 

the power system, and continuous changes in the real power 

consumed by the load can lead to voltage instability, even 

with irreversible consequences. Therefore, in the optimal 

reactive power flow, the Lindex is inevitably affected [21]. 
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When solving the ORPD problem, the Lindex, as one of the 

important factors in power system operation planning, should 

also be considered as an optimization objective for the ORPD 

problem, in addition to considering the two objectives of Ploss 

and Vd [22, 23]. By reducing the Lindex of the whole power 

system, the purpose of improving the system voltage stability 

is finally achieved [24]. It is necessary to consider the 

objective function of Lindex in order to enhance the voltage 

stability and distance the power system away from the 

voltage collapse threshold, which is expressed as follows 

[25]: 

 
3  min( )indexMinimize f L=  (9) 

 
1

1

max( ) max(1 ),   
NPV

i

index k VQ VV

i k

V
L L Y Y k NPQ

V

−

=

 = = − −  

 (10) 

where Vi denotes the voltage of the ith PV bus; Vk denotes the 

voltage of the kth PQ bus; YVQ and YVV denote the submatrices 

of the power network conductance matrix after separating the 

PV and PQ buses as follows: 

 
QQQ QV Q

VQV VV V

YI Y V

YI Y V

    
=     

     

 (11) 

as shown in the above formula, the Lindex value is usually 

within the range of [0,1]. When the Lindex value of the load is 

equal to zero, the power system can operate normally and 

stably. However, when the Lindex value is 1, it will lead to an 

abnormal state of voltage collapse. Therefore, when 

determining the Lindex value of the whole system, the stability 

of the whole power system is measured by the minimum of 

the maximum value of the Lindex of the PQ buses. 

B. Constraint Condition 

The objective functions of the three optimization 

objectives of the optimal reactive power dispatch problem 

mentioned in this study are subject to the following power 

system constraints. 

1) Equality Constraints 

The following two equality constraints are derived from 

the power balance equation for power flow calculations: 

  
1

cos sin 0,
WN

gi di i k ik ik ik ik V

k

P P V V G B i N 
=

− − + =  (12) 

  
1

sin cos 0,
WN

gi di i k ik ik ik ik

k

Q Q V V G B i NPQ 
=

− − − =  (13) 

where Pgi and Qgi denote the active power and reactive power 

input to the ith PV bus respectively; Pdi and Qdi denote the 

active power and reactive power dissipated by the ith PQ bus 

respectively; Gik and Bik denote the conductance and the 

susceptance between the bus i and the bus k in the 

transmission line, respectively; and NW denotes the total 

number of buses connected to the bus i; NV denotes the 

number of all buses except the balance bus; NPQ denotes the 

number of PQ buses. 

2) Inequality Constraints 

There are inequality constraints below which can be 

classified into control variable inequality constraints and 

state variable inequality constraints according to the type of 

variables, with the following expressions. 

a) Control variable inequality constraints 

1. Generator terminal voltage limit 

 
,min ,max ,   1,2, ,Gi Gi GiV V V i NPV  =  (14) 

2. Transformer tap ratio limitation 

 
,min ,max ,   1,2, ,Bi Bi BiT T T i NT  =  (15) 

3. Limit of reactive power output of reactive power 

compensation equipment 

 
,min ,max ,   1,2, ,Ri Ri RiQ Q Q i NG  =  (16) 

b) State variable inequality constraints 

1. Reactive power limit of bus PV 

 
,min ,max ,   1,2, ,Gi Gi GiQ Q Q i NPV  =  (17) 

2. Voltage limitation of bus PQ 

 
,min ,max ,   1,2, ,Li Li LiV V V i NPQ  =  (18) 

3. Apparent power limitation 

 
,max ,   1,2, ,ABi ABiS S i NS =  (19) 

The equality constraints are used as a termination 

condition for the power flow calculation, which mark the end 

of the power flow calculation when the equality constraints 

are satisfied; while in the inequality constraints, the control 

variables can be set within the constraint range, but the state 

variables require additional processing. 

C. Constraint Processing Technology 

1) Single-objective Constraint Processing Method 

In the past, reconstructing a new mathematical model 

using penalty functions is the traditional approach to solve 

the problem of constraint handing of reactive optimization, 

but it took a lot of time in adjusting the penalty coefficients. 

Based on the idea of iterative search of the algorithm, this 

paper adopts a new constraint handling method, “superior 

strategy”. It can effectively solve the problem of variables 

exceeding upper and lower limits and guide the algorithm to 

explore the optimal feasible domain. In the iterative process 

of the algorithm, xi(k) represents the position of the individual 

after k iterations, εi(k) represents the best position of the 

individual as of k iterations, and f is the fitness function. λ is 

the constraint evaluation function, whose function is to 

determine whether the individual violates the constraint. The 

size of λ(xi(k)) determines the degree of transgression of the 

corresponding solution, and the larger the value is, the greater 

the degree of transgression. The specific process of the 

strategy is as follows. 

(i)When both λ(εi(k)) and λ(xi(k+1)) are equal to zero, 

compare the values of f(εi(k)) and f(xi(k+1)) and select the 

individual with the smaller value as the kth+1st generation; 

(ii)When one of λ(εi(k)) and λ(xi(k+1)) is zero, the 

individual who does not violate the constraint is selected as 

the next generation; 

(iii)When both λ(εi(k)) and λ(xi(k+1)) are non-zero, 

compare the values of λ(εi(k)) and λ(xi(k+1)) and select the 

individual with the smaller value as the next generation, or if 

they are equal, select randomly. 

Based on the above three conditions, not only the optimal 

individual is found in the search process, but also the problem 

of constraint violation by variables is addressed. In this case, 

the objective function is replaced by the fitness function, 

while the value of individual constraint violation is obtained 

by the constraint evaluation function. Applying the strategy 

to the ORPD problem, the relevant mathematical formulation 

can be expressed as: 
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1 1 1

( ) ( ) ( ) ( )
NPQNPV NS

gi dj k

i j k

x Q x V x S x   
= = =

= + +    (20) 

where x denotes the position of the current population 

individual; λQG(x), λVL(x) and λSAB(x) denote the constraint 

violation values of the state variables (including the reactive 

power output of the PV bus, the voltage of the PQ bus and the 

apparent power of each branch), respectively, taken in the 

following way: 

 

min min

max max

,

,

0,

u u u u

u u u u u

otherwise



− 


= − 



 (21) 

2) Multi-objective Constraint Processing Method 

Like the single-objective optimization problem, the 

iterative process of the initial population in the 

multi-objective optimization problem also requires the 

treatment of system constraints. Similarly, the types of 

constraints handled by the multi-objective optimization 

problem are also classified into equality and inequality 

constraints. Unlike the single-objective constraint processing 

method, this paper adopts the “constraint domination 

strategy” to deal with the constraints of multi-objective state 

variables. The process is shown as follows. 

Let x1 and x2 denote the two sets of control variables, 

respectively, and the constraint evaluation function be the 

sum of the transgression limits of each state variable u. 

 
1

( ) ( , )
DN

i

i

x g x u
=

=   (22) 

where ND denotes the number of state variable inequality 

constraints; gi denotes the ith inequality constraint. 

(i)When λ(x1) is smaller than λ(x2), x1 dominates x2 and x1 

is selected as the next generation of population individuals; 

(ii)When λ(x1) is greater than λ(x2), x2 dominates x1 and x2 

is selected as the next generation of population individuals. 

(iii)When λ(x1) and λ(x2) are equal, if both satisfy the 

following equation: 

 
1 2{1,2,..., }: ( ) ( )i ii m f x f x    (23) 

 
1 2{1,2,..., }: ( ) ( )j jj m f x f x    (24) 

x1 dominates x2, then x1 is selected as the next generation 

particle; if not, x1 and x2 do not dominate each other, and an 

individual is randomly selected as the next generation 

population individual. 

The above is the process in which the constraint 

domination strategy deals with the multi-objective state 

variable constraints. Through the above three steps, the 

population individuals will move to the direction closer to the 

optimal solution and more feasible. This process not only 

solves the problem of state variables crossing the limit but 

also can promote the evolution of the population individuals. 

III. THE PROPOSED APPROACH 

AO is a novel intelligent algorithm proposed by Laith 

Abualigah et al. in 2021. It is easy to implement and simple to 

calculate. It has been used in solving industrial engineering 

optimization problems [26] and image classification 

problems [27]. However, AO still has disadvantages such as 

insufficient local exploration capability and diversity of 

search space. To address these shortcomings, an IAO is 

proposed. 

A. Overview of the Aquila Optimization Algorithm 

AO is inspired by four group behaviors during predation of 

Aquila birds in North America: 1. expanding the search range 

by soaring vertically high for birds hunting in flight; 2. 

attacking prey in low-level air near the ground by contour 

flight with short gliding attacks; 3. gradually attacking prey 

by flying low and descending slowly; 4. walking and 

grabbing prey on land by swooping [28]. The optimization 

process of this algorithm is divided into four parts: expanded 

exploration, narrowed exploration, expanded mining and 

narrowed mining, and the specific formulas are as follows. 

1) Expanded Exploration Phase 

1

max

( 1) ( ) (1 ) ( ( ) ( )* )gbest m gbest

k
w k w k w k w k rand

k
+ =  − + − (25) 

 
1

1
( ) ( ), 1,2, ,

SampleN

m i im

iSample

w k w k j D
N =

=  =  (26) 

where wgbest(k) denotes the global best solution obtained 

before the kth iteration; kmax is the maximum number of 

iterations; wm(k) denotes that at the kth iteration is the average 

of all current solutions; NSample and Dim denote the number of 

candidate solutions and the dimensional size of the problem, 

respectively. 

2) Narrowed Exploration Phase 

2 ( 1) ( ) ( ) ( ) ( )gbest im rw k w k Levy D w k H L rand+ =  + + −  (27) 

 
1

( )imLevy D s



 




=   (28) 

 
1

( )
2

(1 ) sin( )
2( )

1
( ) 2

2










−

 + 

=
+

  

 (29) 

where Levy(Dim) denotes the Lévy flight distribution function 

to improve the global search capability; Г(1+μ) denotes the 

standard gamma function; s is fixed to a value of 0.01, μ is 

fixed to a value of 1.5, α and β denote random numbers from 

0 to 1; and wr(k) denotes the random solution among all 

solutions in the kth iteration. 

 sin( )H R =   (30) 

 cos( )L R =   (31) 

 
1 1R R c D= +   (32) 

 
1 1d D = −  +  (33) 

 1

3

2





=  (34) 

where c is a small value fixed at 0.00565 and d is a small 

value fixed at 0.005; R1 is in the range [1,20]; and D1 is an 

integer from 1 to Dim. 

3) Expanded Mining Phase 

3( 1) ( ( ) ( )) (( ) )gbest mw k w k w k rand ub lb rand lb+ = −  − + −  +   (35) 

where A and B denote the mining adjustment factor, fixed to 

the lesser of 0.1; ub and lb denote the upper and lower limits, 

respectively. 

4) Narrowed Mining Phase 

 
4 1

2 1

( 1) ( ) ( ( ) )

( )

gbest

im

w k QF w k g w k rand

g Levy D rand g

+ =  −  

−  + 
 (36) 

 
2

max

2 1

(1 )
( )

rand

k
QF k k

 −

−
=  (37) 
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1 2 1g rand=  −  (38) 

 2

max

2
k

g
k

= （1- ） (39) 

where QF represents the value of the function used to balance 

the search strategy; g1 represents the various movements of 

Aquila during prey tracking; and g2 represents the linearly 

decreasing value of the flight slope. 

B. Proposed IAO 

In order to improve the standard AO to jump out of the 

local optimum and to enhance the global search, this section 

proposes three strategies to improve AO: probabilistic 

perturbation strategy, elite group navigation strategy and 

introduction of the Cauchy operator, and modifications to the 

algorithm’s expanded mining phase and narrowed mining 

phase. 

1) Probabilistic Perturbation Strategy 

In the standard AO, the local search and global search 

processes are controlled with random variables. A reasonable 

algorithm search process should, in the early stage, perform a 

stronger global search to quickly locate the range of the 

global optimum in the search space; in the later stage, it 

should slightly enhance the local search capability to improve 

the algorithm’s search degree. The introduction of a 

probabilistic perturbation strategy to balance the weight of 

local search and global search can achieve better search 

results. The mathematical expression of the probabilistic 

perturbation strategy is as follows: 

 
max min max max( ) /p p p k k k= −  −  (40) 

where pmax and pmin are set to 0.6 and 0.1, respectively; k is the 

current number of iterations; kmax is the maximum number of 

iterations. 

2) Introduction of Cauchy Operator 

To address the shortcomings of insufficient diversity in the 

AO search space and the tendency to fall into the local 

optimum, the Cauchy variation is employed to increase the 

diversity of the population, which improves the ability of the 

algorithm to find the global optimum and increases the search 

space. In the Cauchy function, there is a maximum value at 

the origin, which is more widely distributed on both sides. 

The Cauchy variation can bring a greater perturbation to the 

current optimum, thus making the range of the Cauchy 

distribution function wider. Moreover, by using the Cauchy 

variant at both ends, jumping out of the local optimum is 

easier. In this paper, we use the effect of the two-end 

variation of the Cauchy distribution function to optimize the 

global optimum, so that the algorithm can reach the global 

optimum faster and better. The standard Cauchy distribution 

function formula is as follows: 

 
2

1 1
( ) ( )

1
f X

X
=

+
 (41) 

Random perturbation using Cauchy variants facilitates the 

diversity of the population, thus avoiding the algorithm to fall 

into local optimum and to improve the global optimization 

capability. The features of the Cauchy distribution give it the 

ability to generate random numbers away from the origin. It 

means that the Cauchy variation of Aquila individuals can 

quickly escape from local extremes. Besides, the low peak of 

the Cauchy distribution function can shorten the search time 

of the mutated Aquila individuals around the domain by 

using this feature. Therefore, after the current optimum is 

obtained, the variation of the global optimum in this paper is 

formulated as follows. 

 (1 (0,1))newgbest gbestw w Cauchy=  +  (42) 

The formulas for expanded exploration phase and 

narrowed exploration phase after the introduction of the 

Cauchy operator are respectively as follows: 

 1

max

( 1) ( ) (1 ) ( ( ) ( )* )newgbest m gbest

k
w k w k w k w k rand

k
+ =  − + −  (43) 

3( 1) ( ( ) ( )) (( ) )newgbest mw k w k w k rand ub lb rand lb+ = −  − + −  +  (44) 

3) Elite Group Navigation Strategy 

To improve the accuracy of the local optimization search 

again, an elite group navigation strategy was used to update 

the position of all Aquila individuals. Using the tendency of 

Aquila that individuals move closer to the best individual in 

the population to change the position of the Aquila 

population, it can finally escape from the local optimum 

quickly. The specific formula is as follows: 

 1 ( )new pbestw w m w w =  +  −   (45) 

where w denotes all solutions; wnew denotes the updated 

solution; wpbest denotes the individual best solution; m is a 

random number from 0 to 2, indicating the degree of 

optimization. 

C. Performance Analysis of IAO 

1) Single-objective test function simulation experiments 

To prove the validity of the improved strategy in the 

optimization process, four typical benchmark test functions 

are used in simulation experiments related to the performance 

of IAO. The four typical benchmark functions include two 

unimodal test functions and two multimodal test functions. 

The mathematical definitions, value ranges, global minimum, 

and algorithm parameter settings of the four test functions are 

given in TABLE II. Because the distribution and shape of the 

extreme value of these test functions are different, 

experiments with these test functions can represent the 

degree of algorithmic merit. Among them, Sphere and Step 

are unimodal test functions with only the global minimum 

value of 0 and no local optimum trap. And the final function 

value is close to 0 during the search calculation, which 

indicates the higher the global search accuracy of the 

algorithm. Ackley and Schwefel are continuous multimodal 

test functions where there are multiple local minima and the 

global optimum is 0. The closer the global optimal solution 

obtained is to 0 during the iterative computation, the better 

the algorithm is at finding the optimal in the multimodal test 

function. The four test functions mentioned above can check 

the performance of the algorithm in different dimensions. 

To obtain reliable results, AO and IAO conducted 30 

simulations independently on four benchmark test functions 

and simultaneously recorded the best, worst, mean and 

standard deviation values obtained from the experiments, 

which were then analyzed and compared. 

As shown in Fig. 1-Fig. 4, comparison graphs of the 

convergence of AO and IAO in each of the four tested 

functions are given. It can be found that after improvement by 

probabilistic perturbation strategy, Cauchy operator and elite 

group navigation strategy, IAO has better search 

performance, faster convergence, and great optimization 

results. As shown in TABLE III, the optimal value, the best, 
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worst, mean and standard deviation results of IAO obtained 

are significantly better than the results of AO, and the 

comprehensive performance of IAO, such as the global 

search ability and the solution accuracy, is significantly 

improved. It further proves that the proposed strategy is 

feasible and efficient for the improvement of AO. 

2) Multi-objective test function simulation experiments 

To verify again the performance of the improved strategy 

proposed in this paper in handling the multi-objective 

problem, four multi-objective test functions are used to test 

IAO in this section. The information related to the test 

functions is shown in TABLE IV. In this section of 

experiments, 20 independent simulation experiments are 

conducted for different test functions, respectively. The 

remaining parameters for this experiment are set as follows: 

at a population size, the maximum number of iterations is set 

to 300 in ZDT1 and ZDT2 and 500 in ZDT3 and ZDT4; at 

population size of 100, the maximum number of iterations is 

set to 500 in ZDT1 and ZDT2 and 600 in ZDT3 and ZDT4. 

As shown in Fig. 5-Fig. 12, there are the Pareto plots 

obtained by IAO for different population size simulation 

experiments in the above four test functions. The blue color 

indicates the real Pareto front, and the red color indicates the 

Pareto front formed by the non-inferior solution obtained by 

IAO optimization. It can be seen apparently that the 

non-inferior solution obtained by IAO is uniformly 

distributed and very close to the true Pareto front. Moreover, 

the optimized results of IAO are extremely close to the real 

Pareto frontier regardless of whether the population size is 50 

or 100, which greatly demonstrates that IAO has better search 

ability and potential. In the meanwhile, it further proves the 

validity and applicability of the improved method proposed 

in this paper. In summary, IAO shows better optimization 

performance in solving multi-objective test function 

problems, so it has great potential in solving complex 

multi-objective optimization problems. 

 
TABLE I  

PSEUDO CODE OF IAO ALGORITHM 

Input: Objective function of SOORPD or MOORPD: F(x,u)=fi(x,u), 

i=1,2,…n; or F(x,u)={f1(x,u),f2(x,u),…,fn(x,u)}; 

Initial populations generated in the range of control variables;  

Set the basic parameters of IAO: kmax, NSample, c, d, etc; 

begin: k=1 

while k < kmax 

for (i=1,2,…, NSample) do 

Update the wm, H, L, Levy(Dim), etc; 

Calculating objective function values and constraint values, recording 

individual best values wpbest and global best values wgbest; 

if k≤(2/3)*k then 
if p<rand then 

Perform expanded exploration phase Eq (43); 

Else 

Perform narrowed exploration phase Eq (46); 

Else 

if p<rand then 

Perform expanded mining phase Eq (44); 

Else 

Perform narrowed mining phase Eq (47); 

end for 

Perform elite group navigation strategy Eq (45); 

k =k+1; 

end while 

Application of constraint processing rules to update individual best values 

wpbest and global best values wgbest; 

end 

Output: The current global best values: wgbest. 

 

 

 

TABLE II  

DESCRIPTION OF TEST FUNCTION AND PARAMETER SETTING 

Function name Mathematical formulae Value range Minimum value Dimension Population size Generations 

Sphere 
2

1 1

n

ii
M a

=
=   [ 100,100]ia = −  0 30 30 50 

Step 
2

2 1
[ 0.5]

n

ii
M a

=
= +  [ 100,100]ia = −  0 30 30 1000 

Ackley 

1 2

3 1

1

1

20exp( 0.2 )

exp( cos 2 ) 20

n

ii

n

ii

M n a

n a e

−

=

−

=

= − −

− + +




 [ 32,32]ia = −  0 30 100 50 

Schwefel 4 1 1

nn

i ii i
M a a

= =
= +   [ 10,10]ia = −  0 30 100 1000 

 

 

 
TABLE III  

PERFORMANCE EVALUATION RESULTS 

Function 

name 

AO IAO 

Best Worst Mean Deviation Best Worst Mean Deviation 

Sphere 5.96E-23 8.44E-13 5.18E-14 1.74E-13 1.25E-39 9.98E-23 3.35E-24 1.79E-23 

Step 7.65E-07 6.57E-04 6.74E-05 1.54E-04 6.80E-09 9.72E-07 3.37E-07 2.50E-07 
Ackley 5.37E-13 9.64E-10 6.84E-11 1.75E-10 8.88E-16 8.88E-16 8.88E-16 0.00E+00 

Schwefel 1.55E-161 8.82E-153 3.00E-154 1.58E-153 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Fig. 1.   Convergence curve of Sphere 

 

Fig. 2.   Convergence curve of Step 
 

  
Fig. 3.   Convergence curve of Ackley Fig. 4.   Convergence curve of Schwefel 
 

TABLE IV  

DESCRIPTION OF TEST FUNCTION 

Function name Mathematical formulae Value range Dimension 

ZDT1 

1 1

2 1

2

( )

( ) ( )[1 / ( )]

( ) 1 9( ) / ( 1)
n

ii

M a a

M a N a a N a

N a a n
=

 =



= −


= + − 

 [0,1]ia   30 

ZDT2 

1 1

2

2 1

2

( )

( ) ( )[1 ( / ( )) ]

( ) 1 9( ) / ( 1)
n

ii

M a a

M a N a a N a

N a a n
=

 =


= −


= + − 

 [0,1]ia   30 

ZDT3 

1 1

2 1 1 1

2

( )

( ) ( )[1 / ( ) ( / ( ))sin(10 )]

( ) 1 9( ) / ( 1)
n

ii

M a a

M a N a a N a a N a a

N a a n



=

 =



= − −


= + − 

 [0,1]ia   30 

ZDT4 

1 1

2 1

2

2

( )

( ) 1 / ( )

( ) 1 10( 1) ( 10cos(4 ))
n

i i

i

M a a

M a a N a

N a n a a
=


 =


= −

 = + − + −




 

1 [0,1]

[ 10,10]  

2,...,

i

a

a

i n



 −

=

 30 
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Fig. 5.   Pareto curve of ZDT1 at NSample is 50 Fig. 6.   Pareto curve of ZDT1 at NSample is 100 

  
Fig. 7.   Pareto curve of ZDT2 at NSample is 50 Fig. 8.   Pareto curve of ZDT2 at NSample is 100 

  
Fig. 9.   Pareto curve of ZDT3 at NSample is 50 Fig. 10. Pareto curve of ZDT3 at NSample is 100 

  
Fig. 11. Pareto curve of ZDT4 at NSample is 50 Fig. 12. Pareto curve of ZDT4 at NSample is 100 
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start

end

Generate the initial population, k=1

Calculate the individual fitness value and limit crossing, and record 

the individual optimal value and the global optimal value

Use IAO to update individual positions and 

obtain new populations

Calculate the objective function value of 

the updated population, k=k+1

Output: the global optimal 

solution

Apply a superior strategy to update 

individual best values and global best 

values

No

Yes

SOORPD MOORPD

Generate the initial population, calculate the objective function value 

for each individual, and determine the dominance relationship 

between individuals

Save non-dominated individuals to 

an external archive, k=0

Use IAO to update individual 

positions and obtain new populations

Output: optimal 

compromise solution

Calculate the objective function value of the updated population and 

determine the dominance relationship between individuals, k=k+1

No

Yes

Are the termination 

conditions met?

Apply constraint domination strategy 

to maintain and update external files

Are the termination 

conditions met?

SOORPD or MOORPD?

Parameter settings: 1. bus data of the test system; 2. initial 

parameters of the algorithm: NSample, kmax, etc.

 
Fig. 13. Process for solving SOORPD and MOORPD problems 

 
TABLE V  

SYSTEM DATA OF THE TEST SYSTEM 

System Data IEEE14-bus system IEEE30-bus system IEEE57-bus system 

Active power of generators (MW) 272.39 289.23 1278.66 

Reactive power of generators (MVAr) 82.44 139.10 321.08 

Active power demands (MW) 259.00 283.40 1250.80 

Reactive power demands (MVAr) 73.50 126.20 336.40 

Active power losses (MW) 13.393 5.832 27.864 

Reactive power losses (MVAr) 54.54 30.23 121.67 

 

 

1

5

2
3

4

8

7

1011

12

6

13 14

9

G G

G

G

G

 
Fig. 14. Structure diagram of IEEE14-bus 
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Fig. 15. Structure diagram of IEEE30-bus 
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TABLE VI  

COMPARISON OF SIMULATION RESULTS FOR OPTIMIZED Ploss AND Vd 

Control 

variable 
GSA PSO AO IAO 

Control 

variable 
GSA PSO AO IAO 

Vg1(p.u.) 1.1000 1.1000 1.1000 1.1000 Vg1(p.u.) 1.0521 1.0622 1.0539 1.0599 

Vg2 1.0773 1.0767 1.0768 1.0767 Vg2 1.0308 1.0410 1.0316 1.0404 

Vg3 1.0519 1.0465 1.0464 1.0463 Vg3 0.9999 1.0095 1.0034 1.0114 

Vg6 1.1000 1.0226 1.0029 1.0634 Vg6 1.0216 1.0216 1.0216 1.0172 

Vg8 1.1000 1.0878 1.0696 1.0930 Vg8 1.0420 1.0312 1.0446 1.0349 

T4-7 0.9400 0.9800 1.0000 1.0400 T4-7 1.0000 0.9200 1.0000 1.0400 

T4-9 0.9000 1.1000 0.9800 0.9000 T4-9 0.9400 1.0400 0.9600 0.9000 

T5-6 0.9600 1.0400 1.0800 1.0000 T5-6 0.9400 0.9400 0.9600 0.9200 

Qc9(p.u.) 0.0450 0.0500 0.0450 0.0500 Qc9(p.u.) 0.0350 0.0500 0.0450 0.0500 

Ploss(MW) 12.5043 12.4466 12.5516 12.3978 Vd(p.u.) 0.0514 0.0677 0.0498 0.0337 

 
Fig. 16. Distribution of experimental results of optimized Ploss 

 

 
Fig. 17. Distribution of experimental results of optimized Vd 

 

 
Fig. 18. Distribution of experimental results of optimized Ploss 

 
Fig. 19. Average convergence curve of optimized Ploss 

 

 
Fig. 20. Average convergence curve of optimized Vd 

 

 
Fig. 21. Average convergence curve of optimized Ploss 
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TABLE VII  

COMPARISON OF SIMULATION RESULTS FOR OPTIMIZED Ploss AND Vd 

Control 

variable 
GSA PSO AO IAO 

Control 

variable 
GSA PSO AO IAO 

Vg1(p.u.) 1.0806 1.0824 1.082159 1.0821 Vg1(p.u.) 1.0127 1.0176 1.0096 1.0055 

Vg2 1.0717 1.0730 1.0728 1.0729 Vg2 1.0095 1.0174 1.0069 1.0016 

Vg5 1.0497 1.0505 1.0502 1.0511 Vg5 1.0206 1.0151 1.0201 1.0185 

Vg8 1.0504 1.0507 1.0511 1.0510 Vg8 1.0082 1.0074 1.0075 1.0081 

Vg11 1.1000 1.1000 1.0938 1.0971 Vg11 1.0408 1.0879 1.0401 1.0403 

Vg13 1.0719 1.0465 1.0655 1.0597 Vg13 1.0152 0.9910 1.0308 1.0214 

T6-9 1.0120 0.9760 1.0000 1.0720 T6-9 0.9920 1.1000 1.0260 1.0580 

T6-10 0.9840 1.1000 1.0040 0.9120 T6-10 0.9360 0.9000 0.9020 0.9000 

T4-12 0.9980 1.0100 0.9920 0.9840 T4-12 0.9740 0.9380 0.9940 1.0020 

T28-27 0.9880 0.9860 0.9880 0.9760 T28-27 0.9640 0.9660 0.9580 0.9700 

Qc10(p.u.) 0.0205 0.0000 0.0360 0.0210 Qc10(p.u.) 0.0215 0.0000 0.0110 0.0495 

Qc12 0.0325 0.0500 0.0450 0.0320 Qc12 0.0280 0.0000 0.0160 0.0235 

Qc15 0.0310 0.0500 0.0285 0.0440 Qc15 0.0310 0.0500 0.0255 0.0500 

Qc17 0.0260 0.0000 0.0410 0.0485 Qc17 0.0265 0.0500 0.0190 0.0015 

Qc20 0.0245 0.0470 0.0205 0.0360 Qc20 0.0305 0.0000 0.0475 0.0500 

Qc21 0.0250 0.0500 0.0245 0.0495 Qc21 0.0230 0.0500 0.0345 0.0475 

Qc23 0.0330 0.0315 0.0295 0.0260 Qc23 0.0315 0.0500 0.0175 0.0500 

Qc24 0.0290 0.0500 0.0330 0.0500 Qc24 0.0345 0.0500 0.0270 0.0495 

Qc29 0.0300 0.0000 0.0260 0.0235 Qc29 0.0350 0.0220 0.0325 0.0315 

Ploss(MW) 4.8132 4.8429 4.8103 4.7664 Vd(p.u.) 0.1321 0.1191 0.1240 0.0887 

 

 
Fig. 22. Distribution of experimental results of optimized Lindex 

 

 
Fig. 23. Average convergence curve of optimized Lindex

 

TABLE VIII  

OPTIMIZATION OF THE BEST COMPROMISE SOLUTION AND CONTROL VARIABLES OBTAINED 

Control 

variable 
MOPSO MOAO MOIAO MOIPSO[29] 

Control 

variable 
MOPSO MOAO MOIAO GBICA[30] 

Vg1(p.u.) 1.1000 0.9816 1.0453 0.9057 Vg1(p.u.) 1.1000 1.1000 1.0526 1.6036 

Vg2 1.1000 0.9773 1.1000 0.9616 Vg2 0.9500 1.1000 1.0305 1.0566 

Vg5 1.1000 0.9768 1.0613 0.9068 Vg5 0.9500 1.1000 0.9817 1.0273 

Vg8 0.9500 0.9777 1.1000 0.9511 Vg8 1.1000 1.1000 1.0959 1.0258 

Vg11 1.1000 0.9720 0.9941 1.0659 Vg11 0.9500 1.1000 0.9550 1.0279 

Vg13 1.1000 0.9784 0.9978 1.1000 Vg13 1.1000 1.1000 1.0732 1.0104 

T6-9 0.9763 0.9550 0.9740 0.9300 T6-9 1.0836 1.0030 1.0765 1.0100 

T6-10 0.9000 0.9505 0.9001 1.1000 T6-10 0.9000 1.0060 0.9004 1.0300 

T4-12 0.9418 0.9715 0.9378 1.1000 T4-12 1.0215 1.0463 1.0232 0.9700 

T28-27 0.9230 0.9272 0.9103 0.9500 T28-27 0.9793 0.9711 0.9773 0.9800 

Qc10(p.u.) 0.0500 0.0372 0.0500 0.1300 Qc10(p.u.) 0.0000 0.0500 0.0000 0.1700 

Qc12 0.0500 0.0158 0.0499 0.0300 Qc12 0.0000 0.0325 0.0000 - 

Qc15 0.0500 0.0465 0.0499 0.0800 Qc15 0.0140 0.0500 0.0259 - 

Qc17 0.0500 0.0500 0.0500 0.0000 Qc17 0.0500 0.0500 0.0493 - 

Qc20 0.0500 0.0464 0.0499 0.0300 Qc20 0.0413 0.0500 0.0409 - 

Qc21 0.0500 0.0500 0.0500 0.1200 Qc21 0.0500 0.0500 0.0500 - 

Qc23 0.0500 0.0237 0.0471 0.0400 Qc23 0.0500 0.0209 0.0288 - 

Qc24 0.0500 0.0500 0.0500 0.0000 Qc24 0.0500 0.0500 0.0500 0.1300 

Qc29 0.0500 0.0373 0.0294 0.0200 Qc29 0.0234 0.0170 0.0220 - 

Ploss(MW) 5.1381 5.1411 5.1373 5.2150 Ploss(MW) 5.1411 5.1479 5.1388 5.2063 

Lindex 0.1327 0.1357 0.1319 0.1264 Vd(p.u.) 0.2417 0.2761 0.2385 0.2627 

Remark: - indicates that the corresponding literature does not provide specific values. 
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TABLE IX  

COMPARISON OF SIMULATION RESULTS FOR OPTIMIZED Ploss AND Vd 

Control 

variable 
GSA PSO AO IAO 

Control 

variable 
GSA PSO AO IAO 

Vg1(p.u.) 1.1000 1.1000 1.1000 1.1000 Vg1(p.u.) 1.0125 1.0273 1.0200 1.011 

Vg2 1.0972 1.1000 1.0995 1.0992 Vg2 0.9953 1.0089 1.0241 0.9942 

Vg3 1.0834 1.0886 1.0899 1.0893 Vg3 0.9994 1.0065 1.0104 1.0054 

Vg6 1.0728 1.0818 1.0829 1.0828 Vg6 1.0070 1.0106 1.0031 1.0117 

Vg8 1.0919 1.1000 1.1000 1.1000 Vg8 1.0465 1.0528 1.0338 1.0454 

Vg9 1.0791 1.0841 1.0866 1.0841 Vg9 1.0235 1.0251 1.0200 1.0250 

Vg12 1.0759 1.0773 1.0833 1.0795 Vg12 1.0158 1.0042 1.0255 1.0195 

T4-18 0.9700 1.0500 0.9900 1.1000 T4-18 1.0000 1.0273 0.9700 0.9700 

T4-18 1.0100 0.9000 1.0000 0.9500 T4-18 1.0000 1.0089 0.9800 0.9800 

T21-20 0.9800 1.0000 0.9800 1.0700 T21-20 0.9800 1.1000 0.9700 0.9800 

T24-25 0.9900 0.9000 1.0100 1.0300 T24-25 0.9700 0.9000 0.9200 0.9400 

T24-25 0.9400 1.1000 0.9800 0.9500 T24-25 0.9500 0.9700 0.9700 1.1000 

T24-26 1.0200 1.1000 1.0100 1.0200 T24-26 1.0400 0.9800 0.9800 1.0000 

T7-29 0.9700 1.0700 1.0000 0.9900 T7-29 0.9900 1.0100 0.9800 1.0100 

T34-32 0.9900 0.9500 1.0000 0.9400 T34-32 0.9300 1.0100 0.9400 0.9300 

T11-41 0.9900 0.9000 0.9800 0.9200 T11-41 0.9000 0.9800 0.9000 0.9000 

T15-45 0.9800 0.9800 0.9900 0.9800 T15-45 0.9200 0.9200 0.9600 0.9600 

T14-46 0.9700 0.9600 1.0100 0.9600 T14-46 0.9400 0.9000 0.9400 0.9200 

T10-51 0.9900 0.9700 1.0100 0.9700 T10-51 0.9700 0.9000 0.9800 1.0100 

T13-49 0.9600 0.9000 1.0200 0.9300 T13-49 0.9500 0.9900 0.9200 0.9100 

T11-43 0.9900 1.1000 1.0400 0.9700 T11-43 0.9800 0.9900 0.9900 1.0100 

T40-56 0.9900 0.9000 1.0200 1.000 T40-56 1.0100 0.9000 0.9700 0.9500 

T39-57 0.9700 1.1000 1.0100 0.9700 T39-57 0.9400 1.0000 0.9800 0.9200 

T9-55 0.9900 1.1000 1.0000 0.9900 T9-55 0.0500 0.9000 0.9800 1.0000 

Qc18(p.u.) 0.0850 0.0000 0.0900 0.0100 Qc18(p.u.) 0.1100 0.9700 0.0400 0.0350 

Qc25 0.1020 0.1080 0.1260 0.0960 Qc25 0.0550 0.9900 0.0650 0.1400 

Qc53 0.0960 0.1800 0.0780 0.1140 Qc53 0.1260 0.0000 0.0180 0.1740 

Ploss(MW) 22.5085 23.0471 22.8777 22.2123 Vd(p.u.) 0.7047 0.7022 0.7922 0.6513 

 
Fig. 24. Distribution of experimental results of optimized Lindex 

 

 
Fig. 25. Average convergence curve of optimized Lindex 

 
Fig. 26. Distribution of experimental results of optimized Ploss 

 

 
Fig. 27. Average convergence curve of optimized Ploss 
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TABLE X  

COMPARISON OF SIMULATION RESULTS FOR OPTIMIZED Ploss 

Control variable GSA AO IAO Control variable GSA AO IAO 

Vg1(p.u.) 0.9951 1.0262 1.0401 Vg89 1.0391 1.0600 1.0600 

Vg4 1.0188 1.0522 1.0544 Vg90 1.0037 1.0397 1.0456 

Vg6 1.0087 1.0414 1.0448 Vg91 1.0027 1.0386 1.0471 

Vg8 1.0335 1.0468 1.0441 Vg92 1.0199 1.0551 1.0581 

Vg10 1.0251 1.0504 1.0531 Vg99 0.9941 1.0378 1.0555 

Vg12 1.0063 1.0373 1.0463 Vg100 1.0115 1.0546 1.0600 

Vg15 1.0020 1.0315 1.0464 Vg103 1.0022 1.0485 1.0529 

Vg18 1.0122 1.0288 1.0502 Vg104 1.0012 1.0384 1.0446 

Vg19 1.0041 1.0287 1.0464 Vg105 0.9988 1.0373 1.0449 

Vg24 1.0133 1.0495 1.0502 Vg107 0.9910 1.0217 1.0381 

Vg25 1.0143 1.0600 1.0600 Vg110 0.9899 1.0436 1.0463 

Vg26 1.0067 1.0561 1.0599 Vg111 1.0035 1.0528 1.0503 

Vg27 1.0045 1.0346 1.0339 Vg112 0.9757 1.0302 1.0337 

Vg31 0.9983 1.0264 1.0349 Vg113 1.0147 1.0437 1.0564 

Vg32 1.0032 1.0333 1.0367 Vg116 1.0181 1.0486 1.0484 

Vg34 0.9965 1.0382 1.0559 T8-5 1.0100 1.0200 0.9800 

Vg36 0.9848 1.0389 1.0521 T26-25 1.0200 1.0200 1.0000 

Vg40 0.9947 1.0244 1.0374 T30-17 1.0000 1.0100 0.9800 

Vg42 0.9959 1.0335 1.0420 T38-37 0.9800 1.0100 0.9700 

Vg46 1.0043 1.0403 1.0420 T63-59 1.0000 1.0100 0.9900 

Vg49 1.0110 1.0587 1.0583 T64-61 1.0000 1.0100 0.9700 

Vg54 0.9946 1.0377 1.0377 T65-66 1.0000 1.0000 0.9900 

Vg55 0.9941 1.0369 1.0364 T68-69 0.9900 1.0100 1.0000 

Vg56 0.9932 1.0366 1.0365 T81-80 0.9900 1.0000 0.9900 

Vg59 1.0066 1.0519 1.0579 C5(p.u.) -0.1500 -0.1600 -0.1100 

Vg61 0.9857 1.0483 1.0595 C34 0.1800 0.1700 0.1400 

Vg62 0.9722 1.0450 1.0560 C37 -0.1700 -0.1800 -0.1400 

Vg65 1.0298 1.0519 1.0515 C44 0.1700 0.1700 0.1300 

Vg66 1.0170 1.0600 1.0600 C45 0.1300 0.1600 0.1100 

Vg69 1.0388 1.0599 1.0600 C46 0.1200 0.1700 0.1300 

Vg70 1.0048 1.0393 1.0393 C48 0.1700 0.1700 0.1400 

Vg72 1.0101 1.0402 1.0408 C74 0.1200 0.1700 0.1100 

Vg73 0.9998 1.0425 1.0412 C79 0.1600 0.1700 0.1200 

Vg74 0.9968 1.0299 1.0268 C82 0.1400 0.1700 0.1200 

Vg76 0.9898 1.0336 1.0242 C83 0.1500 0.1700 0.1300 

Vg77 1.0083 1.0398 1.0455 C105 0.1500 0.1700 0.1300 

Vg80 1.0170 1.0491 1.0570 C107 0.1400 0.1600 0.1200 

Vg85 1.0075 1.0528 1.0571 C110 0.1600 0.1700 0.1200 

Vg87 1.0194 1.0452 1.0436 Ploss(MW) 125.6977 116.0602 115.0060 

 

 

 

 
Fig. 28. Distribution of experimental results of optimized Vd 

 

 

 

 

 

 

 

 

 
Fig. 29. Average convergence curve of optimized Vd 
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Fig. 30. Distribution of experimental results of optimized Ploss 

 
Fig. 31. Average convergence curve of optimized Ploss 

Finally, in the standard Aquila optimization algorithm, the 

two stages of the expanded mining phase and narrowed 

mining phase still have certain defects and are prone to fall 

into local optimum. Based on not changing the principles of 

the standard algorithm, these two stages are modified by the 

following equations: 

 
2( 1) ( ) ( ( ) ( )) ( )gbest im rw k w k Levy D w k H L rand+ = +   −   (46) 

  4 1 2 1( 1) ( ) ( ( ) ) ( )gbest imw k w k QF g w k rand g Levy D rand g+ = +          

(47) 

The IAO pseudo-code is shown in TABLE I. 

IV. SIMULATION RESULTS AND ANALYSIS 

In this section, to demonstrate the validity of the improved 

strategy, SOORPD simulation experiments are performed on 

four standard test systems of different sizes and MOORPD 

simulation experiments are performed on the IEEE30-bus 

test system. Thus, the capability of the proposed improved 

algorithm can be tested by synthesizing comprehensive 

numerical values, then make a comparison between the 

obtained results and other realized algorithms. The process of 

the proposed method to deal with the ORPD problem is 

shown in Fig. 13. It should be seen that the proposed method 

has been coded on matlab2019a and a PC with a 3.40 GHz 

processor and 16 GB RAM. The data of the three standard 

test systems are presented in this section, and the specific 

relevant data are detailed in the literature [31] and literature 

[18]. 

A. Parameter Setting 

The systems selected for this section are the power test 

systems commonly used to study the optimal flow problems 

in power systems. The system data of some test systems are 

detailed in TABLE V. 

For the complexity of the power system network structure 

and the high dimensionality of the power flow problem itself, 

it is crucial to set the appropriate number of iterations and 

initial population size. For example, a larger population size 

provides better assurance of particle diversity, but it can also 

lead to increased computing complexity of the algorithm. 

Conversely, the computational complexity will be reduced 

but not guarantee the diversity of the population, while the 

increase in population diversity means that the algorithm has 

a greater possibility of searching for a better solution. To 

ensure that the set parameters fully achieve convergence, 

repeated experiments and results are analyzed. Therefore, in 

the SOORPD problem, the number of iterations is set to 1000 

and the initial population size is set to 30, and in the 

MOORPD problem, the number of iterations is set to 300. In 

addition, the initial population size is set to 100. 

B. IEEE14-bus Test System 

Fig. 14 shows the internal structure of the IEEE 14-bus 

system. TABLE XI gives the important parameter limitations 

of the system. 

 
TABLE XI  

LIMITS OF REACTIVE POWER OF GENERATORS IN 

IEEE14-BUS TEST SYSTEM 

Bus number Qgi,min (MVAr) Qgi,max (MVAr) 

1 0 10 

2 -40 50 

3 0 40 

6 -6 24 

8 -6 24 

 
TABLE XII  

COMPARISON WITH LITERATURE RESULTS 

Method Ploss(MW) Vd(p.u.) 

IAO 12.3978 0.0337 

GSA-CSS[18] 12.5099 0.0383 

IGSA-CSS[18] - 0.0383 

GSAPSO[31] 12.4490 - 

MTLA-DDE[32] 12.8978 0.0339 

DE[33] 13.2390 - 

 

1) Ploss 

In the first case, only the objective function of the active 

power transmission losses (Ploss) is considered. TABLE VI 

shows the best results of ORPD obtained by IAO, standard 

AO, and classical algorithms. Fig. 16 gives the distribution of 

the results of 30 independent experiments for the four 

optimization algorithms, and it can be known the distribution 

of the results of IAO has a smaller distribution range. It is 

more stable and has a better performance compared to the 

other algorithms. The average convergence curves of the four 

optimization algorithms are given in Fig. 19. It is important to 

note that 30 independent experiments were conducted for 

each optimization algorithm. It can be noticed that the 

proposed IAO obtains the smallest Ploss optimization value 
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(12.3978 MW), which is reduced by 0.1065 MW, 0.0488 

MW and 0.1538 MW compared to GSA, PSO and AO, 

respectively. Although these values are small, they cannot be 

ignored in the overall grid dispatch operation. TABLE XII 

displays the results obtained in recent years by different 

methods proposed by scholars, and it is clear that the method 

proposed in this paper is reliable. 

2) Vd 

In this subsection, only the objective function of the 

voltage deviation (Vd) is considered. Again, for each 

optimization algorithm, the number of independent 

experiments is set to 30. The comparison of the results with 

the other algorithms is shown in Fig. 20 and TABLE VI. It 

can be noticed that the optimal value of Vd obtained by IAO 

(0.0337 p.u.) is much smaller than the optimal value of the 

other algorithms, indicating the superiority of the algorithm. 

As is seen in TABLE XII, the algorithm obtains an advantage 

in optimizing the Vd. The distribution of the experimental 

results shown in Fig. 17 demonstrates the stability of IAO 

more effectively. 

C. IEEE30-bus Test System 

Fig. 15 shows the internal structure of the IEEE 30-bus 

system. TABLE XIII gives the important parameter 

limitations of the system. 

 
TABLE XIII  

LIMITS OF REACTIVE POWER OF GENERATORS IN 

IEEE30-BUS TEST SYSTEM 

Bus number Qgi,min (MVAr) Qgi,max (MVAr) 

1 -20 200 

2 -20 100 

5 -15 80 

8 -15 60 

11 -10 50 

13 -15 60 

 
TABLE XIV  

COMPARISON WITH LITERATURE RESULTS 

Method Ploss(MW) Vd(p.u.) 

IAO 4.7664 0.0887 

HAS[17] 4.9059 0.1349 

SGA[17] 4.9408 0.1501 

GSA-CSS[18] 4.7930 0.1239 

IGSA-CSS[18] - 0.0897 

TS[34] 4.9203 0.1540 

FA[35] 4.7694 1.9542 

 

1) Ploss 

In the first case, IAO is applied to deal with the Ploss 

optimization problem of the IEEE30-bus test system. Fig. 21 

is the average convergence curves of the four optimization 

algorithms, IAO, GSA, PSO and AO under 1000 iterations. It 

demonstrates that the average convergence curve of IAO has 

a lower average convergence curve than the other three 

algorithms. The optimal value of Ploss obtained by each 

algorithm and the optimization scheme corresponding to the 

control variables are given in TABLE VII, where IAO 

reduces the Ploss of the test system from 5.832 MW to 4.7664 

MW with a loss reduction rate of 18.27%. Compared with the 

loss reduction rate of the comparison algorithms, IAO 

improves the loss reduction rate by 0.8%, 1.31%, and 0.75% 

over GSA, PSO, and AO, respectively. The distribution of 

optimization results of the four algorithms for 30 experiments 

provided in Fig. 18 easily shows that IAO has a lower 

distribution position and less fluctuation. It demonstrates that 

IAO is more advantageous in optimizing the Ploss. TABLE 

XIV presents the results received from the different methods 

proposed during recent years, which proves that the method 

proposed in this paper is plausible. 

2) Vd 

In this case, Fig. 22 gives the optimization results of the 

minimum Vd of the four algorithms for 30 experiments. 

According to the distribution, it is seen that IAO obtains a 

much lower distribution position of the minimum Vd than the 

other three algorithms and has better stability. The average 

convergence curves of the four algorithms for 30 experiments 

are given in Fig. 23, it can be visualized that IAO has a better 

convergence. TABLE VII gives the control variable scheme 

for the optimal results. The optimal Vd value obtained by IAO 

is 0.0887, which is 0.0434, 0.0304, and 0.0353 lower than the 

optimal results of the other three algorithms, respectively. It 

shows that IAO is more competitive in optimizing the Vd 

compared to the other three algorithms. Further, as shown in 

TABLE XIV, the algorithm is more advantageous in 

optimizing the Vd. 
 

TABLE XV  

COMPARISON OF SIMULATION RESULTS FOR OPTIMIZED Lindex 

Control 

variable 
GSA PSO AO IAO 

Vg1(p.u.) 1.0671 1.1000 1.0731 1.0701 

Vg2 1.0577 1.0633 1.0692 1.0618 

Vg5 1.0509 1.0186 1.0771 1.0696 

Vg8 1.0295 1.0236 1.0487 1.0575 

Vg11 1.0784 1.0736 1.1000 1.0981 

Vg13 1.0662 1.1000 1.0773 1.0833 

T6-9 0.9700 0.9680 1.0420 1.0280 

T6-10 0.9940 0.9000 1.0560 0.9120 

T4-12 0.9640 1.1000 0.9960 1.0140 

T28-27 0.9480 0.9520 0.9680 0.9620 

Qc10(p.u.) 0.0270 0.0000 0.0415 0.0070 

Qc12 0.0320 0.0500 0.0360 0.0030 

Qc15 0.0345 0.0500 0.0270 0.0420 

Qc17 0.0290 0.0000 0.0405 0.0240 

Qc20 0.0245 0.0500 0.0175 0.0330 

Qc21 0.0200 0.0000 0.0440 0.0110 

Qc23 0.0310 0.0135 0.0445 0.0210 

Qc24 0.0275 0.0000 0.0390 0.0085 

Qc29 0.0280 0.0500 0.0270 0.0055 

Lindex 0.1355 0.1354 0.1350 0.1341 

 

3) Lindex 

In the third case, to verify the validity of the proposed IAO 

again, the optimization experiment of the Lindex in the test 

system is continued. The classical GSA, PSO, and AO are 

still used for comparison experiments, and the independent 

experiments of each algorithm are still set to 30 times. The 

comparison of the optimization results is shown in Fig. 24 

and Fig. 25. The original AO has an advantage over GSA and 

PSO in optimizing the Lindex, while the improved IAO further 

improves the voltage stability on the basis of AO. As it is 

shown in TABLE XV that the best Lindex value achieved by 

IAO is 0.1341, which is lower compared to the other three 

algorithms and easier to stay away from the voltage collapse 

point. 

4) Multi-objective Reactive Power Optimization Dispatch 

The SOORPD problem focuses on finding a global 

optimum with a single objective function. However, the 
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MOORPD problem requires simultaneous optimization of 

several conflicting and mutually constraining objective 

functions. The objectives of SOORPD are minimum Ploss, 

minimum Vd, and Lindex. In previous experiments, each 

objective was optimized separately. To further confirm the 

validity of the proposed IAO, the multi-objective IAO 

(MOIAO) is applied to the problem of ORPD. Therefore, 

three different cases are considered in this section as follows. 

◼ Ploss & Lindex 

In the first case, three algorithms, MOPSO, MOAO, and 

MOIAO, are used to optimize the Ploss and Lindex 

simultaneously. Each algorithm has been experimented with 

30 times independently and the best result is selected from 

them for comparative analysis. Fig. 32 shows the Pareto 

fronts obtained by the three algorithms. The Pareto front 

distribution of MOIAO more closely resembles the true 

Pareto front than the other two algorithms. The optimal 

compromise results among the three algorithms along with 

the corresponding control variables are given in  TABLE VIII. 

By comparing the data, the Ploss obtained by the MIAO is 

5.1373 MW and the Lindex is 0.1319. Its optimization results 

account for better than the MOPSO and MOAO in all aspects, 

and the Ploss is better than the results obtained by the 

MOIPSO in the literature [29]. 

 

 
Fig. 32. Pareto fronts obtained by the three algorithms 

 

◼ Ploss & Vd 

 

 
Fig. 33. Pareto fronts obtained by the three algorithms 

 

In this case, the MOIAO is used to optimize the Ploss and Vd. 

In Fig. 33, it is evident that the Pareto frontier obtained by 

MOIAO is superior and the optimization results are relatively 

better compared to MOPSO and MOAO. The best 

compromise results of the three algorithms and the 

corresponding control variables are given in TABLE VIII. As 

shown in TABLE VIII, the best trade-off results obtained by 

the MOIAO for the optimization are: Ploss is 5.1388 MW and 

Vd is 0.2385 p.u., which is better than the other two 

algorithms and the GBICA in the literature [30], further 

proving the validity of the proposed method. 

 
TABLE XVI  

OPTIMIZATION OF THE BEST COMPROMISE SOLUTION AND 

CONTROL VARIABLES OBTAINED 

Control 

variable 
MOPSO MOAO MOIAO CDQS-EICA[36] 

Vg1(p.u.) 1.1000 0.9534 0.9500 1.0237 

Vg2 1.0083 0.9577 0.9500 1.0159 

Vg5 1.1000 0.9529 1.1000 0.9956 

Vg8 1.1000 0.9553 1.1000 1.0299 

Vg11 1.0985 0.9536 1.1000 1.0611 

Vg13 1.1000 0.9590 1.1000 1.0817 

T6-9 1.0863 0.9534 0.9500 1.0703 

T6-10 0.9000 0.9577 0.9500 0.9529 

T4-12 1.1000 0.9529 1.1000 1.0961 

T28-27 0.9000 0.9553 1.1000 0.9000 

Qc10(p.u.) 0.0500 1.0452 1.0804 0.0161 

Qc12 0.0500 1.0053 0.9001 0.0041 

Qc15 0.0482 1.0887 1.0731 0.0000 

Qc17 0.0000 0.9018 0.9002 0.0171 

Qc20 0.0500 0.0188 0.0402 0.0438 

Qc21 0.0000 0.0179 0.0100 0.0113 

Qc23 0.0000 0.0500 0.0374 0.0370 

Qc24 0.0435 0.0421 0.0000 0.0107 

Qc29 0.0500 0.0287 0.0500 0.0290 

Vd(p.u.) 0.4331 0.3986 0.3929 0.4374 

Lindex 0.1341 0.1359 0.1348 0.1337 

 

◼ Vd & Lindex 

 
Fig. 34. Pareto fronts obtained by the three algorithms 

 

In the third case, the Pareto fronts obtained by the three 

algorithms are shown in Fig. 34 for the simultaneous 

optimization of the Vd and Lindex. It shows that the Pareto 

fronts obtained by both the MOPSO and the MOAO are very 

close to the Pareto front obtained by the MOIAO, but the 

MOIAO is more competitive in the distribution and 

uniformity of the Pareto fronts. To further verify the validity 

of the MOIAO, the optimization results obtained by the three 
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algorithms are analyzed. As shown in TABLE XVI, although 

the best compromise solution obtained by the MOIAO is 

slightly higher than the MOPSO and the CDQS-EICA in the 

literature [36] in terms of voltage stability index, the voltage 

deviation is much lower than their results. Compared to the 

best compromise solution obtained by the original MOAO 

again, the MOIAO is more dominant. It reinforces that the 

proposed MOIAO has the potential in solving ORPD 

problems. 

 

D. IEEE57-bus Test System 
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Fig. 35. Structure diagram of IEEE57-bus 

 
TABLE XVII  

LIMITS OF REACTIVE POWER OF GENERATORS IN 

IEEE57-BUS TEST SYSTEM 

Bus number Qgi,min (MVAr) Qgi,max (MVAr) 

1 -140 200 

2 -17 130 

3 -10 120 

6 -8 55 

8 -170 200 

9 -3 70 

12 -150 240 

 

Fig. 35 shows the internal structure of the IEEE 57-bus 

system. TABLE XVII gives the important parameter 

limitations of the system. 

1) Ploss 

In the first case, IAO is applied to the Ploss optimization 

problem of the IEEE57-bus test system, and the results 

calculated by IAO are compared and analyzed with the 

classical GSA, PSO, and standard AO. The distribution plots 

of the optimization results of the four algorithms and the 

average convergence curves of 30 independent experiments 

are given in Fig. 26 and Fig. 27, respectively, which can be 

visualized that IAO has better distribution results and 

convergence. The best Ploss optimization values obtained by 

each algorithm and the corresponding control variable 

schemes are given in TABLE IX. The best Ploss result 

obtained by IAO is 22.2123 MW, which is 0.2962 MW, 

0.8348 MW, and 0.6654 MW less than that of GSA, PSO, 

and standard AO, respectively. The validity of IAO in solving 

the reactive power optimization scheduling problem is 

further demonstrated. TABLE XVIII shows the results 

obtained by different methods proposed by previous 

researchers, it can be concluded that the method proposed in 

this paper is competitive. 

 
TABLE XVIII  

COMPARISON WITH LITERATURE RESULTS 

Method Ploss(MW) Vd(p.u.) 

IAO 22.2123 0.6513 

ABC[15] 24.1025 - 

ICA[16] - 0.7952 

GSA-CSS[18] 22.6991 0.6629 

IGSA-CSS[18] 22.2718 - 

SPSO[37] 24.4304 - 

BBO[38] 24.5440 - 

OGSA[39] 23.4300 - 
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Fig. 36. Structure diagram of IEEE118-bus 

 

2) Vd 

In this case, Fig. 28 and Fig. 29 show better optimization 

results for Vd obtained by IAO. It can be seen from TABLE 

IX that IAO reduces the amount of Vd of the IEEE57-bus test 

system to 0.6513. Compared with the best optimization 

results of the other three algorithms and the algorithms in 

TABLE XVIII from previous years of literature, IAO obtains 

a better solution than the other methods. 

E. IEEE118-bus Test System 

Compared to the above test system, the IEEE118-bus test 

system is much larger. Fig. 36 shows the internal structure of 

the IEEE 118-bus system, with specific data referenced in the 

literature [40]. 

1) Ploss 

To further verify the optimization capability of the 

improved method in large systems, it is applied to the IEEE 

118-bus test system for simulation experiments. The 

distribution plots of the optimization results of the three 

algorithms and the average convergence curves of 30 

independent experiments are given in Fig. 30 and Fig. 31. It 

can be intuitively seen that IAO converges better and the 

obtained experimental results are more uniformly distributed. 

The optimal value of active power loss optimization and the 

corresponding control variable scheme obtained by each 

algorithm are given in TABLE X. The optimal value obtained 

by IAO is 115.0060 MW, which is 10.6917 MW and 1.0542 

MW less than GSA and standard AO, respectively, which 

further proves the high efficiency of IAO. 
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Fig. 37. CPU runtime 

 

V. CONCLUSION 

This paper presents IAO and successfully applied to the 

ORPD problem for nonlinear and multi-pole optimization 

problems considering both equality and inequality 

constraints. The performance of AO and IAO was simulated 

separately by different test functions and the test results 

showed that IAO performed better than AO. Moreover, three 

objective functions are considered, which are Ploss, Vd, and 

Lindex. The proposed method performs SOORPD in four test 

systems of different sizes and performs MOORPD in 

IEEE30-bus test system. To verify the validity and reliability 

of IAO, the results were obtained and compared with the 

results in classical algorithms and historical literature. 

Results of the simulations have shown that the proposed 

method yields more competitive results and that the proposed 

improvement strategy is necessary for the studied test system. 

As can be seen from Fig. 37, IAO is superior in terms of 

computing time. Therefore, IAO has a great advantage in 

solving the ORPD problem with theoretical and practical 

value. It is believed that the proposed IAO is a promising 

candidate for the ORPD problem. 
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