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Abstract—There is a need for better data modeling that is
able to understand the latent interests of the customers in the
tourism sector. In this work, network modeling is employed to
address this issue. We propose to use link prediction in hotel
networks for later development of a recommendation system.
SeturTech and Otelpuan, two new data sets from Turkey, are
used in the experiments. The baseline is set according to the
traditional ranking of fifteen features that categorized as local,
global, and embedding, representing the likelihood of the links.
Two global features, structural perturbation method and L3, got
the best AUPR and AUROC results in the baseline experiments,
but still their average precision was low. Also, a machine
learning model from all fifteen features together was built.
According to F1 scores, extreme gradient boosting outperforms
in predicting both newly appearing and already existing links.
The deep neural network overfits, especially when forced to
find new links. In both networks, it can be said that machine
learning-based modeling seems to give more successful results
than ranking-based prediction.

Index Terms—Link Prediction, Hotel Recommendation, Ma-
chine Learning, Feature Ranking

I. INTRODUCTION

It is reported that the tourism sector is one of the fastest
growing sectors as well as many nations’ economic income
depends on it [1]. In this context, a good recommendation
system has an important role both in the travelers’ experi-
ences and in economic gain. One of the technical challenges
that have not been considered by the recommendation sys-
tems community in the tourism domain is listed in [1], [2]
as the issue of data modeling. It is underlined that there is
a need for better data modeling that is able to understand
latent interests. In this work, we are interested in building
a hotel recommendation system. The hotel recommendation
problem can be seen as predicting new possible connections
in a complex hotel-user interaction system. A complex
network modeling of user-hotel interactions might overcome
previously underlined data modeling issues. It allows us to
consider both the system-dependent hidden effects and local
effects all at once in the analysis.

In the literature, data for hotels is mostly collected from
Expedia, Tripadvisor, or similar systems. In most of this
data, it is decided whether the users like the hotels or not,
according to the user comments or the ratings they give to
the hotels. Recommendation systems are then built through a
supervised learning process on raw data set. For example, the
hotel features and user IDs that prefer hotels from Expedia
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data is used in [3]. The authors applied Random Forest,
Stochastic Gradient Descent, Naive Bayes, Extreme Gradient
Boosting, and Ensemble methods. In [4], a comparison of
collaborative filtering and matrix factorization methods for
hotel recommendation systems is made. Hotel reviews from
Tripadvisor were used as data. Although the features of the
hotels are included, the hotel preferences of the users can
only be understood from the comments they write. For this,
an natural language processing (NLP) was also operated.
It was stated that matrix factorization found more accurate
results but required a lot of time for execution. The authors
made it clear in the study that they can only predict the
reviews or ratings that users will give to hotels, but they
cannot predict whether this will have an impact on bookings
or sales. Similarly, in [5], a recommendation system was
developed with Tripadvisor data, which are the comments
given by users for hotels, and hotel features. As in the
previous study, the main challenge is text interpretation and
there is no evidence whether the suggestions made in this
one turn into sales or reservations.

In this study, we work with the data provided by Setur
Servis Turistik A.S., a tourism agency operating in Turkey.
Our main goal is to build an accurate hotel recommendation
system by overcoming the previously mentioned issues. We
extract a network to represent the hotel preferences of the
customers and develop a recommendation system on this
network through link prediction. We propose a supervised
learning-based link prediction model on real-world data.
Thus, this study differs from previous hotel recommendation
system studies in terms of both data modeling and the nature
of the data used. In order to ensure that our model is not data-
dependent, we have also used another new dataset showing
the hotel choices of users from Otelpuan, a website operating
in Turkey. These two data sets are previously used in our
work [6].

Previous studies suffer from the problem of not using the
hidden effects mentioned earlier, as they do not take into
account hotel-customer, hotel-hotel, or customer-customer
interactions. However, recently, the work consulting network
modeling has also been proposed by Kaya [7]. Kaya used the
customer-hotel preferences obtained from Tripadvisor. First,
a bipartite network was extracted between the people and
the hotels according to the likes/dislikes left by the people
for the hotels on Tripadvisor. Second, a projected network
was extracted. Third, link prediction was made with the most
widely known method in the literature; ranking of the link
scoring features such as adamic adar, jaccard, or resource
allocation. This study is similar to our proposal in terms of
modeling the data under the form of a network. However,
basic ranking of the link scoring features can be misleading
in many cases because a link can still take a high score but
cannot have a place in the ranking order.
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Link prediction is one of the most studied sub-domains
in network science. The main purpose is to find the missing
links with the highest likelihood of appearing by using the
topology and algebra of the network structure [8]. There
are hundreds of different related approaches. We can catego-
rize the methods into three parts. First, traditional methods
calculate a score of a feature for each possible link that
are not seen in the network, based on a strategy [9]–[11].
Afterwards, these scores are ranked from largest to smallest,
and the desired number of links is selected in order to be
predicted. The scores quantify the likelihood of links with
different methods using network topology. Second, machine-
learning-based methods calculate the scores of all links by
using several different methods as in the traditional ones.
However, this time, instead of making a simple ranking,
each of these scores is used as a feature of the link set.
If a link already exists in the network, its label is 1,
otherwise it is 0. The link prediction task is executed as
a supervised learning experiment [12], [13] from a feature
set of likelihood scores. Those methods differ from each
other in terms of both the supervised learning experiment
design and the machine learning algorithms they use. Finally,
graph embedding techniques are held [14], [15] in recent
works. Those methods first project network information onto
low-dimensional euclidean space, then find possible links
by using distances in the euclidean space or features from
the embedding strategy. The embedding can be done by
either graph algebra or deep learning. Deep-learning based
embedding is successful, especially when the network size
is large.

We predict links with both traditional and machine
learning-based methods. We also deploy methods using
algebra-based embedding techniques for scoring. However,
we did not use deep learning-based embedding methods
because the networks we used were not large.

Our main contributions are as follows:
• We are making link predictions to develop a hotel

recommendation system based on network modeling on
two new real-data sets: SeturTech and Otelpuan.

• We measure the likelihood of a missing link between
two nodes by using fifteen different features with dif-
ferent scoring strategies that we separate into three
categories: local, global, and embedding.

• We measure the success of the features through tradi-
tional ranking-based prediction to create a baseline for
the data we use.

• We are building a link prediction model that uses these
fifteen features with supervised learning by various
machine learning algorithms.

The rest of the article includes the details of data sets, link
prediction features, and machine learning algorithms in sec-
tion II. Then, we explain the two experiments, ranking-based
and machine-learning, and all related results in section III.
Finally, we summarize the work with future perspectives in
section IV.

II. METHOD

A. Data Sets

We have used two distinct data sets in this study. The
first data set contains historical hotel sales in Setur between

2013 and 2021. Setur Servis Turistik AS provides travel
bookings for air, land, and sea travel for both individuals and
businesses. Setur also provides services for duty-free goods,
and it is one of the leading tourism agencies in Turkey. The
data was provided by SeturTech R&D department and has
features for customer and hotel id’s, dates of purchase and
entry into the hotel, hotel features such as location, services,
and customer features such as age, gender, etc. There are
45332 unique customers and 1552 unique hotels, with a total
of 57262 interactions between customers and hotels.

The second data set was collected by the SeturTech
R&D department from the Otelpuan.com website by using
web scraping methods. Otelpuan.com was founded in 2008
to inform customers about tourism services by collecting
ratings and comments on their website. The data set con-
tains the customer ratings in the 1–10 range for the hotels
on Otelpuan.com. This data has 170517 unique customers
and 959 unique hotels. There are 179996 total interactions
between customers and hotels. The average interactions
between randomly selected customers and hotels are 2.44
and 2.10 for SeturTech and Otelpuan networks respectively.

B. Link Prediction Features

In the next part, we explain the similarity/distance metrics
that assess the likelihood of having a link between any pair
of nodes (u, v). We categorized those metrics into three
categories: local, global, and embedding according to their
essential techniques, which are used for link prediction tasks.

1) Link Prediction with Local Information: According to
Kovacs et al. state-of-the-art network based link prediction
algorithms rely on the triadic closure principle (TCP) [16].
This principle explains the tendency of having a link between
two nodes that share common neighbors. This concept relies
on neighborhood, a well-known topological definition on
complex networks. Let G = (V,L) be a network with V
is its node set and L is its link set. Neighborhood, N(u), or
(Nu), of a node u ∈ V is the set of nodes directly connected
to u. N(u) = {v ∈ V : (u, v) ∈ L}.

Definition II.1. Common Neighbors (CN) is the size of the
set of common neighbors between any two nodes [17]. Its
formula is given in Eq.1.

s(u, v) = |Nu ∩Nv| (1)

More generally, the higher the number of degrees, the more
possible to have higher CN for the nodes. Thus CN has a
tendency of being high for any two hub nodes.

Definition II.2. Adamic Adar (AA) counts the total number
of neighbors of all common neighbors [18]. But it depresses
the score by logarithmic function for demoting the scores of
higher degree nodes. Shortly, it penalizes the scores for hub
neighbors. Its formula is given in Eq.2.

s(u, v) =
∑

i∈Nu∩Nv

1

log2 (|Ni|)
(2)

Definition II.3. Resource Allocation (RA) is almost the
same with AA [19]. It also counts the total number of
neighbors of all common neighbors. But differently from AA,
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it considers the degrees not their logarithms. Its formula is
given in Eq.3.

s(u, v) =
∑

i∈Nu∩Nv

1

|Ni|
(3)

Definition II.4. Jaccard Coefficient (JC), originally devel-
oped for comparing two sets [20]. It is the ratio of the number
of common neighbors to the number of all neighbors of two
nodes. The formula is given in Eq.4.

s(u, v) =
|Nu ∩Nv|
|Nu ∪Nv|

(4)

Definition II.5. Sørrenson/Dice Index (Dice) measures the
common parts of the neighborhoods and normalizes it with
the size of the neighborhoods of two studied nodes [21]. If
the neighborhoods have many nodes in common but also the
common neighbors have many other links to the outside of
the common neighborhood, Dice becomes lower than JC. It
penalizes being a hub as well. The formula is given in Eq.5.

s(u, v) =
2 · |Nu ∩Nv|
|Nu|+ |Nv|

(5)

Definition II.6. Cannistraci-Alanis-Ravasi index (CAR) is
the sum of the number of common neighbors of two nodes
each having neighbors in common with those nodes [22]. Its
formula is given in Eq.6.

s(u, v) =
∑

i∈Nu∩Nv

1 +
|Nu ∩Nv ∩Ni|

2
(6)

Definition II.7. CAR-based Adamic and Adar (CAA), is a
hybrid metric of the AA with CAR strategy [22]. It merges
two strategies of favoring clique-like neighborhoods with the
penalization of being hub. The formula is given in Eq.7.

s(u, v) =
∑

i∈Nu∩Nv

|Nu ∩Nv ∩Ni|
log2 (Ni)

(7)

Definition II.8. Another hybrid metric is CAR-based Re-
source Allocation (CRA) [22]. It merges the two strategies
of CAR with RA which are explained previously. Its formula
is given in Eq.8.

s(u, v) =
∑

i∈Nu∩Nv

|Nu ∩Nv ∩Ni|
|Ni|

(8)

Definition II.9. Preferential Attachment (PA), is the mul-
tiplication of degrees of two nodes [17]. PA promotes the
nodes having higher degree. It assumes that the famous nodes
should have more probability of connecting with each other.
The formula is given in Eq.9.

s(u, v) = |Nu| · |Nv| (9)

Definition II.10. CAR-based Preferential Attachment (CPA),
merges the strategies of CAR and preferential attachment
[22]. Its formula is given in Eq.10.

s(u, v) = eu.ev+eu.CAR(u, v)+|ev.CAR(u, v)+CAR(u, v)2

(10)
Here, eu = |Nu\(Nu ∩ Nv)| and ev = |Nv\(Nu ∩ Nv)| is
the number of the neighbors that are not common neighbors
of u and v, and CAR(u, v) is the CAR score between nodes
u and v.

2) Link Prediction with Global Information: In local
methods, the metrics completely focus on the common
neighborhood which was based on the TCP idea. Here, we
explain the metrics using other strategies related to network
topology.

Definition II.11. L3 link predictor (L3), considers network
paths of length three [16]. Its formula is given in Eq.11.

s(u, v) =
∑
ij

aui.aij.ajv√
ki.kj

(11)

Here, aui is 1 if there is a link between the nodes u and
i. And ki is the degree of node i. Since the third level
neighbors numbers are exponentially larger than the second
level ones, the metric applies a degree normalization strategy.
It also avoids the biased high scores coming from the hub
nodes which are naturally building shortcuts and increases
the number of third level neighbors for entire nodes.

Definition II.12. Structural perturbation method (SPM),
focuses on perturbing the adjacency matrix and observing
the change of eigenvalues provided the fixed eigenvectors
[23]. This technique is similar to the first-order perturbation
in quantum mechanics. Basically, it produces the scores,
which are similar to previously explained similarities, for
all links based on the perturbation of removal links from the
adjacency matrix of the original network.

3) Link Prediction with Embedding: Beyond the usage
of TCP principle or network structural information, there
are other techniques of link prediction which transform the
network into the lower dimensional euclidean space. Such a
transformation is called graph embedding. There are several
different techniques of graph embedding. Here we focus on
the ones which are using graph algebra.

Definition II.13. Isometric mapping (ISOMAP), uses one
of the traditional graph embedding techniques [24]. The
studied network, G = (V,L), is first transformed to a
distance matrix D of its nodes in which each member duv
of D is the shortest distance between the nodes u and v
from V . Then D is transformed to a lower dimensional
matrix L ∈ Rl with Multidimensional scaling based on
non-linear embedding method, MDS. Here l is the new
dimension that G is transformed to. MDS tries to keep
original distance duv between the node pairs and generates
new vectors x1, x2, ..., xn for each node whose lengths are l.
x1, x2, ..., xn is found as a minimizer of some cost function
minx1,x2,...,xn(duv−||xu−xv||)2. Once MDS generates new
lower dimensional vectors for each node, then ISOMAP
calculates basic euclidean distance between the nodes as their
dissimilarities.

Definition II.14. Laplacian Eigenmaps (LEIG), uses a min-
imization function that can be solved by the generalized
eigenvalue problem [25]. Hence, it first generates the lapla-
cian matrix of the original network, then spectral decom-
position of the corresponding laplacian matrix is computed.
LEIG finds l eigenvalues and eigenvector with l is the number
of new dimensions. After embedding, the link prediction is
again done by regarding euclidean distance of the node pairs.

Definition II.15. Centered and non-centered Minimum
Curvilinear Embedding (MCE) and (ncMCE) respectively,
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are two network embedding techniques using the distances
in the minimum spanning tree of studied networks [26]. Both
methods first generate the minimum spanning tree, MST of
corresponding G, then computes the distances of every pair
of nodes in the MST. These distances under the form of
distance matrix are called the kernel. In the algorithm if
centering is not chosen, the ncMCE performs an economy
size singular value decomposition of the distance matrix.
Otherwise an algebraic operation is performed for kernel
centering at first and then the decomposition is done. Finally
the new lower dimensional space of G is produced by the
transpose of the product of computed singular values with
right singular vectors with the algebraic corrections.

C. Machine Learning Algorithms

In our binary classification task, we represent the training
and test sets with the scores of the fifteen link prediction
features explained in the previous section. We compared
the results of various machine learning methods. We used
tree-based techniques such as decision tree (DT), gradient
boosting (GB), and extreme gradient boosting, a.k.a. XG-
Boost (XGB). In our experiment, we also utilized a deep
neural network (DNN) to predict the positive links. During
the training process, by using features of the data, the tree
algorithms try to separate classes in the most homogeneous
way possible into the most compact tree-structure possible.
Among them, the decision tree is the most basic one. It
uses a single tree to form the predictor model. GB makes
use of several trees. Each tree is built sequentially, and the
outcome of the previous tree influences the next tree. Thus,
by improving the previous tree, it overcomes the drawbacks
of using one single tree. The XGB classifier is built in
the same way as gradient boosting. The primary distinction
between both methods is that XGB can use regularization
metrics to improve performance.

Besides the tree-based methods, we used two-layered
simple multilayer perceptrons as a DNN. A DNN in general
is made up of layers of neurons, each of which receives input
from the previous layer, performs a simple computation in an
activation function, and then sends the result to the next layer.
The hyper-parameters of all algorithms are optimized by a
tuning process. When the tree-based algorithms are run with
default parameter values, they may overfit. We regularize
by limiting the maximum-depth and by sub-sampling for
boosting-based GB and XGB. Finally, we applied the most
performing versions of the mentioned algorithms.

III. EXPERIMENTS AND RESULTS

We propose a framework that models the hotel-customer
data set in the form of an appropriate complex network and
finds the proper hotel suggestions. The flowchart of this
framework is shown in Fig. 1. The different steps of this
framework are numbered in the figure. Accordingly, step 1
is dedicated to modeling the raw data set in the form of a
network.

First, hotel-customer interactions are transformed to a
bipartite network as G0 = (VH , VU , L) (see step1 of Fig. 1).
VH is the hotel node set whose members are the node repre-
sentations of the hotels. VU is the customer node set whose
members are the node representations of the customers. L is

the link set, whose members are the node pairs between VH

and VU . If a customer visits or prefers a hotel, there is a link
between their represented nodes. Hotel recommendation can
be completed directly from the bipartite network model by
identifying appropriate missing links between a hotel type
node in VH and a customer type node in VU . However,
link prediction techniques for bipartite networks are case-
specific and limited [27], whereas link prediction in uni-
partite networks has a number of works dedicated to it [9]–
[11]. Thus, we transform bipartite network into uni-partite
ones in our experiments as it was done in [7].

After the bipartite network extraction, the framework
splits into two major branches: Experiment 1 (Exp.1) and
Experiment 2 (Exp.2). These two parts are dedicated to
different link prediction processes. In the next sections, we
will explain them in detail.

A. Experiment 1: Link Prediction via Feature Ranking

In the Exp.1, first an auxiliary projected network (G) with
hotel nodes from VH is extracted (see Step2 of Exp.1 in
Fig. 1). In the G, links are formed between hotel pairs if each
hotel in a pair are linked to at least one common customer in
the bipartite network G0. Then the link prediction process is
handled as the traditional methods. This is a semi-supervised
learning technique [10]. Its steps are shown in the Fig. 1.
First, a training network Gtrain is assigned by removing N
randomly selected links from the projected hotel network
(see Step3 of Exp.1 in Fig. 1). In our experiments, N is
chosen as the %20 of the existing links in both studied
networks; SeturTech and Otelpuan. On the Gtrain network,
we calculate all of the link prediction features described in
the II-B section. The scores are calculated for all possible
missing links of Gtrain (Step4 of Exp.1 in Fig. 1). Then
the scores of each feature is ranked. The first N links with
the highest scores have been predicted. For each feature, the
predicted links were evaluated as true or false predictions
by determining whether or not the projected hotel network
contained the predicted links. Then the performance of the
link prediction methods is calculated for each feature (Step5
of Exp.1 in Fig. 1).

The performance evaluation of ranking-based link predic-
tion features is a challenging issue itself. The precision or
recall are the most commonly used metrics [28]. However,
they consider confusion matrix which is built according to the
exact matching of the links that are ranked by their prediction
scores with the links in N . They can be misleading since
many true links might stay behind in the rankings although
they have high scores. Hence, ranking-free metrics such as
AUROC, AUPR, and average precision can give a more
robust evaluation state [29]. We measure the performance of
link prediction methods with these three metrics. The area
under the ROC curve, a.k.a the AUROC of a link prediction
method, can be interpreted as the probability that the method
assigns a higher score to a randomly selected link from N ,
the removed link set for testing, than to a randomly selected
link from the unobserved link set in the Gtrain. The better
the link prediction, the higher the values of AUROC. The
area under the precision-recall curve, a.k.a. the AUPR, is a
good metric for the cases where there is an imbalance in the
predicted class, as in the case of a link prediction problem.
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Figure 1. Flowchart of the link prediction frameworks

The last evaluation metric we use is the average precision at
the point where recall reaches its maximum value of 1. The
details of these metrics can be found in [29].

The results of AUPR, AUROC, and averge precision
showing the performance of the ranking-based experiments
on the SeturTech and Otelpuan networks are given in tables I
and II, respectively. In both networks, SPM and L3 methods
using global information gave the best results according to all
three metrics. ISOMAP, LEIG and MCE, the methods using
graph embedding, seem to obtain the lowest performance
scores for both networks. Among other prediction methods,
RA also performed well in both networks.

Table I
SETURTECH LINK PREDICTION RESULTS VIA FEATURE RANKING

Category Method AUPR AUROC Avg.Prec.
CN 0.41 0.95 0.05
AA 0.45 0.95 0.05
RA 0.54 0.96 0.05
JC 0.25 0.93 0.04

Local DICE 0.25 0.93 0.04
CAR 0.41 0.93 0.05
CAA 0.41 0.93 0.05
CRA 0.48 0.94 0.05
PA 0.34 0.92 0.05
CPA 0.39 0.93 0.05
L3 0.80 0.99 0.06

Global SPM 0.92 0.99 0.06
ISOMAP 0.03 0.75 0.02

Embedding LEIG 0.01 0.50 0.01
MCE 0.02 0.63 0.02

There is a high variance between the AUPR obtained by
different featues in the SeturTech network. Some features like
LEIG and MCE can get values like 0.01, while JC or DICE
can get 0.25. The highest score was 0.92. In the Otelpuan
network, the variances are high for AUPR but not as high as

for SeturTech. In particular, all local methods gave similar
results. Briefly, success will vary dramatically depending on
the feature to be chosen.

It seems different link prediction features scored differ-
ently. This gave different success rates in prediction. AUPR
and AUROC show that good scores with global metrics for
both networks can be obtained. Nonetheless, the average
precision shows that there are too many false positives when
the recall is 1, that is, when the feature threshold is set to
find all missing N links. In this case, we assume that many
of the missing links in the network have similar and high
scores, but there are too many false positives when a ranking-
based prediction is made. In other words, ranking-based link
prediction based on a single feature will not be sufficient.
It can be complementary to use all of these features that
use different types of information in the network. Here, each
feature use different types of information. For stronger link
prediction, a machine learning model that uses all features
together rather than a simple ranking of a single feature may
be helpful. Therefore, we designed Exp. 2.

B. Experiment 2: Link Prediction via Machine Learning
In Exp. 2, we use the fifteen features we described earlier

in a machine learning model for link prediction. We split
training and test sets as it is done in [12]. The details of this
experiment can be seen in Fig. 1. Accordingly, we defined
two auxiliary projected network with hotel nodes from VH .
The first projected hotel network, Gtrain, was formed by fil-
tering the bipartite network by sales date between customer-
hotel pairs (see step2 of Fig. 1). In this scenario, the filter date
was 2019. Every customer-hotel link that occurred before
2019 was used to form the Gtrain projected network. Every
customer-hotel link that occurred in 2019 and after 2019 was
used to form the Gtest projected network.
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Table II
OTELPUAN LINK PREDICTION RESULTS VIA FEATURE RANKING

Category Method AUPR AUROC Avg.Prec.
CN 0.78 0.96 0.12
AA 0.78 0.96 0.12
RA 0.79 0.96 0.12
JC 0.72 0.95 0.12

Local DICE 0.72 0.95 0.12
CAR 0.77 0.96 0.12
CAA 0.77 0.96 0.12
CRA 0.77 0.96 0.12
PA 0.78 0.96 0.12
CPA 0.78 0.96 0.12
L3 0.92 0.99 0.13

Global SPM 0.97 0.99 0.13
ISOMAP 0.12 0.83 0.07

Embedding LEIG 0.32 0.89 0.09
MCE 0.14 0.79 0.07

After training and test networks split, we calculate all
link prediction features for all possible links, including
appearing and missing ones for each network separately
(see step3 of Fig. 1). For each projected network, link
prediction features were used to create the FeatureSettrain
and FeatureSettest. In these sets, if the link is already seen
in the relevant network, its label is 1, if it is not seen, its
label is 0. We used the FeatureSettrain to train all of the
machine learning algorithms mentioned in the II-C , and
the FeatureSettest to validate the models’ performance. In
the validation part, we used 2 different test sets. The first
test set contains all current and non-existent possible links
that came from Gtest. This test set was named as all test
set. The second test set only contains newly occurred links
(not observed on the Gtrain) and newly non-existing links
(observed on the Gtrain but not on the Gtest). This test set
was named as sampled test set. We did these two different
analyses to notice a possible overfit of the models. A good
model should be successful when predicting the changing
parts of the network. To evaluate the performance of the
trained models, we used accuracy, precision, recall, and F1
scores. In the table III performance of this experiment is
shown for each data set, for each model, and for each test
type.

Table III
LINK PREDICTION RESULTS VIA MACHINE LEARNING

Data
Set

Model Test
Type

Acc. Prec. Recall F1
Score

SeturTech DT Sampled 0.98 0.97 0.95 0.95
All Test 0.99 0.97 0.53 0.69

GB Sampled 0.96 0.89 0.95 0.92
All Test 0.99 0.89 0.49 0.63

XGB Sampled 0.98 0.99 0.95 0.97
All Test 0.99 0.99 0.58 0.73

DNN Sampled 0.73 0.02 1.00 0.05
All Test 0.99 0.98 0.69 0.81

Otelpuan DT Sampled 0.95 0.98 0.67 0.79
All Test 0.99 0.98 0.39 0.55

GB Sampled 0.95 0.99 0.65 0.79
All Test 0.99 0.99 0.37 0.54

XGB Sampled 0.96 0.97 0.98 0.90
All Test 0.99 0.93 0.44 0.59

DNN Sampled 0.92 0.16 1.00 0.27
All Test 0.99 0.80 0.58 0.63

All of the sampled test F1 scores, except the one with
DNN, exceeded 0.90. The best score is obtained by XGB.

Figure 2. Confusion matrices obtained with DNN in Seturtech all (a) and
sampled (b) test experiments.

On the contrary, in the DNN sampled test, the precision and
F1 scores were the lowest. However, this test reached the
perfect recall score of 1. For SeturTech, among the tests done
with all test data, the best performing model is DNN, with
an F1 score of 0.81. It is quite larger than other algorithms’
results. The most striking difference between all and sampled
is obtained by DNN. While we achieve successful results in
the all test, we obtain failed results on the sampled test set
which has only new 1s and new 0s. This shows us that this
algorithm is overfitting. That is, DNN got used to the link
status in the training data and could not learn whether this
status changed in the test data.

This fact can more clearly be observed in related confusion
matrices given in Fig. 2. In the sampled test, the number of
true positive links is too low (see Fig. 2-b) while the number
of false positives is too high. One reason for this result could
be that the number of positive links in the training set is
not enough for DNN to learn the linking mechanism. DNN
needs lots of data to build an accurate model. Unlike the
DNN results, other methods are much more successful with
the sampled set than the ones with the all set. This means
that the features that we used are compatible with such link
prediction. We assume that the low performance on all set of
those algorithms is due to the high number of false negatives,
which creates the biggest challenge in link prediction for all
methods. Since links within nodes in large complex networks
are rare, detecting the true links among the vast number of
possible links is significantly more valuable than detecting
non-existing links correctly. Thus, reducing the number of
false negative predictions were our main objective while
training the models.

Model performances for the tests done with Otelpuan data
are similar to Seturtech results as it can be seen in table III.
The sampled test on DNN is the worst performing one in
terms of accuracy and precision while DNN is the best in
terms of recall and F1 score among the experiments done
with all test set. The best performance is obtained by XBG
for sampled and by DNN for all. Among all results, XGB
on sampled takes the most significant one with a F1 score
of 0.90. The related confusion matrices of XGB is shown in
Fig. 3. True positive values are also high when XGB tries
to predict the new 1 and new 0 labels as well (see Fig. 3-
b). These confusion matrices demonstrate that the algorithm
does not memorize but learns enough to predict the link
change in the system.

We can see that in Otelpuan, all methods have lower
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Figure 3. Confusion matrices obtained with XGboost in Otelpuan all (a)
and sampled (b) test experiments.

success than those in SeturTech. Compared to SeturTech,
Otelpuan is a network with higher link density. When we ex-
amine the topologies of the two networks, the transitivity of
SeturTech (∼ 0.22) is lower than Otelpuan (∼ 0.67), and its
eigenvector centralization (∼ 0.91) is higher than Otelpuan
(∼ 0.81). In brief, these two networks have topologically
different properties. Indeed, in Exp.1, we noticed that there
were also score differences between the success of same
features on two networks (see table I and II). From here,
the lower performance of Otelpuan compared to SeturTech
in Exp.2 can be due to the difficulty of link predictability
level between these two networks. It seems that SeturTech is
a more prone network for link prediction with the features
we use.

In this work, we did not apply any feature engineering
steps before machine learning experiments. We used fifteen
link prediction features as a raw data set. However, some
of those features use the similar information. For instance,
all local features are based on the TCP principle. This can
cause redundancy in the learning phase. Intelligent feature
reduction can increase the success of some algorithms. Some
of the leading results from evaluating these two experiments
together are as follows:

• For link prediction in both SeturTech and Otelpuan
networks, a machine learning-based model may be more
appropriate than a ranking-based approach.

• When deciding whether there will be a link between
two nodes, global features using general information
are better than local methods. Graph algebra-based
embedding methods are the most unsuccessful ones.

• This modeling can be used for the hotel recommen-
dation system. The preferences of other people who
have made the same choices as themselves or who are
similar to them in the system can be offered to the
customers. This type of recommendation can include
more interesting hotel offers than attribute similarity-
based collaborative filtering.

IV. CONCLUSION

In this work, we propose a link prediction framework
for hotel recommendations to tourism customers. We work
with two new data sets; SeturTech, which is one of the
foremost travel agencies in Turkey, and Otelpuan, which
is a website for travel organizations. The framework is
based on the modelling of hotel-to-hotel networks. The links
are represented by fifteen different features, each of which

takes a score showing the likelihood of the studied link.
Those features are calculated by different methods which
use different network properties. We categorized them as
local, global, and embedding. We performed two different
experiments. As a baseline, the first experiment is dedicated
to evaluating the performance of traditional ranking-based
link prediction. The results demonstrate that global features,
L3 and SPM are two foremost features with the highest
AUROC and AUPR, but they are still not good enough when
predicting links with simple ranking. We have concluded that
both local, global and embedding types of information can
be complementary. Hence, in experiment 2, we designed a
supervised learning task using all fifteen features. The deep
neural network and XGBoost methods achieved the most
accurate link prediction according to their F1 scores but deep
neural network seemed to overfit. It was not successful when
predicting newly appearing links but successful to predict
already existing ones.

Our experiments show that the usage of different features
together in a machine learning model can result in accurate
link predictions. Adding hotel attributes besides the network-
based topological features can be complementary and can
result in even higher accuracy. Some future perspectives of
this work can be listed as first, using other hotel data sets
from Tripadvisor and Expedia, which have been worked on
in the literature before by comparing our approach with
previous approaches. Second, graph neural network-based
embedding techniques can be used. They can be used both to
produce new link prediction features and directly to develop
a new link prediction method as well. Third, there are other
features that we did not use here, such as the Katz index or
hub promoted index, etc. They can be added to the feature
set. In this study, we made a purely analytical estimation.
However, we did not examine their corresponding results
in business. We wanted to use all the data we had for
modelling. In the following steps of this study, it will be
complementary to make predictions with the model we have
established for the coming months and observe how these
predictions address the needs of customers in the real world
in a live system. In addition, when these analytical results are
converted into a live system, it will be necessary to deal with
the updating and renewal of the models we have established.
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