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Abstract—The chaotic motion of the complex Klein-Gordon
equation (CKGE) with external and parametrical excitations is
investigated in this study. First, the exact parametric expressions
of two different orbits (homoclinic and heteroclinic) for the
CKGE are obtained by the dynamical systems method. Then,
the threshold condition of the homoclinic and heteroclinic chaos
are detected via the Melnikov method. Furthermore, the state
feedback control method is employed to suppress the both
chaotic motion. Finally, the correctness of the theoretical results
are examined based on the numerical simulation.

Index Terms—Complex Klein-Gordon equation; Melnikov
method; Chaos; Suppressing chaos.

I. INTRODUCTION

THE Klein-Gordon equation (KGE) is extensively ap-
plied in the areas of relativity, quantum forces, rota-

tional waves, and nonlinear optics (see [1]). An increasing
amount of attention has been paid to the travelling wave
solutions of KGE. There many methods for obtaining such
solutions, including the extended elliptic auxiliary equa-
tion method [2], homotopy analysis method [3], Nikiforov-
Uvarov method [4], trigonometric function series method
[5], extended F-expansion method [6], MSE-based method
[7], and (G′/G) expansion method [8]. The exp(−φ(ξ))-
expansion method [9] and Darboux transformation [10] can
also provide some new travelling wave solutions for another
class of nonlinear evolution equations.

Abazari and Jamshidzadeh [11] recently studied the fol-
lowing complex KGE (CKGE) :

utt − p2uxx + qu+ r|u|2u = 0, (1)

where u denotes a complex-valued function, and p, q and
r are real parameters, in which pqr ̸= 0. They obtained
periodic and solitary wave solutions through the (G′/G)
expansion method.

In this study, differing from the aforementioned approach-
es, we employ a dynamical systems method to obtain the
travelling wave solutions of the CKGE. The idea of using the
dynamical system method (see Li [12], [13]) to obtain the
travelling wave solutions has been successful. This includes
the generalized double sinh-cosh-Gordon equation [14],
Biswas–Milovic equation [15], Gerdjikov–Ivanov equation

Manuscript received April 17, 2022; revised November 11, 2022.
This work was supported in part by the Fujian Province Young Middle-

Aged Teachers Education Scientific Research Project (No. JAT200670,
JAT210454).

Qian Wen is a lecturer of Mathematics and Computers Department, Wuyi
University, Fujian, P.C 354300 China (e-mail: wyxywq@wuyiu.edu.cn).

Hang Zheng is a lecturer of Mathematics and Computers Departmen-
t, Wuyi University, Fujian, P.C 354300 China (e-mail: zhenghang513
@163.com).

[16], generalized Burgers–Huxley equation [17], generalized
Degasperis-Procesi equation [18], and generalized Dullin-
Gottwald-Holm equation [19], among others [20]–[22].

Another purpose of this study is to suppressing the chaos
of the perturbed CKGE. Note that the CKGE is a com-
pletely integrable equation that is unable to display chaotic
behaviour. However, an integrable equation may lead to
chaotic behaviour after adding a periodic perturbation and
a damping term (see [23], [24]). For instance, Grimshaw
and Tian [25] considered the chaotic behaviour of the forced
(and damped) Korteweg-deVries equation. In addition, Cao
et al. [26] analysed the periodic and chaotic behaviours
of the damping and forced generalized KdV equation and
the generalized Kadomtsev-Petviashvili equation. Zhou and
Chen [27] studied the compound KdV-Burgers equation
with external and parametrical excitations. Zhang et al. [28]
analysed a parametric and forcing nonlinear oscillator.

Thus, we consider a damping and forcing CKGE in the
form of

utt − p2uxx + qu+ r|u|2u+ µux = f, (2)

where µ is the damping parameter, and f is the forcing
term. As is well known, Melnikov’s method is an effective
analytical method for studying chaotic systems [29]–[31].
Herein, we use this method to study the threshold condition
of the homoclinic and heteoclinic chaos of Eq. (2). Finally,
we apply the sate feedback method [32] to suppress the chaos
of the perturbed Eq. (2).

This paper consists of six sections. First, the exact para-
metric expressions of the unperturbed CKGE obtained using
the dynamical systems approach are described in Section
II. In Section III, the threshold condition of chaotic motion
for the perturbed CKGE are analysed using the Melnikov
method. The state feedback control method employed to
suppress the chaotic motion of the CKGE is described in
Section IV. Moreover, the numerical simulation shows the
validity of the analysis results. Finally, some concluding
remarks are given in the last section.

II. EXACT SOLUTIONS OF UNPERTURBED EQUATION

In this section, using a dynamical systems method, the
bifurcation of the phase portraits of Eq. (1) are obtained.

The following transformations are introduced:

u(x, t) = u(ξ)eiη, ξ = k(x− at), η = ax+ bt, (3)

where k, a, and b are constants. We take the periodic function
f as f0cos(ωξ)eiη and observe that the real part of Eq. (2)
is transformed into an ordinary differential equation (ODE):

αuξξ + βu+ γu3 + δuξ = f0cos(ωξ), (4)
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where α = k2(a2 − p2), β = a2p2 − b2 + q, γ = r, and
δ = µk. We assume that the damping term δ and forcing
term f0 are both small. We rescale δ = εαδ and f0 = εαf0
(0 < ε ≪ 1). Thus, we can rewrite Eq. (4) as the following
planar dynamical system:

du

dξ
= y,

dy

dξ
= −β

α
u− γ

α
u3 + ε(−δy + f0cos(ωξ)).

(5)

When ε = 0, the system (5) is reduced to
du

dξ
= y,

dy

dξ
= −β

α
u− γ

α
u3.

(6)

The first integral of the unperturbed system (6) is

H(u, y) =
1

2
y2 +

β

2α
u2 +

γ

4α
u4 = h. (7)

Based on the bifurcation theory and the dynamical system
method (see [13]), we have the following:

(A). Two centre points E1,2(±
√

−β
γ ) and one saddle point

E0(0, 0) exist for αβ < 0 (see Fig. 1(a)).
(B). One centre point E0(0, 0) and two saddle points

E1,2(±
√

−β
γ ) exist for αβ > 0 (see Fig. 1(b)).

For a fixed integral constant h, Eq. (7) can be written as

y2 = − γ

2α
u4 − β

α
u2 + 2h , − γ

2α
G(u). (8)

With the initial value u(t0) = u0, we obtain

ξ =

∫ u

u0

√
−2α

γG(s)
ds. (9)

From the phase portraits, we can calculate the exact
solutions for the unperturbed system (6). This is divided into
two cases.

Let hi = H(Ei)(i = 0, 1, 2).
Case I. αβ < 0 (see Fig. 1(a)).
If h = h0, two homoclinic orbits connect the saddle point

E0, respectively enclosing two centre points E1,2. Thus, we
have G(u) = u2(u2 − λ2

1), where λ1 > 0. We then obtain
the following parametric representation of the solitary wave
solutions (see Fig. 2).

u(ξ) = ∓λ1sech(σ1ξ), (10)

where σ1 = λ1

√
γ
2α . Hence, as shown in Fig. 3, the

parametric representation of the solitary wave solutions in
Eq. (1) is as follows:

u(x, t) = ∓λ1sech(σ1k(x− at)). (11)

Case II. αβ > 0 (see Fig. 1(b)).
If h = h1,2, there exist two heteroclinic orbits connecting

two saddle points E1,2, enclosing the center point E0.
Therefore, G(u) = (λ2 − u)2(λ2 + u)2, where λ2 > 0. We
obtain the following parametric representation of the kink
and anti-kink wave solutions (see Fig. 4):

u(ξ) = ±λ2tanh(
σ2ξ

2
), (12)

(a) αβ < 0

(b) αβ > 0

Fig. 1: Bifurcations and phase portraits of the unperturbed
system (6).

where σ2 = 2λ2

√
− γ

2α . Therefore, as shown in Fig. 5,
the parametric representation of the kink and anti-kink wave
solutions in Eq. (1) is given by the following:

u(x, t) = ±λ1tanh(
σ2(x− at)

2
). (13)

In summary, we obtain the following theorems.

Theorem II.1. If αβ < 0, the parametric representation of
Eq. (1) with the solitary wave solutions is given in Eq. (11).

Theorem II.2. If αβ > 0, the parametric representation of
Eq. (1) with the kink and anti-kink wave solutions is given
in Eq. (13).

III. CHAOTIC MOTION OF PERTURBED SYSTEM

Based on the Melnikov method, we investigate the thresh-
old values of chaotic motion, including homoclinic and
heteroclinic chaos, for the system (5).

The Melnikov function of the system (5) is expressed as
follows:
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(a) Bright soliton

(b) Dark soliton

Fig. 2: Solitary wave of the system (6).

(a) Bright soliton solution

(b) Dark soliton solution

Fig. 3: Graphs of the solitary wave solution for Eq. (1).

(a) Kink wave

(b) Anti-kink wave

Fig. 4: Kink and anti-kink wave of system (6).

(a) Kink wave solution

(b) Anti-kink wave solution

Fig. 5: Graphs of kink and anti-kink solutions for Eq. (1).
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M(ξ0) =

∫ +∞

−∞
y[−δy + f0cos(ω(ξ + ξ0))]dξ

= −δ

∫ +∞

−∞
y2dξ + f0cos(ωξ0)

∫ +∞

−∞
ycos(ωξ)dξ

−f0sin(ωξ0)
∫ +∞

−∞
ysin(ωξ)dξ

= −δI1 + f0cos(ωξ0)I2 − f0sin(ωξ0)I3, (14)

where
I1 =

∫ +∞
−∞ y2dξ,

I2 =
∫ +∞
−∞ ycos(ωξ)dξ,

I3 =
∫ +∞
−∞ ysin(ωξ)dξ.

(15)

If ε is sufficiently small, a simple zero ξ0 exists such that
M(ξ0) = 0 and M ′(ξ0) ̸= 0, and the chaotic motion of the
system (5) will then occur (see [29]). It is divided two case
to proceed.

A. Melnikov analysis of the homoclinic orbits

For the homoclinic orbits, we have

y = ∓λ1σ1sech(σ1ξ)tanh(σ1ξ). (16)

By substituting (16) into Eq. (15), it is directly computed
using Mathematica software 12.3, which yields

I1 =
2σ1λ

2
1

3
,

I2 = 0,

I3 = ∓
πλ1ωsech( πω

2σ1
)

σ1
.

Consequently, we obtain a theorem that estimats the
threshold values of homoclinic chaos.

Theorem III.1. If the parameters f0, δ and ω satisfy the
following condition:∣∣∣∣f0δ

∣∣∣∣ ≥ I1
I3(ω)

, i.e.,

∣∣∣∣f0δ
∣∣∣∣ ≥ 2σ2

1λ1

3πωsech( πω
2σ1

)
, (17)

such that Mhom(ξ0) = 0 and M ′
hom(ξ0) ̸= 0. Then, the

chaotic motion of system (5) occurs.

We plot the threshold curves for different values of the
system (5) in Figs. 6 and 7. According to Theorem III.1,
chaotic motion occurs when the parameter is above the
threshold value.

According to (17), the threshold curves for the chaotic
motion of the system depend on the values of λ1 and σ1. It
can be concluded from Figs. 6 and 7 that when λ1 is taken
as a fixed value, the threshold value for chaotic motion first
increases along with σ1; however, the opposite occurs after
ω takes a certain value. If σ1 is a fixed value, the threshold
value for chaotic motion increases with λ1.

B. Melnikov analysis of the heteroclinic orbits

Similarly, for the heteroclinic orbits, we have y =
± λ2σ2

1+cosh(σ2ξ)
, which yields

I1 =
2σ2λ

2
2

3
, I2 = ±

2πλ2ωcsch(πωσ2
)

σ2
, I3 = 0.

Fig. 6: Threshold curves of chaos for system (5) with λ1 = 1.

Fig. 7: Threshold curves of chaos for system (5) with σ1 = 1.

In the same way, we obtain a theorem that estimates the
threshold values of heteroclinic chaos.

Theorem III.2. If the parameters f0, δ and ω satisfy the
following condition,∣∣∣∣f0δ

∣∣∣∣ ≥ I1
I2(ω)

, i.e.,

∣∣∣∣f0δ
∣∣∣∣ ≥ σ2

2λ2

3πωcsch(πωσ2
)
. (18)

such that Mhet(ξ0) = 0 and M ′
het(ξ0) ̸= 0. Then, the chaotic

motion of system (5) occurs.

Thus, we plot the threshold curves for different values
of system (5) in Figs. 8 and 9. According to Theorem
III.2, chaotic motion occurs when the parameter is above
the threshold value.

According to (18), the threshold curves for the chaotic
motion of the system depend on the values of λ2 and σ2.
From Figs. 8 and 9, if λ2 is taken as a fixed value, the
threshold value for chaotic motion decreases with an increase
in σ2. However, for σ2 taken as a fixed value, the threshold
value for chaotic motion increases with λ2.

IV. SUPPRESSING CHAOS OF SYSTEM (5)

Next, we utilise a state feed back control method to
suppress the chaos of the system (5). By adding a control
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Fig. 8: Threshold curves of chaos for system (5) with λ2 = 1.

Fig. 9: Threshold curves of chaos for system (5) with σ2 = 1.

term, Eq.(2) can be rewritten as follows:

utt − p2uxx + qu+ r|u|2u+ µux + νux = f, (19)

where ν is a control coefficient. Similarly, it is easy to obtain
the corresponding planar dynamical system, as follows:

du

dξ
= y,

dy

dξ
= −β

α
u− γ

α
u3 + ε(−δy + f0cos(ωξ)− ρy),

(20)
where ρ = ενk

α . The additional term is a weak velocity signal
y(ξ), that is, a state feedback control term.

The Melnikov function of the homoclinic and heteroclinic
orbits then becomes

M1(ξ0) = Mhom(ξ0)− ρ

∫ +∞

−∞
y2dξ,

= −(δ + ρ)I1 + f0cos(ωξ0)I2 − f0sin(ωξ0)I3.

and

M2(ξ0) = Mhet(ξ0)− ρ

∫ +∞

−∞
y2dξ,

= −(δ + ρ)I1 + f0cos(ωξ0)I2 − f0sin(ωξ0)I3.

If M1(ξ0) (resp., M2(ξ0)) has no zeros, it implies that the
homoclinic chaos (resp., heteroclinic chaos) in system (5) is
controlled. We have the following theorems:

Theorem IV.1. If∣∣∣∣ f0
δ + ρ

∣∣∣∣ < I1
I3(ω)

, i.e.,

∣∣∣∣ f0
δ + ρ

∣∣∣∣ < 2σ2
1λ1

πωsech( πω
2σ1

)
, (21)

such that M1(ξ0) has no simple zeros, the homoclinic chaos
can be suppressed.

Theorem IV.2. If∣∣∣∣ f0
δ + ρ

∣∣∣∣ < I1
I2(ω)

, i.e.,

∣∣∣∣ f0
δ + ρ

∣∣∣∣ < σ2
2λ2

3πωcsch(πωσ2
)
, (22)

such that M2(ξ0) has no simple zeros, the heteroclinic chaos
can be suppressed.

V. NUMERICAL SIMULATIONS

In this section, numerical simulations conducted to verify
the previous results are described.

A. Case of homoclinic orbits

To obtain the homoclinic orbits shown in Fig. 1 (a), we
take α = 3, β = −4, γ = 1. Using a numerical method, we
obtain

σ1 =
2
√
3

3
, λ1 = 2

√
2,

I1 = 6.1584, I3 = 3.102,
I1
I3

= 1.9853.

If we choose ε = 0.05, δ = 0.5, f0 = 30, ω = 0.5 and
the initial value (u0, y0) = (0, 0), then f0

δ = 60 is above I1
I3

.
Thus, the system is chaotically excited. The phase portraits
and time history curves of the system (5) are shown in Figs.
10 and 11, respectively.

According to M1(ξ0), we can adjust the parameter ρ to
suppress chaotic behaviour in system (5) by adding state
feedback control. For example, when ρ = 50,

f0
δ + ρ

= 0.594059 <
I1
I3

.

Figs. 12 and 13 show that the homoclinic chaos of system
(20), as shown in Figs. 10 and 11, will be suppressed under
the given initial conditions.

B. Case of heteroclinic orbits

The aforementioned method is also applicable to hetero-
clinic orbits. To obtain the heteroclinic orbits in Fig. 1 (b),
we take α = −1, β = −8, γ = 1. Using a numerical method,
we obtain

σ2 = 2
√
2, λ2 = 4,

I1 = 30.1699, I2 = 1.90661,
I1
I2

= 15.8239.

If we choose ε = 0.01, δ = 0.1, f0 = 300, ω = 3 and the
initial value (u0, y0) = (0.001, 0.001), then f0

δ = 3000 is
above I1

I2
. Thus, the system is chaotically excited. The phase

portraits and time history curves of system (5) are shown in
Figs. 14 and 15, respectively.
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(a) Phase portraits of (u, y)

(b) Phase portraits of (ξ, u, y)

Fig. 10: Phase portraits of perturbed system (5) with α =
3, β = −4, γ = 1, ε = 0.05, δ = 0.5, f0 = 30, ω = 0.5.

(a) Time history curves of (ξ, u)

(b) Time history curves of (ξ, y)

Fig. 11: Time history curves of perturbed system (5) with
α = 3, β = −4, γ = 1, ε = 0.05, δ = 0.5, f0 = 30, ω = 0.5.

(a) Phase portraits of (u, y)

(b) Phase portraits of (ξ, u, y)

Fig. 12: Phase portraits of state feedback control system (20)
with α = 3, β = −4, γ = 1, ε = 0.05, δ = 0.5, f0 = 30, ω =
0.5, ρ = 50.

(a) Time history curves of (ξ, u)

(b) Time history curves of (ξ, y)

Fig. 13: Time history curves of state feedback control system
(20) with α = 3, β = −4, γ = 1, ε = 0.05, δ = 0.5, f0 =
30, ω = 0.5, ρ = 50.
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(a) Phase portraits of (u, y)

(b) Phase portraits of (ξ, u, y)

Fig. 14: Phase portraits of perturbed system (5) with α =
−1, β = −8, γ = 1, ε = 0.01, δ = 0.1, f0 = 300, ω = 3.

(a) Time history curves of (ξ, u)

(b) Time history curves of (ξ, y)

Fig. 15: Time history curves of perturbed system (5) with
α = −1, β = −8, γ = 1, ε = 0.01, δ = 0.1, f0 = 300, ω =
3.

(a) Phase portraits of (u, y)

(b) Phase portraits of (ξ, u, y)

Fig. 16: Phase portraits of state feedback control system (20)
with α = −1, β = −8, γ = 1, ε = 0.01, δ = 0.1, f0 =
300, ω = 3, ρ = 29.

(a) Time history curves of (ξ, u)

(b) Time history curves of (ξ, y)

Fig. 17: Time history curves of state feedback control system
(20) with α = −1, β = −8, γ = 1, ε = 0.01, δ = 0.1, f0 =
300, ω = 3, ρ = 29.
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According to M2(ξ0), we can adjust the parameter ρ to
suppress the chaotic behavior in system (5) by adding state
feedback control. For example, when ρ = 29,

f0
δ + ρ

= 10.3093 <
I1
I2

.

Figs. 16 and 17 show that the heteroclinic chaos of system
(20), exhibited in Figs. 14 and 15, will be suppressed under
the given initial conditions.

VI. CONCLUSION

This study mainly examined the chaos of the perturbed
CKGE. First, the solitary and kink (anti-kink) wave solu-
tions of the unperturbed equation were obtained using the
dynamical system method. Furthermore, based on the Mel-
nikov approach, the chaotic motion of forcing and damping
CKGE was investigated. Threshold values of homoclinic
and heteroclinic chaos were then obtained. This shows that
these chaos events occur depending on the parameters of the
equation. In Figs. 6–9, the chaotic feature is discussed when
one parameter is fixed. Finally, chaotic motion is suppressed
through a state feedback control method. The numerical
simulations showed that the chaos of a perturbed system is
successfully controlled, as indicated in Figs. 10–17. This was
utilised to verify the previous theoretical results. Similarly,
we may be able to study subharmonic bifurcations for CKGE
with external and parametrical excitations.

REFERENCES

[1] D. Lokenath, Nonlinear partial differential equations for scientists and
engineers. USA: Birkhäuser, 2012.
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