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Abstract—The production of remote sensing products is very
time-consuming, because it contains a large amount of remote
sensing data to be processed. To increase the production effi-
ciency of remote sensing products, a remote sensing processing
job is usually divided into multiple tasks that are executed in
parallel in the cluster system. So efficient task scheduling is the
core problem of remote sensing products production system.
This paper issued this problem and proposed a hybrid particle
swarm optimization algorithm to improve the production effi-
ciency of the remote sensing products. First, the task scheduling
model of remote sensing products was established to minimize
the maximum task execution time. Then, in the framework of
particle swarm optimization, an inertia weight parameters ad-
justment strategy based on linear decreasing was adapted. For
the solution obtained in each iteration, a local search procedure
of task movement between the production nodes was employed
to improve the quality of the solution. In addition, a probability
acceptance rule was also introduced to allow the acceptance of
poor solutions avoid trapping into local optimum prematurely.
Finally, we carried out several experiments in the CloudSim
simulation platform. The experimental results demonstrate that
the proposed algorithm is effective and more competition when
compared with the existing scheduling algorithms, such as ant
colony optimization, tabu search and other classical scheduling
algorithms.

Index Terms—Task scheduling, remote sensing products, par-
ticle swarm optimization, local search, probability acceptance.

I. INTRODUCTION

W ITH the rapid development of information technology
and remote sensing technology [1], remote sensing

related applications have been widely used in military, en-
vironment, agriculture, forestry, geology, ocean and other
fields. Users can use a variety of thematic products based
on massive remote sensing data in a more convenient and
efficient way. In the remote sensing cluster system, the higher
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requirements for production task scheduling and allocation
become very important, due to the large amount of remote
sensing data [2,3], the diversification of user needs, increas-
ing user scale and system resource constraints. To speed up
the processing of remote sensing data, the production job
of remote sensing products is usually divided into several
tasks, which can be allocated to different resource nodes in
the cluster system. How to schedule these tasks efficiently is
the primary goal of remote sensing high-performance cluster
system. Meanwhile, it also plays a key role in improving the
production efficiency of remote sensing products.

Task scheduling is a kind of complex combinatorial
optimization problem that needs to consider optimization
objectives and constraints, which is also a NP-hard problem
[4]. Scheduling problems have been widely used in many
practical applications [5,6], and the typical applications in-
clude vehicle scheduling [7], program scheduling [8], and
task optimization scheduling [9], etc. In the cluster system
[10], optimizing tasks scheduling is one of the key issues
to achieve high-performance computing. For massive remote
sensing data processing, a reasonable task scheduling op-
timization algorithm can not only improve the efficiency
of task execution, but also improve the performance of the
whole cluster system.

Many relevant researches on task scheduling have been
carried out. Early task scheduling methods focused on the
scheduling of computing resources on single-core proces-
sors. These algorithms can solve small-scale task scheduling
problems, but it is easy to cause many resource nodes to be
idle for a long time, and resulting in low resource utilization
rate. The commonly scheduling algorithms include round
robin (RR) [11], minimum connection method, first come
first serve (FCFS) algorithm [12], and so on. For FCFS, the
tasks are executed in an orderly manner on a first-come, first-
served basis, and its resource utilization rate is relatively
low because of ignoring the difference of different tasks
and the processing capability of physical resources. Further,
Min-Min algorithm [13] and Max-Min algorithm [14] were
proposed to solve the scheduling problem of independent
tasks. The former executes the smallest task first, and the
latter executes the larger task first and then the smaller task.
These two algorithms can easily lead to the degradation of
system performance when the task waits for a long time. In
recent years, intelligent optimization algorithms [15] have
been gradually applied in the task scheduling field due
to their good performance. Some metaheuristic algorithms
such as genetic algorithm [16], ant colony optimization
algorithm [17], tabu search algorithm [18] and particle swarm
optimization algorithm [19,20], have been proposed for a
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variety of task scheduling problems.
The successfully experience of intelligent optimization

algorithms in the field of task scheduling brings new ideas
for task scheduling in remote sensing products production
system. Ge et al.[21] proposed a tabu-based remote sens-
ing task scheduling algorithm to improve the effectiveness
of task scheduling in the remote sensing cluster system.
The proposed tabu algorithm comprehensively considered
the resource requirements of remote sensing tasks and the
production capacity of production nodes to improve the
throughput of the cluster system, but it is unsuitable for
the small scale cluster system. Li et al.[22] developed a
fast simulate annealing algorithm for remote sensing data
processing, which improved the efficiency of resource pro-
cessing but requiring relatively long calculation time. Tang
et al.[23] proposed a dynamic resource allocation scheduling
strategy based on prior knowledge for dynamic schedul-
ing problems. The strategy can dynamically determine the
number of resources to be allocated by the job according
to the running time of the unit resource and the current
overall system load of the cluster, so as to shorten the total
execution time and the average weighted turnover time of the
job. Ding et al. [24] proposed a particle swarm optimization
algorithm to solve cloud computing task scheduling problem
for remote sensing data fusion processing. The best task
allocation on each node is sought to increase computing
efficiency of proposed algorithm. These researches promote
the development of the task scheduling method for remote
sensing products production to a certain extent. However, it is
necessary to develop more effective task scheduling approach
for remote sensing products production owing to the diversity
of requirements of practical applications.

This paper aims to provide an effective task scheduling
plan for the remote sensing products production system.
Considering the characteristics of remote sensing production
system, we first build a task scheduling model with the opti-
mization goal of minimizing the maximum total execution
time of tasks on resource nodes. And then, an improved
hybrid particle swarm optimization algorithm (denoted as
HPSO) is proposed. To improve the quality of the proposed
algorithm, we improve the inertia weights parameter setting
[25] and introduce task movement local search procedure.
For worse solution, we also adapt a naive acceptance rule to
keep the diversification of the algorithm. The proposed al-
gorithm was tested on the simulation cloud platform and the
results proved the effectiveness of the proposed algorithm.

The structure of this article is organized as follows. In
Section II, the issued problem is described and modeled.
Section III introduces the proposed particle swarm optimiza-
tion algorithm. In Section IV, the validation and analysis of
experiments are conducted. Section V gives the conclusion
and the research direction in future.

II. PROBLEM STATEMENT AND MODEL

A. Problem Description

In this paper, we address the production system of remote
sensing products, which is a distributed processing system.
In this distributed system, there are multiple production
nodes that can execute tasks in parallel. For each task, it
can be assigned to a production node for execution. The
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Fig. 1. Structure of Remote Sensing Product Production System

production system consists of three components: client, task
scheduler and production nodes, as shown in Fig. 1. The
client works on the personal computer of the users, which
can provide the users with some functions such as creating
production orders, monitoring production process, managing
production algorithms, and a series of manual interactions.
Task scheduler is a service program running on the task
scheduler server. Its major work is to complete the allocation,
management and monitoring of the tasks. The production
node is responsible for executing task, completing production
and verifying production. All the production nodes form a
cluster system, where each production node can be executed
the task at the same time.

The production process of remote sensing product is
described in the following. First, the user creates a remote
sensing order containing multiple remote sensing tasks at the
client by selecting different algorithmic processes and remote
sensing image data. Second, the user submits the created
remote sensing order to the task scheduling server via the
client, and the task scheduler decomposes it into multiple
remote sensing tasks after receiving the remote sensing order.
Next, the task scheduler constructs the task pre-execution
time (ETC) matrix through the correspondence between the
set of remote sensing tasks and the set of production nodes
in the cluster. Finally, the task scheduler produces a task
scheduling plan by the scheduling algorithm, and then sends
each task to the production node for processing.

As mentioned above, generation reasonable and highly
effective task scheduling plan in a remote sensing production
system is very important because it affects the performance
of the whole system. In the view of the scheduling problem,
the issued problem in this paper can be expressed as an
optimization problem, which several tasks are assigned to
some existing resource nodes in the cluster system and a
certain optimization objective is achieved simultaneously.

B. Task Scheduling Model

This section, we give the formulation model of the remote
sensing production task scheduling. Suppose that there are
m tasks to be executed, Tasks = {T1, T2, ..., Tm}, and the
list of task numbers is denoted as T = {1, 2...,m}. There
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are n production nodes used to perform tasks, Nodes =
{N1, N2, ..., Nn}, and N = {1, 2..., n} is the set of node
numbers. For each task, it maintains a set of information
containing the task ID, the order ID of the task, the task
type, and the task status. Each production node has its own
IP address and other attributes. The relation between task
and production node is that anyone task can be assigned to
anyone production node, but one task is just only assigned
to one production node. The tasks assigned to different
nodes can be executed in parallel. The tasks located on the
same production node are non-preemptive, that is, other tasks
cannot start executing before one task is completed.

The task ETC matrix can be constructed by the number
of tasks and the production nodes. Equation (1) gives the
definition of ETC when there are m tasks and n production
nodes. For example, etc11 represents the pre-execution time
when task T1 is assigned to the production node N1.

ETC(i, j) =

 etc11 · · · etc1n
...

. . .
...

etcm1 · · · etcmn

 (1)

The mapping relationship between tasks and nodes can be
defined as the task allocation matrix (TA), shown in equation
(2).

TA(i, j) =

 ta11 · · · ta1n
...

. . .
...

tam1 · · · tamn

 (2)

Where i (i ∈ T ) represents the number of the task, j
(j ∈ N) represents the number of the production node, taij
indicates whether the task Ti is assigned to the production
node Nj . When task Ti is assigned to production node Nj ,
taij = 1; otherwise taij = 0.

The execution time of each Ti on production node Nj is
recorded as tij , and we suppose tij = etcij . The total time-
consuming cost TCj of executing a task on a certain produc-
tion node j is defined as equation (3). The maximum value
of total task time cost in all nodes is recorded as Makespan,
which is defined in formula (4). The optimization goal of the
problem is to find the minimum Makespan.

TCj =
∑
i∈T

taijtij , j ∈ N (3)

Makespan = max{TC1, TC2, ..., TCn}, n ∈ N (4)

Therefore, the mathematic model of the task scheduling
problem is described as follows. The objective function (5)
minimizes the Makspan defined in equation (4). Constraint
(6) ensures that a task only is allowed to located one
production node at any time. Equation (7) indicates that the
decision variable taij must be 0 or 1.
Minimize

Z =Makespan (5)

Subject to: ∑
i∈T

taij = 1,∀j ∈ N (6)

taij ∈ {0, 1},∀i ∈ T, j ∈ N (7)

III. PROPOSED ALGORITHM

A. Overview of Particle Swarm Optimization

Inspired by the phenomenon of birds foraging and sim-
ulating biological population activities, the particle swarm
optimization (PSO) algorithm was firstly developed by E-
berhart and Kennedy [26]. Due to its advantages of easy
implementation, high precision and fast convergence, PSO
has been widely used in many optimization problems, such as
function optimization, vehicle routing problem, scheduling,
and other fields. The candidate solution of optimization
problem is defined as a particle in PSO. Each particle corre-
sponds to an adaptation value determined by the optimization
function. Each particle is described by position and velocity
two attributes, and it can adjust its velocity and position
according to its situation and the flight of other particles. The
PSO algorithm is usually initialized by generating a random
set of particles, and in each iteration, each particle adjusts
its velocity and position by tracking the individual extreme
value Pbest and the global extreme value Gbest, as shown
in equation (8) and (9), until a satisfactory solution is found.

Vi(t+ 1) = ωVi(t) + c1r1(Pbesti(t)−Xi(t))+

c2r2(Gbesti(t)−Xi(t))
(8)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (9)

Where t is the number of current iteration and ω is the in-
ertia weight. Assuming that particles search in S-dimensional
space, Vi =

{
v1i , v

2
i , ..., v

S
i

}
represents the flying speed of

particle i, Pbesti = {p1i ,p2i ,...,pSi } is the current individual
optimal position of particle i, Gbesti = {g1i ,g2i ,...,gSi }
represents the global optimal position of all particles, Xi ={
x1i , x

2
i , ..., x

S
i

}
represents the current position of particle i.

c1 and c2 are the individual learning factor and the population
learning factor, respectively. Factor c1 guides the particle to
fly closer to the individual optimal position, and c2 regulates
the particle to fly closer to the population optimal. These
two parameters are usually set to 2. r1 and r2 are random
numbers between 0 and 1.

B. Encoding and Decoding

For task scheduling problem, the first job is to decide
how to represent the result of task scheduling in terms of
a particle. Assuming that the number of tasks is M and the
number of production nodes is N , a matrix with one row and
M columns is constructed. The length of the particle depends
on the number of tasks, which is M . The elements at each
position in the particle should be integers between 1 to N ,
which indicates the number of production node assigned to
the task. When the particle swarm is created, each particle is
randomly generated according by the number of production
nodes. For a particle, decoding of the particle is to get the
task scheduling plan.

For example, there are 10 tasks to be executed on four
production nodes R1, R2, R3 and R4. The list of task
numbers is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the list of
production nodes numbers is denoted as {1, 2, 3, 4}. If a
possible particle X is set to {1, 2, 1, 4, 2, 2, 1, 3, 2, 1},
the task scheduling plan of this particle is described in Fig.
2. There are four tasks assigned to the production node R1,
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Fig. 2. An Example of a Task Scheduling Plan

which are tasks 1, 3, 7 and 10. In a similar way, tasks 2, 5,
6 and 9 are assigned to node R2, and task 8 and task 4 are
allocated to the node R3 and node R4. As a whole, the task
lists of the four production nodes is {1, 3, 7, 10},{2, 5, 6,
9},{8}and{4} respectively.

C. Fitness Function

In the PSO algorithm, each particle has a fitness function
related to the optimization objective. For this issued problem,
the estimated maximum completion time of all tasks can be
calculated as shown in equation (4). Since the optimization
goal of the problem is to find the minimum execution time
of all tasks, the definition of the fitness function of particle
X is shown in equation (10).

fitness(X) =
1

Makespan(X)
(10)

D. Inertia Weights Adjustment

The change of inertia weight will affect the search ability
and convergence speed of the algorithm. On one hand,
increasing the inertia weight can jump out of the local
optimum of the PSO algorithm, and avoid appearing the pre-
mature phenomenon. On the other hand, reducing the inertia
weight can improve the search accuracy of the algorithm.
Therefore, an effective inertia weights adjustment method is
very important for the PSO algorithm.

In this paper, we used a typical linear decreasing strategy
to modify the inertia weights, which is defined in equation
(11). The value of inertia weights are dynamically updated
during the iterative process.

ω == ωmax −
ωmax − ωmin

tmax
∗ t (11)

Where ωmax represents the maximum inertia weight, ωmin

represents the minimum inertia weight, tmax represents the
maximum number of iterations, and t represents the current
number of iterations.

It can be seen that the speed of the particle is relatively
high at the start of the iteration, so a higher value of inertia
weight can make the particle swarm algorithm perform more
global search. As the number of iterations increases, the
speed of the particle decreases, and the value of inertia

weight is gradually reduced to make it have better local
search ability.

E. Local Search Procedure

In order to improve the search ability of the PSO algorith-
m, we introduce a local search procedure to do task move-
ment. For the particle, the task movement will apply and
try to find better neighborhood solution. The task movement
operator is to shift one task from one production node to
another production node, which can change the arrangement
of the task to find better scheduling plan.

Assume there are two production nodes R1 and R2 and the
task lists of them are {1, 2, 3, 4} and {5, 6} respectively. If
task 2 is moved from production node R1 to the production
node R2 before task 6, the list of tasks of R1 and R2 will
change to {1, 3, 4} and {5, 2, 6}. From the operation, we
can find that the locations of tasks on different production
nodes are changed, and the total execution time of each task
list on the production nodes will also be updated.

In local search procedure of the HPSO algorithm, the task
movement operator will executed many times until it cannot
find better movement. If the algorithm iterates several times
with a constant fitness value, we think the algorithm may
fall into the local optimum. At this point, we will do the
task movement local search procedure.

The process of task movement is described as follows.
First, according to the ETC matrix and the task assignment
matrix, we calculate the task completion time of each pro-
duction node, and find the production nodes Nmax and Nmin

with maximum task completion time and minimum task
completion time. Then, we seek the task Taski in the task list
of production node Nmax, which can have the smallest pre-
execution time when it is assigned to the Nmin production
node. Finally, the task Taski is tried to be shifted to the
production node Nmin. If the task Taski is assigned to
the production node Nmin, and the task completion time
of Nmin is less than the completion time of Nmax, the
task Taski is allocated to the production Nmin. Meanwhile,
the task completion time and task assignment matrix of the
production nodes are also updated. Otherwise, the movement
process is terminated.

To better illustrate the local search procedure, we give an
example. There are an ETC matrix and a task assignment
matrix for 10 tasks and 4 production nodes, and their
definitions are shown in formulation (12). The Fig. 3(a) gives
the scheduling plan before the local search.

ETC =



5 2 3 4
1 3 2 7
2 4 1 3
3 2 5 9
3 5 1 3
4 6 5 1
1 1 3 4
9 2 6 3
2 4 4 3
4 2 2 3


TA =



1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0


(12)

First of all, we can calculate the task completion times
of R1, R2, R3 and R4 four production nodes, and their
values are 12, 18, 6 and 9 respectively. Then, the production
nodes with maximum task completion time and minimum
task completion are R2 and R3. The task 5 on node R2 has
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the minimum execution time when it is assigned to R3. From
the ETC matrix, we can find the execution time of task 5 on
R2 and R3 are 5 and 1. If the task 5 is shifted from R2 to R3,
the task completion time of R3 is 7, which is smaller than
that of R2. Thus, we do the movement of task 5, the new task
completion time of all the production nodes are changed into
12, 13, 7 and 9. The maximum task completion time of four
production nodes is 13. The task movement procedure will
be continuously executed until no task movement operation
occurs. After the local search procedure, the task assignment
matrix and task assignment matrix are shown in equation
(13). The task completion task times of R1, R2, R3 and R4
are 10, 10, 10 and 9. So, the maximum task completion time
is 10.

ETC =



5 2 3 4
1 3 2 7
2 4 1 3
3 2 5 9
3 5 1 3
4 6 5 1
1 1 3 4
9 2 6 3
2 4 4 3
4 2 2 3


TA =



1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0


(13)

The above example depicts the process of task movement
and the new task scheduling plan can be seen in Fig.
3(b). Seen from the Fig. 3, the task scheduling plan is
more equilibrium after executing task movement local search
procedure.

F. Naive Acceptance Rule

In the search process of the algorithm, the algorithm
may reach the current local optimum because of lacking
of the multifarious solutions. The fitness value may remain
unchanged in multiple iterations, and it is necessary to
change the update direction of the particles to jump out the
local optimum.

For this purpose, we adapt a probability-based acceptance
strategy, which is called naive acceptance rule, to accept
the generated new particles. If new particle is better than
the current particle, the new particle is always accepted.
For the worse new particle, the new particle is accepted if
p ≥ 0.5 and p is a random number generated between 0 and
1, otherwise it is rejected.

G. Algorithm Framework of HPSO

The whole algorithm framework of the HPSO algorithm
is described in the following.

Step 1: Initialize the population size M , the maximum
number of iterations tmax, weights wmax and wmin, learning
factors c1 and c2, and the values of other parameters. Set the
two parameters α and β to indicate when local search and
acceptance rule are used in the algorithm.

Step 2: Generate M initial particles and calculate the
fitness value of every particle. The individual and global best
optimum particles are denoted as pbest and gbest. The current
number of iterations is t = 0.

Step 3: Update the location and speed of each particle by
equation (8) and equation (9).

Step 4: Calculate num that is the number of gbest with
continuously constant fitness value.

Step 5: If num > α, the task movement local search
procedure is used for each current particle xi. Then, a new
particle x

′

i will be obtained.
Step 6: If num > β, for each new obtained particle x

′

i,
we use naive acceptance rule to decide whether accept x

′

i or
not. If x

′

i is better than xi, x
′

i is accepted; otherwise it will
be accepted by 50%.

Step 7: Update the pbest and gbest.
Step 8: Execute t = t+ 1. If t ≤ tmax, go to step 3.
Step 9: Output gbest.

IV. EXPERIMENTAL STUDY

This section, we evaluate the performance of the proposed
algorithm by some experiments. First, the HPSO algorithm
was compared with other task scheduling algorithms. Then,
we tested the advantage of the improvement strategies of the
HPSO algorithm. Finally, we analyzed the stability of the
HPSO algorithm.

A. Experimental Environment and Parameter Setting

The HPSO algorithm was coded in Java language with
JDK 14.0.2. The population size of HPSO is set to 25, and
the iteration number is 500. ωmax and ωmin are set to 0.9
and 0.4 respectively. The learning factors c1 and c2 are both
set to 2. The parameters α and β are set to 50 and 100
respectively. We also used Cloudsim simulation environment
with cloudsim-3.0.3 to evaluate the performance of the
proposed algorithm. In Cloudsim, twenty virtual machine
nodes were configured with memory of 512MB, processing
speed of 1000 MIPS and bandwidth of 1000 MB. All the
experiments had been conducted using a computer running
windows 10 64-bit operation system with 3.40 GHz CPU
and 16 GB of RAM.

In additional, we used the instance whose ETC ma-
trix is given directly, which can be downloaded from
the website (https://github.com/AtheerAlgherairy/Cloudsim-
FCFS-SJF-RR-PSO). And the instance was executed 10
times, and the best solution and average solution were
calculated.

B. Experiment Results and Comparison

This section, we use the HPSO algorithm solve the in-
stance with different task numbers and compare it with ex-
isting task scheduling algorithms. The comparison algorithms
include RR, Short Job First (SJF), FCFS, the Max-Min
algorithm (Max-Min), standard tabu search (Tabu) and basic
ant colony optimization algorithm (ACO). All algorithms
solved the same instance and were implemented in the
CloudSim simulation platform.

TABLE I displays the results of these algorithms when the
number of tasks is 50, 100, 200, 400 and 800 respectively.
The column TaskNum represents the instance with different
task numbers. Columns Best and Avg indicate the best
solution and the average solution of instance running 10
times. The solutions are shown in integer seconds. The best
solutions obtained by these algorithms are shown in Fig. 4.

As reported in TABLE I and Fig. 4, the HPSO outperforms
the existing scheduling methods. In these methods, the early
scheduling methods such as RR, SJF and FCFS have longer
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(a) Before Task Movement (b) After Task Movement

Fig. 3. An Example of Task Movement Local Search Procedure

TABLE I
COMPARISON HPSO WITH OTHER ALGORITHMS

TaskNum
RR SJF FCFS Max-Min Tabu ACO HPSO

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

50 2744 3428 2477 3943 2929 3581 967 967 2427 2796 1906 2062 820 874
100 5106 6315 4754 5529 4589 5716 1980 1980 4263 47746 3374 3571 1535 1657
200 8638 9810 7806 9861 8409 9451 3878 3878 7904 8714 5894 6318 2559 2802
400 14525 17342 13631 160572 14455 17017 8136 8136 14400 15559 11131 116549 5194 5468
800 28851 32894 28224 308514 27867 306424 17048 17048 27868 30626 21143 21493 11012 11490

Average 11973 13958 11372 13248 11650 13281 6401 6402 11372 12494 8690 9020 4224 4458

Fig. 4. Best Results Obtained by HPSO and Other Algorithms

execution time. Moreover, the HPSO algorithm is more
competitive than Tabu and ACO. The Max-Min algorithm
has the best performance among these six algorithms. But
HPSO can find better solutions than the Max-Min algorithm.
For the Max-Min algorithm and the HPSO algorithm, the
average values of the best solutions are 6401 seconds and
4224 seconds. The improvement degree of HPSO is very
high. The results show that the proposed algorithm can
significantly decrease the execution time of tasks to enhance
the production efficiency.

Further, we also calculate the execution time of HPSO and
other algorithms and the results are shown in TABLE II. For
every algorithm, the execution time is shown in milliseconds.

Seen from the TABLE II, the traditional task scheduling
approaches have less execution time at different task scales.

Among of three metaheuristics algorithm, tabu algorithm
is fastest and ACO is lowest. Our proposed algorithm has
a reasonable execution time. For the largest task, HPSO
spent only not than 1 seconds. Although HPSO needs more
computation time than traditional task scheduling approaches
and tabu algorithm, HPSO has the best performance among
of all the algorithms.

C. Performance Analysis of Different Improvement Strategies
in HPSO

To evaluate the performance of improvement strategies in
the HSPO algorithm, we used it to solve the instance with
different task numbers. We compared the HPSO with four
PSO algorithms, which include standard PSO, linear inertia
weight improved PSO (IPSO), IPSO with NA rule algorithm
(IPSO-NA) and IPSO having local search named IPSO-LS.
All algorithms have the same parameters settings and test
environment.

TABLE III shows the results of these five algorithms. The
description of the columns in TABLE III is same as that of
TABLE I. Fig. 5 gives the best solutions obtained by these
algorithms.

From the TABLE III and Fig. 5, we find the HPSO
algorithm outperforms other four PSO algorithms. Among
other four PSO algorithms, when the local search strategy
is adapted, the performance of the algorithm improves sig-
nificantly. It can be explained that the task movement can
find the better task scheduling combination. Additionally, the
use of naive acceptance rule can enhance the quality of the
algorithm. These results show that these hybrid strategies in
the HPSO algorithm can improve its performance.
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TABLE II
EXECUTION TIMES OF HPSO AND OTHER ALGORITHMS

TaskNum RR SJF FCFS Max-Min Tabu ACO HPSO

50 35 36 46 42 39 317 127
100 44 43 47 50 46 1269 178
200 51 55 52 70 57 7970 277
400 59 76 62 150 83 37764 435
800 84 102 80 638 152 268987 805

Average 54.6 62.4 57.4 190 75.4 63261.4 364.4

TABLE III
COMPARISON HPSO WITH OTHER PSO ALGORITHMS

TaskNum
PSO IPSO IPSO-NA IPSO-LS HPSO

Best Avg Best Avg Best Avg Best Avg Best Avg

50 2130 2366 1733 2076 1781 1982 856 978 820 874
100 3706 4388 3670 4102 3464 3743 1503 1662 1535 1657
200 8297 8972 7857 8693 7165 7685 2682 2778 2559 2802
400 15204 17227 15685 16527 13597 15117 5244 5540 5194 5468
800 26505 29470 27055 28097 26787 27346 11052 11518 11012 11490

Average 11168 12485 11200 11899 10559 11175 4267 4495 4224 4458

Fig. 5. Simulation Best Results of the Five PSO Algorithms

Fig. 6. Average Improvement Percentage of Four PSO Algorithms

Further, we regarded the PSO as the baseline method
and calculated the average improvement percentage of the
improved PSO algorithms. The results are shown in Fig. 6.

As shown in Fig. 6, the HPSO is still more competi-
tive than other PSO algorithms. When the number of task
increases from 50 to 200, the improvement percentage of

IPSO-LS and HPSO algorithms increase obviously. With the
increasing of the task numbers, the improvement percentages
of them decrease a little. For the HPSO algorithm, it has the
best whole average improvement. The results reveal that the
hybrid strategies used in the HPSO algorithm is effective.

D. Stability Analysis of HPSO

We further analyze the stability of the HPSO algorithm
in this section. For each task with different task numbers,
we calculated the standard deviation(STD) and coefficient of
variation(CV) of the HPSO algorithm and other comparison
algorithms. TABLE IV gives the results of them. Due to the
same result in each iteration of the Max-Min algorithm, its
standard deviation and coefficient of variation do not shown
in TABLE IV.

As shown in TABLE IV, we can find that the HPSO
algorithm has lowest average standard deviation. Among
of these algorithms, the traditional algorithms has bigger
standard deviations and coefficient of variation values. For
ACO and HPSO algorithm, they both have the smaller
deviation values, which means that these algorithms have
the stability. Although the ACO algorithm has the smallest
coefficient of variation value, the HPSO algorithm is better
than it from the view of the optimization objective.

E. Convergence Analysis of HPSO

In this section, we analyse the convergence of the HPSO
algorithm when the test instances have different task number-
s. We calculated the objective values of the HPSO and other
PSO algorithms mentioned in Section C at each iteration.
The convergence results of them are shown in Fig. 7.

It can be seen from Fig. 7 that HPSO overcomes the
shortcoming of trapping into local optima too early. HPSO
has the best performance among all the PSO algorithms.
There are three PSO algorithms including PSO, IPSO and
IPSO-NA having worse solving quality. They converge too
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TABLE IV
STANDARD DEVIATION AND COEFFICIENT OF VARIATION OF THE HPSO AND OTHER ALGORITHMS

TaskNum
RR SJF FCFS Tabu ACO HPSO

STD CV(%) STD CV(%) STD CV(%) STD CV(%) STD CV(%) STD CV(%)

50 550.02 16.05 901.73 22.87 508.08 14.19 177.62 6.35 108.57 5.26 57.70 6.60
100 1052.99 16.67 662.59 11.98 792.38 13.86 205.08 4.30 157.71 4.42 104.57 6.31
200 927.23 9.45 1354.23 13.73 1001.75 10.60 468.01 5.37 231.84 3.67 98.81 3.53
400 2168.31 12.50 1041.24 6.48 1682.37 9.89 686.37 4.41 247.33 2.12 214.63 3.93
800 2928.93 8.90 1347.36 4.37 1596.02 5.21 2733.74 8.93 208.19 0.97 409.09 3.56

Average 1525.50 12.72 1061.43 11.89 1116.12 10.75 854.17 5.87 190.73 3.29 176.96 4.79

(a) TaskNum=50 (b) TaskNum=100

(c) TaskNum=200 (d) TaskNum=400

(e) TaskNum=800

Fig. 7. Change trends of the Objective Values of Different PSO Algorithms

early when iteration number is smaller than 200. For IPSO-
LS and HPSO, their performance are better due to their
hybrid strategies with local search and acceptance rule. When
task number is 50, HPSO can find best solution faster than

IPSO-LS. With the task number increased from 100 to 400,
HPSO obtaines better solution at almost 300 iterations, and
then converges at almost 600 iterations. When the task
number reaches 800 (shown in Fig. 7(e)), HPSO finds the
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best solution at 500 iterations and it still converges about
600 iterations. In general, these figures show that the HPSO
algorithm has good convergence.

V. CONCLUSION

This paper deals with the task scheduling problem in the
production of remote sensing products, which is the key
problem to improve the production efficiency. We built a
task scheduling model and then developed a hybrid particle
swarm algorithm. Several improvement strategies, such as the
adjustment of inertia weights, the task movement local search
procedure and a naive acceptance rule of inferior solution,
were adapted to improve the quality of the algorithm.

The experiments were tested in the CloudSim simulation
environment. The results reveal that the proposed algorithm
is more effective than the basic PSO algorithm. Among these
three improvement strategies, the local search procedure can
most significantly improve the performance of the proposed
algorithm. Additionally, the probability acceptance rule can
make the algorithm jump out the local optima to prevent
the premature convergence. Furthermore, we also compared
our algorithm with other scheduling algorithms including
classical task scheduling algorithm, ACO algorithm and tabu
algorithm. The results proved that our presented HPSO
algorithm is very effective and stable.

In future, we will do more work on the task scheduling
algorithm. The initial effort is to extend our algorithm to
solve the more complex task scheduling problem with limited
resource constraints. Another work is to sequentially improve
the quality of the proposed algorithm, and then apply it to
the real remote sensing products production system.
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