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Abstract—Acoustic event classification aims to classify the
acoustic event into the correct classes, which is beneficial
in surveillance, multimedia information retrieval, and smart
cities. The main challenges of acoustic event classification are
insufficient data to learn a good model and varying lengths
of the acoustic input signal. In this paper, a deep learning
architecture, namely: Pre-trained DenseNet-121 with Multilayer
Perceptron is proposed in this work to classify the acoustic
events into correct classes. To mitigate the data scarcity prob-
lem, two data augmentation techniques: time stretching and
pitch shifting, are applied on training data to boost the number
of training samples. Given the augmented acoustic signal, a
frequency spectrogram technique is then employed to represent
the acoustic event signal into a fixed-size image representation.
The output of the spectrogram images are enriched with the
information of the acoustic signal such as energy levels over time
domain, frequency changes, signal strength, and amplitude.
Subsequently, a pre-trained DenseNet-121 model is adopted as a
transfer learning technique to extract significant features from
the spectrogram image. In doing so, computation resources
can be greatly reduced and improve the performance of the
deep learning-based model. Three benchmark datasets: (1)
Soundscapes1, (2) Soundscapes2, and (3) UrbanSound8K, are
used to assess the performance of the proposed method. From
the experimental results, the proposed Pre-trained DenseNet-
121 with Multilayer Perceptron outperforms existing works on
Soundscapes1, Soundscapes2, and UrbanSound8K datasets with
the F1- scores of 80.7%, 87.3%, and 69.6%, respectively.

Index Terms—acoustic event classification, DenseNet, mul-
tilayer perceptron, time stretching, pitch shifting, frequency
spectrogram

I. INTRODUCTION

ACOUSTIC event classification (AEC) is a task to cor-
rectly classify acoustic signals that contain acoustic

events into the actual event classes. AEC is widely im-
plemented in automatic sound segmentation, home living
monitoring systems, and surveillance systems. However,
AEC remains challenging due to the variation in recording
background, varying of events length, insufficient training
samples, and etc. In view of this, techniques to analyse and
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extract meaningful features from the acoustic signals are
important in AEC tasks. An acoustic signal that contains
acoustic events can be treated as a temporal data, which
is a sequence of samples ordered in their occurrence over
time domain. Generally, there are two major approaches in
AEC: (1) hand-crafted approaches, and (2) deep learning-
based approaches.

For the hand-crafted approaches, robust features such as
Mel Frequency Cepstrum Coefficients (MFCC) are extracted
from the acoustic event signal. Thereafter, robust classifiers,
for instance, Support Vector Machine (SVM) are used to
classify the feature vector into the correct classes. However,
a single feature extraction technique is insufficient to achieve
state-of-the-art performance in AEC. Hence, it leads to
aggregation of multiple acoustic features to obtain better
representation. By doing so, the computation complexity is
increased and it is undesired for real-time implementation.
On the contrary, deep learning-based approaches attempt to
build an AEC model in an end-to-end manner. Deep learning
has been widely applied in many applications [1]. Through-
out the training process, deep learning models are able to
automatically discover a set of significant representations
instead of manually engineered features that lack robustness
to unseen data. In view of this, we propose a deep learning-
based acoustic event classification model, referred to as Pre-
trained DenseNet-121 with Multilayer Perceptron (MLP).

In the proposed Pre-trained DenseNet-121 with MLP
method, two data augmentation techniques: (1) time stretch-
ing, and (2) pitch shifting; are employed in the training
set in order to overcome the data scarcity. Current work in
AEC faces the difficulties to mitigate the problem of varying
lengths of acoustic data. In view of this, instead of processing
the temporal acoustic data, an effective conversion strategy
is proposed to convert the acoustic signal into frequency
spectrogram which enriches with more information of the
acoustic signal such as strength of the signal, frequency
changes, and energy levels over the time domain. Moreover,
the colour or brightness in a spectrogram represents the
amplitude of an acoustic signal. The problem of varying
length of the acoustic signal is solved automatically dur-
ing the conversion process by fixing the dimension of the
spectrogram image. Thereafter, to obtain a compact feature
representation from the spectrogram, a transfer learning
with pre-trained DenseNet-121 architecture is proposed. The
DenseNet-121 model used in this work is pre-trained on
the ImageNet dataset. Instead of training from scratch, the
pre-trained DenseNet-121 model is utilised to extract robust
features with the transferred knowledge. This will further
enhance the performance of the proposed model and it also
saves the training time.

Given the compact features obtained through transfer
learning with the pre-trained DenseNet-121 model, the Multi-
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layer Perceptron (MLP) architecture is used to perform learn-
ing on the features extracted by the pre-trained DenseNet-
121. MLP employs a supervised learning approach known as
back-propagation where the weights are adapted to reduce
the error rate during the training process. This allows the
MLP to learn the complex and non-linear relationships be-
tween inputs and outputs. In addition, the trained MLP model
is able to generalise to the unseen data. The performance of
the proposed Pre-trained DenseNet-121 with MLP model is
then evaluated on three acoustic event datasets.

The major contributions of this work are:
• Alleviate the impact induced by data scarcity via two

data augmentation techniques: (1) time stretching, and
(2) pitch shifting.

• Mitigate the varying lengths of acoustic signal by
converting the input acoustic data into a fixed length
spectrogram.

• An acoustic event classification model based on pre-
trained DenseNet-121 with multilayer perceptron.

This paper is structured as follows: Section II reviews
the current acoustic event classification techniques. Section
III explains the proposed pre-trained DenseNet-121 with
multilayer perceptron in detail. Section IV presents the
experimental results and analysis. Lastly, the conclusion is
drawn in Section V.

II. RELATED WORK

In general, acoustic event classification can be grouped
into hand-crafted approaches and deep learning-based ap-
proaches.

In the hand-crafted approach, the acoustic event classifi-
cation consists of feature extraction and classification stages.
The robust features in the input data are selected in the
feature extraction stage. The dimensionality of the data is
greatly reduced through the feature selection process. In the
classification stage, the extracted feature vector is taken as
the input to perform the classification. In the hand-crafted
approach, the features are manually engineered to deal with
particular tasks which cause limitations to adapt to non-
identical challenges. [2] proposed an exemplar-based model
to model the acoustic event as a linear combination of
dictionary atoms. [3] proposed an acoustic event classifi-
cation model that integrated Filter Back Coefficients (FC)
and non-negative matrix factorisation (NMF). FC was used
to seize the dynamic structure in the short-term features
and NMF was used to learn the temporal filters. In [4],
a combination of Gaussian Mixture Models (GMM) and
Mel Frequency Cepstral Coefficients (MFCCs) was proposed
to classify the acoustic data. Additionally, the proposed
method utilised a shared background model to minimise
the impact of silence in the acoustic data. Classification
of the acoustic data was then determined based on the
GMM model that produced the highest averaged posteriori
score. Another work characterised by the hidden Markov
model (HMM) [5] utilised MFCC as the feature extraction
mechanism. Three states continuous-density HMM was used
to model the sound-event-conditional feature. A mixture of
multivariate Gaussian density functions was utilised to model
the probability density functions in each state. In [6], MFCC
was deployed as the feature selection unit and Support Vector

Machine (SVM) was leveraged as the classifier. In their work,
13 MFCCs features were extracted for each audio file and
a sliding window of 10 frames with 5 overlapping frames
was used. For classification, slack SVM was employed.
Later, a tandem connectionist-HMM [7] was introduced to
integrate both sequence modelling capabilities of HMM and
trained context-dependent discriminative capabilities of a
neural network. To calculate the KL-divergence between the
audio segments, an SVM-GMM-supervector was deployed.
In [8], an acoustic event classification system that imple-
mented extraction of spectro-temporal features and two-layer
HMM was proposed. Noise reduction algorithms depend
on log-spectral amplitude estimator [9] and noise power
density estimation [10] were used in their work. Later on,
some works [11], [12] applied random forest for acoustic
event classification. In [11], an architecture that utilised
long contextual information, low-dimensional discriminant
global bottleneck features and category-specific bottleneck
features, were proposed for acoustic event classification.
Both global and category-specific bottleneck features were
able to extract the preliminary knowledge of the acoustic
event class. Then, the acoustic features were concatenated,
and category-specific bottleneck features were passed into a
random forest classifier. [12] decomposed the acoustic signal
into several superframes that were annotated with event class
labels. Random forest was then used to perform learning with
the displacement knowledge.

Although hand-crafted approaches perform well in acous-
tic event classification, the hand-crafted features are not
robust to different datasets or unseen data. Motivated by
the successes of deep learning in computer vision [13]–[15],
researchers had begun to use deep learning approaches in
the acoustic event classification tasks [16]. Deep learning
architecture is a deep neural network that comprises input
layer, hidden layers and an output layer. The hidden layers
in the deep learning architecture possess the representation
learning ability. In [17], the acoustic data is converted
into the energy-augmented spectrogram image features, and
then fed into a 1-max pooling CNN (1MaxCNN-E-MC) for
training and classification. In [18], a deep learning-based
acoustic event classification architecture was introduced to
solve polyphonic acoustic event classification tasks. Due to
the limitation of the fixed threshold approach, the authors
proposed the contour-based and regressor-based dynamic
threshold schemes. They adopted a fully connected deep
neural network (DNN) as the classifier. [19] adopted a DNN
to extract robust features from the raw acoustic data. In addi-
tion, transfer learning techniques were applied in their work
where the DNN filters were pre-trained in the source realm
and fine-tuned to the target realm. After training, the trained
DNN filters were used to extract features from the acoustic
signal. [20] proposed a weakly-supervised learning frame-
work, known as FrameCNN, for acoustic event classification.
FrameCNN model received the 128-bin log mel-spectrogram
as the input of the CNN to reduce the dimensionality
along the frequency axis. A global temporal pooling layer
was added to concatenate three pooling outputs with mean,
maximum, and variance function. Moreover, a transposed
convolution network was employed to perform frame-wise
classification by training on weakly annotated data. Another
work introduced by [21] used SB-CNN, which was a CNN
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based acoustic event classification model that comprises 3
convolutional layers, interleaved with 2 pooling layers, and
followed by 2 dense layers. A feature vector of 193 values
of five different features: Mel-frequency cepstral coefficients,
Chromagram of a short-time Fourier transform, Mel-scaled
power spectrogram, Octave-based spectral contrast [22], and
Tonnetz were fed into SB-CNN for training. [23] proposed
a CNN-based acoustic event classification model known as
fine-resolution convolutional neural network (FRCNN) that
utilised lateral construction to produce fine-resolution feature
maps. Apart from that, depth-wise separable convolution was
applied to decrease the number of trainable parameters. In
[24], an acoustic event classification model that optimised
frequency sub-band separation via CNN was proposed. Both
damping ratios for roll off and cut-off frequencies were taken
as the additional parameters to the CNN model. The filter
frequency response was optimised for constructing salient
features.

The capability of deep learning approaches for automatic
feature engineering is one of the main advantages over hand-
crafted approaches. Using deep learning, the input acoustic
data will be analysed to discover the set of robust features
that are correlated. The robust features are then integrated to
become a feature map to accelerate the learning process. In
view of this, we focus on deep learning based architecture
for acoustic event classification in this work.

III. PRE-TRAINED DENSENET-121 WITH MULTILAYER
PERCEPTRON

This section describes the proposed pre-trained DenseNet-
121 with multilayer perceptron model in detail. The archi-
tecture of the proposed pre-trained DenseNet-121 with MLP
is depicted in Fig. 1.

The training of deep neural networks is more susceptible
to overfitting when there are limited training samples. In view
of this, two data augmentation techniques are performed to
boost the training samples and to prevent the overfitting. The
two data augmentation techniques are pitch shifting and time
stretching. Time stretching augments the training samples
by modifying the speed of the acoustic signal, whilst pitch
shifting produces more training samples by altering the pitch
of the acoustic signal. To overcome varying lengths of the
acoustic signals, the augmented acoustic signals then undergo
conversion from time domain into frequency domain via fre-
quency spectrogram technique. To obtain a set of significant
features, transfer learning is employed. The output frequency
spectrogram image is fed into a pre-trained DenseNet-121
which is adopted as a feature extraction mechanism to
extract robust features from the frequency spectrogram. The
extracted features from pre-trained DenseNet-121 are more
diversified and it includes the features from all complex-
ity levels [25]. The resulting significant features extracted
from the frequency spectrogram are then used as an input
stream for acoustic event classification. In the model stage,
a multilayer perceptron is proposed to perform the training
and classification of the output features from the pre-trained
DenseNet-121 into the correct acoustic event classes.

A. Data Augmentation
Typically, deep neural networks require substantial

amounts of training samples in order to achieve good per-

formance. Data augmentation technique is used to overcome
the data scarcity problem via increasing the number of the
training samples by modifying the available data. In this
work, two data augmentation techniques are employed to
generate more training samples: (1) time stretching, and
(2) pitch shifting. An illustration of the data augmentation
techniques is presented in Fig. 2.

1) Time Stretching: Time stretching is a data augmenta-
tion technique which alters the speed of an acoustic signal.
It can either speed up or slow down the acoustic signal and
the spectral content will remain unchanged. Given the input
acoustic signal, x, time stretching stretches x by dividing it
into overlapping blocks with interval Ra, where R denotes
the interval between the blocks, and a indicates the initial
value. Subsequently, it is reassembled with different spacing
Rs, where s denotes the target value. The output time
stretched augmented signal has a rate of α = Ra

Rs
with

respect to the initial input signal. Although this approach
fulfills the fundamental requirements of time stretching, the
time stretched signals are phase discontinuities due to the re-
spacing of the acoustic blocks. In view of this, phase vocoder
algorithm is applied to overcome the phase discontinuities
issue. By using short-time Fourier Transform (STFT), x is
partitioned into collective of overlapping frames, Xframe.
The amplitude and phase information for every frequency
channels at specific time instants, tua = u · Ra(u ∈ U)
of the input signal are then obtained where U denotes the
total number of frames. Discrete Fourier transform (DFT) is
computed to transform the frame into frequency domain and
obtain the successive spectral representations:

X (tua , k) =
∑J
j=1 xu (tua + j)Hann(j) · e−ϕΩkj , Ωk = 2πk

J (1)

where 1 ≤ k ≤ J and ϕ is the imaginary unit, where
ϕ =

√
(−1). In addition, the Hanning window function,

Hann(j), is used in both time stretching and pitch shift-
ing techniques. Generally, xu possesses the quasi-stationary
characteristic. Therefore, phase adjustment can be done via
altering the phase of each bin to match the phases at shifted
synthesis time positions, tua . In addition, phase adjustment
depends on the observed phase difference between the pre-
vious and current frame. Hence, spectrum is divided into
amplitude, r (tua , k), and phase, Φ (tua , k):

r (tua , k) = |X (tua , k)|
Φ (tua , k) = arg (X (tua , k))

(2)

The phase increment for the synthesis hop size can
be obtained with the multiplication between ω (tua , k) and
Rs. Given the phase increment for synthesis hop size,
Rsω (tua , k), the output phase can be calculated by adding
the phase from the previous frame:

Ψ (tus , k) = Ψ
(
tu−1
s , k

)
+Rsω (tua , k) (3)

With the output phase obtained from (3), synthesis frames
yu at tua are computed by applying an inverse fourier trans-
formation:

Y (tus , k) = r (tua , k) · e−ϕΨ(tus ,k)

yu(j) =
1

J

K∑
k=1

Y (tus , k) · eϕΩkj
(4)
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Fig. 1. Architecture of the Proposed Pre-trained DenseNet-121 with Multilayer Perceptron

Fig. 2. Data Augmentation: (a) Original Signal, (b) Time Stretching Signal, (c) Pitch Shifting Signal

By applying windowing and overlap-adding of the single
frames, the final time-stretched augmented signal can be
obtained via:

xstretch =
U∑
u=1

Hann (j − tus ) · yu (j − tus ) (5)

2) Pitch Shifting: Dissimilar to the time stretching ap-
proach, pitch shifting technique attempts to alter the original
pitch of the audio data. Pitch shifting increases or decreases
the pitch of the acoustic data. In this work, pitch shifting is
applied via phase vocoder to produce pitch shifted acoustic
signals. Phase vocoder is commonly used to stretch the signal
in frequency domain which solves phasiness by utilising
STFT. To apply pitch shifting to the acoustic signal, all the
frequency components in an audio signal are multiplied by a
pitch shift ratio without affecting the signal duration. First,
the acoustic signal, x, is partitioned into several blocks via
STFT. After that, it undergoes conversion from time-domain
into frequency-domain. Frequency bins are computed by
employing DFT which transforms the block into frequency
domain. Equation (2) is used to calculate the amplitudes
and phases as the estimation for the time point at the block
centre. Moreover, the phase increment between two analysis
points is computed and all the frequency bins computed are
then scaled with the principal argument presented in [26].
By adding the phase of the previous frame, the final phase
can be computed with (3). Both altered phases Φ (tua , k) and
amplitudes r (tua , k) are then transformed back into blocks
of samples using inverse fourier transformation and Hanning
window function, Hann(j):

Hann(j) = 0.5− 0.5 cos

(
2πj

J

)
, 1 ≤ j ≤ J (6)

The output time stretched signal then undergoes a resampling
process. Given α denotes the stretch rate, Sinitial denotes
the initial sampling rate, the target sampling rate, Starget is
computed as:

Starget =
Sinitial

α
(7)

Two signal processing techniques: trimming and padding,
are applied to the resulting resampled acoustic signal,
xresample, to ensure the output length is equivalent to the
input length. Trimming technique attempts to trim the output
resampled acoustic signal, xresample, to a target length when
the length of the resampled acoustic signal, xresample, is
larger than the length of input signal. On the other hand,
the padding process will pad the resampled acoustic signal,
xresample, with trailing zeros when the length of the resam-
pled acoustic signal, xresample, is smaller than the length of
input signal. Based on the length of the output resampled
acoustic signal xresample, a pitch shifted acoustic signal,
xpitch, is obtained by applying either trimming or padding.

B. Frequency Spectrogram

After data augmentation is applied to the training set,
the augmented training samples are converted into frequency
spectrograms before it is fed into the pre-trained DenseNet-
121 model. In general, an acoustic signal can be visualised
in time-domain representation in which the loudness of the
acoustic signal over the time is presented. The amplitude
information in this conventional visualisation method is not
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very informative because it only indicates the loudness of
the acoustic signal. This is where frequency spectrograms
come into the play. Frequency spectrogram is a popular
method to visualise an audio signal. It is able to represent
the time, frequency, and amplitude information in a graph.
Generally, frequency spectrogram is a two-dimensional graph
with an additional third dimension that is represented by
colours. It shows the signal strength over the time at various
frequencies. The amplitude of a specific frequency at a
particular time is visualised using colour.

The idea of frequency spectrogram technique is to divide
the acoustic signal into small windows. The Hanning window
in (6) is applied to smooth the discontinuities of small
signals. Subsequently, DFT is computed for each small
window. In this work, windows overlapping technique is
adopted to minimise the loss of frequencies. For a single
small window of the input acoustic signal, DFT converts it
into frequency space using:

X (k) =
J∑
j=1

xaugo (j) · e−ϕΩkj , Ωk =
2πk

J
(8)

where xaugo represents the augmented acoustic signal, o =
1, 2, . . . , O denotes index of the augmented acoustic signal,
and j denotes the index of the windows in xaugo . The index
of the windows in X is denoted by k, where k = 1, 2, . . . ,K.
The imaginary unit ϕ, where ϕ =

√
(−1), converts the

real sinusoids into complex sinusoids. The output X(k) is a
sequence of coefficients with the length of K. The same DFT
is then applied to all windows and the time is represented
by the sequential of the windows. The output coefficients
represent the amplitudes of the different frequencies in each
of the small windows. Subsequently, the resulting output,
X(k), is normalised. In this work, min-max feature scaling
method is used to perform normalisation that brings all values
into the range [0, 1]:

X(k)′ =
X(k)−X(k)min

X(k)max −X(k)min
(9)

where X(k)′ denotes the normalised value of X(k). The
resulting spectrums form a three-dimensional frequency
spectrogram image, xspeco , where the rows and columns
represent the number of window frames and the frequency
bin, respectively. Additionally, the colours of the frequency
spectrogram image represent the strength of the frequencies.
As compared to 1D acoustic signal that only contains tem-
poral information, spectrogram image provides more infor-
mation of the audio signal that includes time, frequency,
and amplitude of the acoustic signal. The dimension of
the spectrogram image is denoted as (h × w) × d, which
represents rows, columns, and channels, respectively. The
output frequency spectrogram images, xspeco , will be passed
to the next phase to extract the significant features.

C. Transfer Learning with Pre-trained DenseNet-121

Transfer learning is a machine learning approach that
attempts to use an architecture that is already learned from
another domain, and apply that knowledge to other target
tasks instead of starting from scratch. In the deep learning

field, transfer learning is a popular approach where pre-
trained models that are trained with large-scale data are
used to accelerate the training process and improve the
performance of the deep learning model. With the transfer
learning approach, the parameters from the pre-trained model
are transferred to a new task. Due to the limited training sam-
ples in the dataset, transfer learning approach is particularly
useful which provides good initialisation for the parameters.
Although the datasets used in this work are acoustic data, it
is converted into a spectrogram image with the frequency
spectrogram technique that is presented in Section III-B.
Therefore, it is more appropriate to transfer a pre-trained
model from an image-related task. The knowledge of the pre-
trained model is migrated in this research to extract features
from the frequency spectrogram image. In this work, a pre-
trained DenseNet-121 model on ImageNet is proposed to ex-
tract robust features from each frequency spectrogram image,
xspeco . The softmax layer of the pre-trained DenseNet-121
is removed because the classification process is not needed
in this stage.

Densely Connected Convolutional Networks (DenseNet)
is introduced to encounter the gradient vanishing prob-
lem in Convolutional Neural Networks (CNN) architecture.
DenseNet is a CNN architecture that utilises dense connec-
tions among all the layers that simplifies the connectivity
pattern between layers yet ensures maximum information
flow. DenseNet encourages feature reuse that include the
feature maps from other layers as the additional inputs. The
feature maps of a layer, z, are used as additional inputs for
other subsequent layers. This connectivity pattern is known
as dense connectivity. DenseNet attempts to concatenate the
resulting feature maps to impede information flow. Hence,
feature map of `th layers in DenseNet receives feature maps
from all preceding layers, z0, z1, . . . , z`−1, as the inputs:

z` = H` ([z0, z1, . . . , z`−1]) (10)

where [z0, z1, . . . , z`−1] refers to concatenated feature maps
from layers 0, . . . , `−1. H`(·) is a composite function that is
inspired by [27]. The composite function comprises of three
consecutive operations, which are: (1) batch normalisation
(BN) [28], (2) interleaved with a rectified linear unit (ReLU)
[29], and followed by (3) a 3 × 3 convolution (Conv). A
problem arises in dense connectivity is that the feature maps
with different sizes are not viable. In view of this, DenseNet
is divided into several densely connected blocks, known as
DenseBlocks. Each DenseBlocks has a constant dimension
of the feature maps regardless of the number of filters. It
helps to facilitate down sampling in DenseNet to reduce the
size of feature maps. The layer between two DenseBlocks
is referred to as the transition layer. Each transition layer
comprises a batch normalisation layer, a 1× 1 convolutional
layer, and followed by a 2× 2 average pooling layer.

Channel dimension of DenseNet will be increased because
the feature maps are concatenated at each layer. Let each H`

produce c feature maps where this hyperparameter c is refers
to the growth rate of the network that regulates the amount
of information added to the network in each layer. c` can be
generalised as below:

c` = c0 + c× (`− 1) (11)
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where the number of channels for the input layer is denoted
by c0. In contrast to other deep neural network architec-
tures, DenseNet can have very narrow layers. Every layer
has a capability to access to its preceding feature maps
as the network’s collective knowledge. At each layer, new
information, i.e., c feature maps of information, is added
to this collective knowledge. Moreover, an average pooling
is utilised to compute the average value for the patches
of a feature map. One of the advantages of DenseNet-121
is strong gradient flow where the error signals are back-
propagated to earlier layers directly due to the dense con-
nectivity. This dense connection allows the earlier layers to
get direct supervision from the output layer that is known as
implicit deep supervision. Moreover, DenseNet-121 practises
a dense connectivity pattern, and thereby, the inputs for
each layer is the network’s collective knowledge containing
diversified features. This has produced richer patterns as
compared to other deep neural network architectures. The
output flatten feature vector, fo, of pre-trained DenseNet-121
is then passed to the multilayer perceptron for acoustic event
classification.

D. Multilayer Perceptron

Multilayer perceptron (MLP) is a feedforward artificial
neural network comprising at least three layers of neurons,
which are an input layer, a hidden layer, and an output
layer. In this paper, the features derived from the pre-trained
DenseNet-121, fo are fed into the MLP as the input data.
Therefore, the number of neurons in the input layer is equal
to the size of the extracted features. For the hidden layer,
the number of neurons is decided empirically in order to
optimise the network with better generalisation for AEC.

MLP is a supervised learning algorithm which performs
training on a set of input-output pairs. MLP models the
correlation of the input-output pairs. Learning of MLP is an
operation of updating the weight connections in order to min-
imise the difference between predicted output and the ground
truth. Learning takes place in every perceptron of the MLP
model where the weight connections are updated after each
chunk of data has been processed. The modification of the
weight connections is based on the error rate of the difference
between the predicted output and the ground truth. During
the training process for a MLP, the parameters: weights and
biases, are adjusted in order to minimise the error rate. A
forward pass and a backward pass are performed in the
training. In the forward pass, the input data is propagated
from the input layer to the hidden layers, and accordingly
reaches the output layer. On the other hand, backward pass
attempts to back propagate the gradient weights and biases by
utilising backpropagation. Backpropagation is an approach to
generalise the least mean squares algorithm for supervised
learning of artificial neural networks (ANN) using gradient
descent. Given fo as the input data with a feature size of
Q, and thereby, an input layer with Q neurons, a ReLU
activation function is used in the proposed MLP:

g(x) = max(0, x) (12)

ReLU outputs a zero for negative input and returns its
argument x for positive inputs. The outputs of the neurons

from the hidden layer, Cl can be computed by squash the
total net input, netl with the ReLU activation function, g(x):

netl =

{ ∑Il

i=1 w
l
i · foi + θl, if l = 1∑Il

i=1 w
l
i · C

l−1
i + θl, l = 2, 3, . . . , L

(13)

Cl = g
(
netl

)
(14)

where I l is the amount of inputs for the lth hidden layer
neuron, θl denotes the bias of lth layer, and wli denotes the
weights of lth layer with ith neuron. When l = 1, the weights
and input data are used to compute the total net input of the
lth hidden layer neuron. To calculate the net input of the lth

layer where l = 2, 3, . . . , L, the output of the (l−1)th layer,
Cl−1
i , is taken as the inputs; and the weights, wli, are included

as presented in 13. Thereafter, ReLU activation function,
g(x) is applied to the total net input, netl to compute the
neuron’s output, Cl. After the outputs of the neurons in
output layer is computed, the degree of error in an output
neuron is obtained as below:

Ei = GLi − CLi , i = 1, 2, . . . , I (15)

where GLi and CLi denote the target output and the computed
output of the network, respectively. Given the error rate of
each output neuron, Ei, the total error of the network can be
calculated as:

Etotal =

IL∑
i=1

1

2
E2
i (16)

Subsequently, in order to reduce the total error, each weight,
wli, in the network is updated using backpropagation. The
partial derivative of Etotal with respect to wli determines
how much change in wli affects the total error Etotal and it
can be computed by applying chain rule:

∂Etotal
∂wli

=
∂Etotal
∂Cli

∗ ∂Cli
∂netli

∗ ∂net
l
i

∂wli
(17)

where total error of the network, Etotal, change with respect
to the output neuron, Cli , is denoted as:

∂Etotal
∂Cli

=

{
− (Ei) , if l = L∑Il

i=1
∂ 1

2E
2
i

∂Cl
i

, l = 1, 2, . . . , L− 1
(18)

For l = L, the total error change with respect to the output
neurons can be evaluated as − (Ei). For l = 1, 2, . . . , L− 1,
the output of each hidden layer neuron contributes to the out-
put of multiple output layer neurons. It is notable that there
are i number of output neurons in the lth layer. Therefore, the
total error change with respect to the output neurons can be
rewritten as,

∑Il

i=1
∂ 1

2E
2
i

∂Cl
i

, as presented in (18). Additionally,

each ∂ 1
2E

2
i

∂Cl
i

can be further computed as:

∂ 1
2E

2
i

∂Cli
=
∂ 1

2E
2
i

∂netli
∗ ∂net

l
i

∂Cli
(19)

Given the derivative of the ReLU activation function, g′(x),

g′(x) =

{
0 for x < 0
1 for x ≥ 0

}
(20)
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the output of Cli change with respect to its total net input,
netli, in (17) is computed as:

∂Cli
∂netli

= g′(Cli) (21)

and the total net input of neurons, netli, change with respect
to the weight, wli is calculated as:

∂netli
∂wli

= Cl−1
i (22)

With the partial derivative of Etotal with respect to wli, the
weight is updated by subtracting ∂Etotal

∂wl
i

from the current
weight:

∇wli = wli − η
∂Etotal
∂wli

(23)

where η denotes the learning rate. This hyperparameter is
used to control how fast the parameters converge. This
training process is repeated to update the weights until the
criterion for termination is achieved. Thereafter, the output of
the neurons in the output layer are interpreted as a probability
of the event classes by applying softmax function:

σ(CL)v =
eC

L
v∑V

v=1 e
CL

v

, v = 1, 2, . . . , V (24)

where the total number of classes is denoted by V . CL

denotes the output from the output layer and it is used
as the input into the softmax function. The denominator∑V
v=1 e

CL
v is used to ensure the summation of all output is

equivalent to 1 in which to provide a probability distribution.
The predicted probability distribution is computed as:

ŷ =


σ(CL)1

σ(CL)2

...
σ(CL)V

 (25)

where ŷ denotes the predicted probability for each event
classes and the final predicted class is based on the maximum
probability:

ρMLP = arg max (ŷ) (26)

The training of the proposed pre-trained DenseNet-121
with MLP is presented in Algorithm 1.

IV. EXPERIMENTS

This section describes the experimental details, including
dataset, ablation study, and experimental results in compari-
son with existing methods.

A. Datasets

In this work, three acoustic event datasets, namely Sound-
scapes1 (Sound1), Soundscapes2 (Sound2), and Urban-
Sound8K (Urban) datasets are used to evaluate the per-
formance of the proposed pre-trained DenseNet-121 with
MLP. Soundscapes1 and Soundscapes2 datasets are collected
by Motorola Solutions Malaysia Sdn. Bhd. Soundscapes1
dataset is a small-scale dataset that contains 388 acoustic

Algorithm 1 Training in Pre-trained DenseNet-121 with
MLP.

1: Initialisation: All parameters and hyperparameters
2: for epoch=1 to epoch=MaximumEpoch do
3: for iter=1 to iter=MaximumIteration do
4: Input← Pre-trained DenseNet-121 features.
5: for o=1 to o=O do
6: Forward propagation: netl (refer to (13))
7: Backward propagation: ∂Etotal

∂Cl
i

(refer to (18))
8: end for
9: Output layer calculation: σ(CL)v (refer to (24))

10: Gradient calculation: ∂Etotal
∂wl

i

(refer to (17))
11: Parameters update: ∇wli (refer to (23))
12: end for
13: end for

event samples. The dataset contains eight different acoustic
event classes: birds, canyon, laugh, murmur, thunder, war,
water, and wind. The number of samples for each event
class varies. Soundscapes2 dataset consists of 235 acoustic
event samples that are grouped into ten event classes: as-
sembly, conveyor, cutter, elevators, grinding, hammer, motor
combustion, printer, relay, and welding. Another database,
namely, UrbanSound8K dataset [30] contains a total num-
ber of 8,732 labelled acoustic samples categorised into ten
different acoustic event classes: air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren, and street music. In this work, each
dataset is split into 80% training samples and 20% testing
samples. Two data augmentation techniques: time stretching
and pitch shifting are applied to the train set to boost the
number of training samples. All augmented acoustic samples
are undersampled into 22,050 kHz sampling rate which is
between the lower and upper limits of human hearing.

B. Ablation Study

The ablation analysis of the pitch shifting, time stretch-
ing, and frequency spectrogram image with Pre-trained
DenseNet-121 with MLP model on the three datasets are
presented in TABLE I. The experiment is first carried out
without any data augmentation and data pre-processing tech-
niques and the result is used as the baseline performance
of the MLP model. Thereafter, time stretching technique is
applied and the F1-score is enhanced by 3.7%, 11.6%, and
5.3% on Soundscapes1, Soundscapes2, and UrbanSound8K
datasets, respectively. Later, another data augmentation tech-
nique, pitch shifting is implemented to boost the number
of training samples. By employing both data augmentation
techniques, the performance of the proposed model is further
improved by 7.4%, 13.6%, and 8.1% for Soundscapes1,
Soundscapes2, and UrbanSound8K datasets, respectively.
This has proved that by implementing both of the data
augmentation techniques, more training samples are obtained
and this has enabled the model to better encode the repre-
sentative features. Therefore, the model has improved the
generalisation ability and it is less prone to overfitting.
Additionally, the pre-trained DenseNet-121 model is used
to extract compact features from the frequency spectrogram
image. Thereafter, extracted significant features are fed into
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MLP for training which further improve the performance of
the model with F1-score of 80.7%, 87.3%, and 69.6% on
Soundscapes1, Soundscapes2, and UrbanSound8K datasets,
respectively.

TABLE I
THE ABLATIVE ANALYSIS OF PRE-TRAINED DENSENET-121 WITH MLP

ON SOUNDSCAPES1, SOUNDSCAPES2, AND URBANSOUND8K
DATASETS, MEASURED IN F1-SCORE (%)

Methods Sound1 Sound2 Urban
MLP 63.0 49.3 45.5
MLP + Time Stretching 66.7 60.9 50.8
MLP + Time Stretching + Pitch Shifting 74.1 74.5 58.9
MLP + Time Stretching + Pitch Shifting
+ Pre-trained DenseNet-121 features 80.7 87.3 69.6

In neural networks-based research, hyperparameters set-
ting of the proposed methods is important in order to
achieve good performance. In view of this, the optimal
values of numerous hyperparameters of the proposed Pre-
trained DenseNet-121 with MLP is determined through the
experiments. The hyperparameters included in this work
are the No. of hidden layers, No. of hidden states, batch
size, and learning rate. As for the Pre-trained DenseNet-121
hyperparameters, exactly the same hyperparameters settings
reported in [31] are used in this work. The number of hidden
layers is initialised to one layer, and incrementally adds one
layer, until no improvement in performance is observed.
The number of hidden states is determined in the set of
{64, 128, 256, 512} which is used throughout all hidden
layers. For the batch size, the initial value is set to 16, and
increments by 16 until it reaches a maximum number of 64.
The maximum number of training epochs is set to 100 in all
experiments. On the other hand, the values of the learning
rate are determined in the set of {0.001, 0.0001} to ensure
the weights converge steadily. The summary of the optimal
hyperparameters settings of the proposed method on three
datasets is shown in TABLE II.

TABLE II
SUMMARY OF THE OPTIMAL HYPERPARAMETERS FOR THREE

DATASETS

Hyper-
parameters

No. of
hidden
layers

No. of hidden
states

Batch
size

Learn-
ing rate

Tested
value 1, 2, 3, 4 64, 128, 256, 512 16, 32, 64 0.001,

0.0001
Optimal Hyperparameters Settings

Dataset
No. of
hidden
layers

No. of
hidden
states

Batch
size

Learn-
ing rate

F1-
score

(Epoch)

Sound1 3 (64, 512,
64) 64 0.001 80.7

(87)

Sound2 4 (512, 256,
128, 256) 16 0.0001 87.3

(96)

Urban8K 4 (128, 256,
512, 512) 16 0.0001 69.6

(78)

C. Comparison with the Existing Methods

The performance of the proposed pre-trained DenseNet-
121 with MLP is compared with the state-of-the-art acoustic
event models in terms of F1-score to further evaluate the
performance of the proposed solution in AEC tasks. The ex-
isting acoustic event models under consideration are mainly
based on neural networks, which include Pre-trained VGG

with CNN [32], SB-CNN [21], and NMF-CNN [33]. These
models are assessed on Soundscapes1, Soundscapes2, and
UrbanSound8K acoustic event datasets, and the experimental
results are listed in TABLE III.

As presented in TABLE III, the proposed method outper-
forms all three existing methods on Soundscapes1, Sound-
scapes2, and UrbanSound8K datasets. As shows in the
table, the proposed Pre-trained DenseNet-121 with MLP
outperforms the Pre-trained VGG with CNN method [32] in
Soundscapes1, Soundscapes2 and UrbanSound8K datasets,
with a difference in the F1-score of 1.9%, 1.4%, and 0.6%,
respectively. The proposed model also outshines the SB-CNN
method [21] on the Soundscapes1, Soundscapes2 and Urban-
Sound8K datasets, with a difference in F1-score of 4.2% ,
18.2%, and 0.6%, respectively. Likewise, the proposed model
performs better than the NMF-CNN [33] with a difference
of 7%, 8.4%, and 3.2% in F1-score, on the Soundscapes1,
Soundscapes2 and UrbanSound8K datasets, respectively.

Two data augmentation techniques utilised in this work
boost the training samples and help in reducing the overfitting
of the model. Besides, more information of the signal can
be obtained by converting the acoustic signal into frequency
spectrogram image which is a large contribution to improve
the performance of the proposed method. Through transfer
learning with a pre-trained DenseNet-121 model able to
accelerate the training process and extract significant features
from the spectrogram which greatly improve the performance
of the proposed method. Lastly, the performance of the
proposed method is further improved due to the capability
of MLP to learn complex relationships in mapping the input
to the output of the training samples which is important in
addressing non-linear and complex problems.

TABLE III
COMPARISON IN F1-SCORE FOR PROPOSED METHODS WITH OTHER

EXISTING METHODS

Methods Sound1 Sound2 Urban
Pre-trained VGG with CNN [32] 78.8 85.9 65.3
SB-CNN [21] 76.5 69.1 69.0
NMF-CNN [33] 73.7 78.9 66.4
Pre-trained DenseNet-121 with MLP 80.7 87.3 69.6

D. t-SNE Visualisation

To project high-dimensional hidden states into a lower
dimensional, t-SNE [34] approach is implemented to project
the hidden states of the acoustic event samples into the
2D space. All the acoustic event classes from the three
benchmark datasets are analysed and visualised using t-SNE
visualisation technique.

The t-SNE visualisation of the proposed methods on the
Soundscapes1, Soundscapes2, and UrbanSound8K dataset
are depicted in Fig. 3, Fig. 4, and Fig. 5, respectively.
Noticeably, several distinct clusters are formed for acoustic
events without mixing with other classes and they are lin-
early separable. Conversely, some clusters overlap with other
classes of the acoustic event, where their decision boundaries
are not linearly separable. Specifically, Canyon and Wind in
Soundscapes1 dataset which is likely to lead to classification
error. For the Soundscapes2 dataset, most of the acoustic
event classes like Assembly, Hammer, Relay, and Cutter are
linearly separable with Pretrained DenseNet-121 with MLP.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_07

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 3. t-SNE of the Proposed Method on Soundscapes1 Dataset

Fig. 4. t-SNE of the Proposed Method on Soundscapes2 Dataset

However, some classes like Welding, Grinding and Conveyor
still lack a good representation to form the clusters well. As
presented in the Fig. 5, several acoustic events classes from
the UrbanSound8K dataset mix with other classes and they
are non-linearly separable. Specifically, Children Playing
versus Dog Bark, Children Playing versus Street Music, and
Air Conditioner versus Engine Idling. It is worth noting
that the samples of Air Conditioner and Drilling form more
distinct clusters with the proposed Pre-trained DenseNet-121
with MLP. Concluding from the above analysis, the proposed
Pre-trained DenseNet-121 with MLP performs well in AEC
tasks.

Fig. 5. t-SNE of the Proposed Method on UrbanSound8K Dataset

E. Confusion Matrix Visualisation

To further evaluate the performance of the proposed
method, a confusion matrix visualisation technique is
utilised. All the acoustic events from three benchmark
datasets are analysed. Confusion matrices for proposed Pre-
trained DenseNet-121 with MLP on Soundscapes1, Sound-
scapes2, and UrbanSound8K are demonstrated in Fig. 6,
Fig. 7, and Fig. 8, respectively.

In the Fig. 6, two acoustic event classes from Sound-
scapes1 dataset are 100% correctly classified, which are
War and Wind. It is notable that Canyon class is heavily
misclassified to Water class by 66.67% of the test samples
due to the recording background for Canyon consists of
river flow noise. For Soundscapes2 dataset, a total of six
out of ten event classes are 100% correctly classified. In
addition, most of the leftover event classes are well classified
with Pre-trained DenseNet-121 with MLP which achieved
88.24%, 80%, and 80% for Elevators, Conveyor, and Printer,
respectively.

Fig. 8 presents the confusion matrix of Pre-trained
DenseNet-121 with MLP for UrbanSound8K dataset. Based
on the resulting confusion matrix depicted in Fig. 8, Dog
Bark, Engine Idling, Gun Shot, Jackhammer, and Children
Playing are well classified with the proposed method which
achieved 84.15%, 82.26%, 81.4%, 76.03%, and 75.23%,
respectively. The confusion matrices show that the proposed
pre-trained DenseNet-121 with MLP able to obtain robust
features from the acoustic samples and classify them into
correct classes with promising performance.

V. CONCLUSION

In this paper, a pre-trained DenseNet-121 with MLP
method is proposed for acoustic event classification. Two
data augmentation techniques, namely, time stretching and
pitch shifting are applied on the training set to expand
the number of training samples. Additionally, frequency
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Fig. 6. Confusion Matrix of the Proposed Method on Soundscapes1 Dataset

spectrogram technique is used to convert acoustic signals into
frequency spectrogram images which contain more informa-
tion and simultaneously solve the varying length problem of
the acoustic signal. Moreover, a set of significant features
can be extracted from the spectrogram images by imple-
menting transfer learning with the pre-trained DenseNet-
121 model. The extracted significant features vector is then
fed into a MLP model for training and classification. Three
acoustic event datasets: Soundscapes1, Soundscapes2, and
UrbanSound8K are used to evaluate the performance of
the proposed pre-trained DenseNet-121 with MLP method.
The proposed method outshines the existing methods in
comparison and yields the F1-score of 80.7%, 87.3%, and
69.6% on Soundscapes1, Soundscapes2, and UrbanSound8K
datasets, respectively.
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